Geometria e Algebra

Geometria

- Gian Pietro Pirola
- Francesco Bonsante
- Paola Frediani
- Alessandro Ghigi
- Ludovico Pernazza
- ?1

Algebra

Geometria

- Gian Pietro Pirola
- Francesco Bonsante
- Paola Fredian
- Alessandro Ghigi
- Ludovico Pernazza
- 27

Algebra

Geometria

- Gian Pietro Pirola
- Francesco Bonsante
- Paola Frediani
- Alessandro Ghigi
- Ludovico Pernazza
- 27

Algebra

Geometria

- Gian Pietro Pirola
- Francesco Bonsante
- Paola Frediani
- Alessandro Ghigi
- Ludovico Pernazza
- ??

Algebra

Geometria

- Gian Pietro Pirola
- Francesco Bonsante
- Paola Frediani
- Alessandro Ghigi
- Ludovico Pernazza
- ??

Algebra

Geometria

- Gian Pietro Pirola
- Francesco Bonsante
- Paola Frediani
- Alessandro Ghigi
- Ludovico Pernazza
- ??

Algebra

Geometria

- Gian Pietro Pirola
- Francesco Bonsante
- Paola Frediani
- Alessandro Ghigi
- Ludovico Pernazza
- ??

Algebra

• Istituzioni di Algebra.

- Istituzioni di Algebra.
- Algebra superiore.

- Istituzioni di Algebra.
- Algebra superiore.
- Istituzioni di Geometria.

- Istituzioni di Algebra.
- Algebra superiore.
- Istituzioni di Geometria.
- Geometria superiore.

- Istituzioni di Algebra.
- Algebra superiore.
- Istituzioni di Geometria.
- Geometria superiore.
- Curve algebriche e superfici di Riemann.

Docenti: Alberto Canonaco, Gian Pietro Pirola.

• Algebra commutativa (3 crediti, Alberto Canonaco).

- Algebra commutativa (3 crediti, Alberto Canonaco).
 - 1 Moduli su un anello commutativo.

- Algebra commutativa (3 crediti, Alberto Canonaco).
 - 1 Moduli su un anello commutativo.

- Algebra commutativa (3 crediti, Alberto Canonaco).
 - Moduli su un anello commutativo.
 - 2 Localizzazione di anelli e di moduli.

- Algebra commutativa (3 crediti, Alberto Canonaco).
 - Moduli su un anello commutativo.
 - 2 Localizzazione di anelli e di moduli.
 - 3 Anelli e moduli artiniani e noetheriani.

- Algebra commutativa (3 crediti, Alberto Canonaco).
 - Moduli su un anello commutativo.
 - 2 Localizzazione di anelli e di moduli.
 - 3 Anelli e moduli artiniani e noetheriani.
 - O Dimensione di Krull di un anello.

- Algebra commutativa (3 crediti, Alberto Canonaco).
 - Moduli su un anello commutativo.
 - 2 Localizzazione di anelli e di moduli.
 - 3 Anelli e moduli artiniani e noetheriani.
 - Oimensione di Krull di un anello.
 - Oipendenza integrale.

- Algebra commutativa (3 crediti, Alberto Canonaco).
 - Moduli su un anello commutativo.
 - 2 Localizzazione di anelli e di moduli.
 - 3 Anelli e moduli artiniani e noetheriani.
 - Oimensione di Krull di un anello.
 - Opendenza integrale.
 - Spettro di un anello; insiemi algebrici affini.

- Algebra commutativa (3 crediti, Alberto Canonaco).
 - Moduli su un anello commutativo.
 - 2 Localizzazione di anelli e di moduli.
 - 3 Anelli e moduli artiniani e noetheriani.
 - Oimensione di Krull di un anello.
 - Opendenza integrale.
 - Spettro di un anello; insiemi algebrici affini.

Docenti: Alberto Canonaco, Gian Pietro Pirola.

• Teoria dei numeri (6 crediti, Gian Pietro Pirola).

- Teoria dei numeri (6 crediti, Gian Pietro Pirola).
 - 1 Numeri algebrici. Interi Algebrici, Campi di Numeri.

- Teoria dei numeri (6 crediti, Gian Pietro Pirola).
 - 1 Numeri algebrici. Interi Algebrici, Campi di Numeri.
 - 2 Anelli di Dedekind. Gruppo delle classi.

- Teoria dei numeri (6 crediti, Gian Pietro Pirola).
 - 1 Numeri algebrici. Interi Algebrici, Campi di Numeri.
 - 2 Anelli di Dedekind. Gruppo delle classi.
 - 3 Rappresentazione geometrica dei numeri algebrici.

- Teoria dei numeri (6 crediti, Gian Pietro Pirola).
 - 1 Numeri algebrici. Interi Algebrici, Campi di Numeri.
 - 2 Anelli di Dedekind. Gruppo delle classi.
 - 3 Rappresentazione geometrica dei numeri algebrici.
 - Teorema delle unità di Dirichlet.

- Teoria dei numeri (6 crediti, Gian Pietro Pirola).
 - 1 Numeri algebrici. Interi Algebrici, Campi di Numeri.
 - 2 Anelli di Dedekind. Gruppo delle classi.
 - 8 Rappresentazione geometrica dei numeri algebrici.
 - Teorema delle unità di Dirichlet.
 - Teoria di Galois per campi di numeri.

- Teoria dei numeri (6 crediti, Gian Pietro Pirola).
 - 1 Numeri algebrici. Interi Algebrici, Campi di Numeri.
 - 2 Anelli di Dedekind. Gruppo delle classi.
 - 8 Rappresentazione geometrica dei numeri algebrici.
 - Teorema delle unità di Dirichlet.
 - Teoria di Galois per campi di numeri.

Docente: Gian Pietro Pirola.

- Teoria dei numeri.
 - 1 Numeri algebrici. Interi Algebrici, Campi di Numeri.
 - 2 Anelli di Dedekind. Gruppo delle classi.
 - 3 Rappresentazione geometrica dei numeri algebrici.
 - 4 Teorema delle unità di Dirichlet.
 - Teoria di Galois per campi di numeri.
 - 1 Introduzione alla teoria di Minkowski e al teorema di Riemann Roch.

Programma di Algebra superiore

Docente: Gian Pietro Pirola.

- Teoria dei numeri.
 - 1 Numeri algebrici. Interi Algebrici, Campi di Numeri.
 - 2 Anelli di Dedekind. Gruppo delle classi.
 - 3 Rappresentazione geometrica dei numeri algebrici.
 - 4 Teorema delle unità di Dirichlet.
 - Teoria di Galois per campi di numeri.
 - 6 Introduzione alla teoria di Minkowski e al teorema di Riemann Roch.

Istituzioni di Algebra / Algebra superiore

L'anno prossimo:

Istituzioni di Algebra / Algebra superiore

L'anno prossimo:

• Prima parte: probabilmente uguale (??).

Istituzioni di Algebra / Algebra superiore

L'anno prossimo:

- Prima parte: probabilmente uguale (??).
- Seconda parte: geometria algebrica?? algebre di Lie?? rappresentazioni di gruppi??

Docente: Francesco Bonsante.

Prima parte (3 crediti).
 Introduzione alle varietà differenziabili.

- Prima parte (3 crediti).
 Introduzione alle varietà differenziabili.
 - Varietà differenziabili. Spazio tangente e cotangente. Sottovarietà.

- Prima parte (3 crediti).
 Introduzione alle varietà differenziabili.
 - Varietà differenziabili. Spazio tangente e cotangente. Sottovarietà.
 - 2 Campi vettoriali. Forme differenziali.

- Prima parte (3 crediti).
 Introduzione alle varietà differenziabili.
 - 1 Varietà differenziabili. Spazio tangente e cotangente. Sottovarietà.
 - 2 Campi vettoriali. Forme differenziali.
 - 3 Elementi di topologia differenziale: lemma di Sard, formula di Stokes, coomologia di de Rham.

Docente: Francesco Bonsante.

Seconda parte (6 crediti).
 Topologia delle varietà e dei fibrati vettoriali.

- Seconda parte (6 crediti).
 Topologia delle varietà e dei fibrati vettoriali.
 - 1 Dualità di Poincarè. Sottovarietà e dualità.

- Seconda parte (6 crediti).
 Topologia delle varietà e dei fibrati vettoriali.
 - 1 Dualità di Poincarè. Sottovarietà e dualità.
 - 2 Fibrati. Fibrati vettoriali reali e complessi.

- Seconda parte (6 crediti).
 Topologia delle varietà e dei fibrati vettoriali.
 - Dualità di Poincarè. Sottovarietà e dualità.
 - 2 Fibrati. Fibrati vettoriali reali e complessi.
 - 3 Intorno tubolari e dualità. Classe di Eulero.

- Seconda parte (6 crediti).
 Topologia delle varietà e dei fibrati vettoriali.
 - 1 Dualità di Poincarè. Sottovarietà e dualità.
 - 2 Fibrati. Fibrati vettoriali reali e complessi.
 - 3 Intorno tubolari e dualità. Classe di Eulero.
 - Teoria dei fasci. Coomologia di Čech. Fasci localmente costanti e fibrati piatti.

- Seconda parte (6 crediti).
 Topologia delle varietà e dei fibrati vettoriali.
 - 1 Dualità di Poincarè. Sottovarietà e dualità.
 - 2 Fibrati. Fibrati vettoriali reali e complessi.
 - 3 Intorno tubolari e dualità. Classe di Eulero.
 - Teoria dei fasci. Coomologia di Čech. Fasci localmente costanti e fibrati piatti.
 - Classi di Chern e di Pontrjagin. Classificazione dei fibrati vettoriali complessi. Connessioni, curvatura e classi caratteristiche.

Programma di Geometria superiore

- 1 Dualità di Poincarè. Sottovarietà e dualità.
- 2 Fibrati. Fibrati vettoriali reali e complessi.
- 3 Intorno tubolari e dualità. Classe di Eulero.
- Teoria dei fasci. Coomologia di Čech. Fasci localmente costanti e fibrati piatti.
- Classi di Chern e di Pontrjagin. Classificazione dei fibrati vettoriali complessi. Connessioni, curvatura e classi caratteristiche.

Istituzioni di Geometria / Geometria superiore

L'anno prossimo:

Istituzioni di Geometria / Geometria superiore

L'anno prossimo:

• Prima parte: probabilmente uguale (??).

Istituzioni di Geometria / Geometria superiore

L'anno prossimo:

- 1 Prima parte: probabilmente uguale (??).
- 2 Seconda parte: probabilmente geometria Riemanniana (??).

Docente: ??

• Superfici di Riemann. Curve algebriche.

- Superfici di Riemann. Curve algebriche.
- Divisori e funzioni meromorfe.

- Superfici di Riemann. Curve algebriche.
- Divisori e funzioni meromorfe.
- Fasci e coomologia. Fibrati vettoriali olomorfi.

- Superfici di Riemann. Curve algebriche.
- Divisori e funzioni meromorfe.
- Fasci e coomologia. Fibrati vettoriali olomorfi.
- Forme differenziali olomorfe e meromorfe.

- Superfici di Riemann. Curve algebriche.
- Divisori e funzioni meromorfe.
- Fasci e coomologia. Fibrati vettoriali olomorfi.
- Forme differenziali olomorfe e meromorfe.
- Teorema di Riemann-Roch.

- Superfici di Riemann. Curve algebriche.
- Divisori e funzioni meromorfe.
- Fasci e coomologia. Fibrati vettoriali olomorfi.
- Forme differenziali olomorfe e meromorfe.
- Teorema di Riemann-Roch.
- La Jacobiana di una curva.

- Superfici di Riemann. Curve algebriche.
- Divisori e funzioni meromorfe.
- Fasci e coomologia. Fibrati vettoriali olomorfi.
- Forme differenziali olomorfe e meromorfe.
- Teorema di Riemann-Roch.
- La Jacobiana di una curva.
- Teorema di Abel.

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Costruzione di famiglie di curve interessanti.

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Costruzione di famiglie di curve interessanti.

Rette in $\mathbb{C}^{n+1} \longrightarrow \mathbb{P}^n(\mathbb{C})$.

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Costruzione di famiglie di curve interessanti.

Rette in $\mathbb{C}^{n+1} \longrightarrow \mathbb{P}^n(\mathbb{C})$.

Tutte le curve di genere $g \rightsquigarrow M_g$.

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Costruzione di famiglie di curve interessanti.

Rette in $\mathbb{C}^{n+1} \longrightarrow \mathbb{P}^n(\mathbb{C})$.

Tutte le curve di genere $g \sim M_g$.

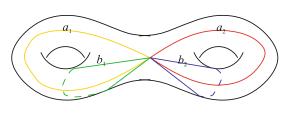
$$M_g := \frac{\{\text{curve di genere } g\}}{isomorfismo}$$

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Hodge e applicazione dei periodi.

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Hodge e applicazione dei periodi.



$$\int_{a_j} \omega_k = \delta_{jk}, \qquad B_{jk} := \int_{b_j} \omega_k,$$
$$B = B^T, \quad \mathfrak{Im} B > 0.$$

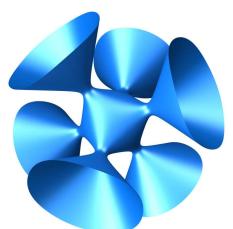
Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Superfici algebriche: classificazione, fibrazioni, topologia.

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

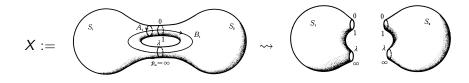
Superfici algebriche: classificazione, fibrazioni, topologia.

Una superficie K3.

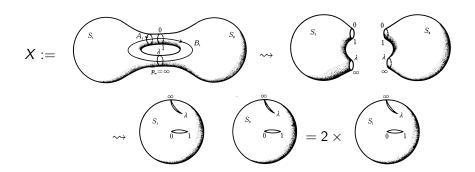


Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

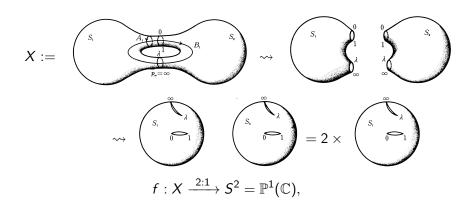
Geometria algebrica e complessa (Pirola, Frediani, Ghigi)



Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

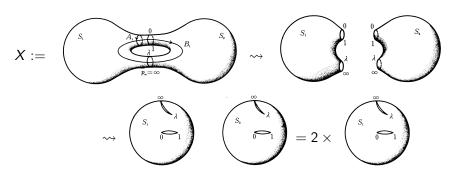


Geometria algebrica e complessa (Pirola, Frediani, Ghigi)



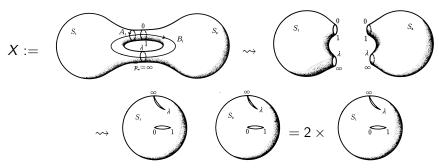
Geometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Galois geometrica.



 $f: X \xrightarrow{2:1} S^2 = \mathbb{P}^1(\mathbb{C}), \qquad \mathbb{C}(z) \subset \mathbb{C}(X) := \{ \text{funzioni meromorfe su } X \}$

Geometria algebrica e complessa (Pirola, Frediani, Ghigi)



$$f: X \xrightarrow{2:1} S^2 = \mathbb{P}^1(\mathbb{C}), \qquad \mathbb{C}(z) \subset \mathbb{C}(X) := \{\text{funzioni meromorfe su } X\}$$

$$\operatorname{Gal}\left(\mathbb{C}\left(X\right)/\mathbb{C}\left(z\right)\right).$$

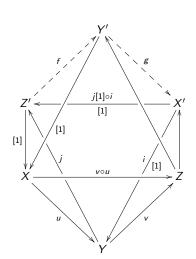
Algebra omologica e teoria delle categorie (Canonaco)

Categorie derivate

Algebra omologica e teoria delle categorie (Canonaco)

Categorie derivate

L'assioma dell'ottaedro per le categorie triangolate:

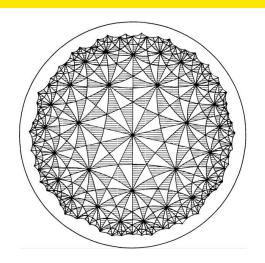


Geometria differenziale (Bonsante)

Geometria iperbolica.

Geometria differenziale (Bonsante)

Geometria iperbolica.

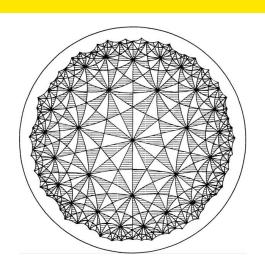


Geometria differenziale (Bonsante)

Geometria iperbolica.

Spazi di Teichmüller.

Strettamente collegato allo spazio dei moduli delle curve algebriche, ma da un punto di vista differenziale.



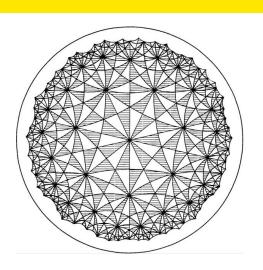
Geometria differenziale (Bonsante)

Geometria iperbolica.

Spazi di Teichmüller.

Strettamente collegato allo spazio dei moduli delle curve algebriche, ma da un punto di vista differenziale.

Fibrati piatti e varietà di rappresentazioni.



Geometria differenziale (Bonsante)

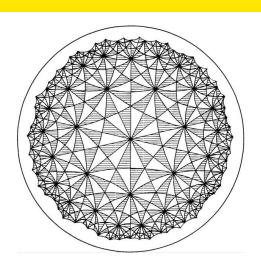
Geometria iperbolica.

Spazi di Teichmüller.

Strettamente collegato allo spazio dei moduli delle curve algebriche, ma da un punto di vista differenziale.

Fibrati piatti e varietà di rappresentazioni.

Azioni di gruppi su spazi simmetrici.

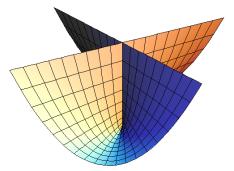


Geometria analitica reale (Pernazza)

Geometria analitica reale.

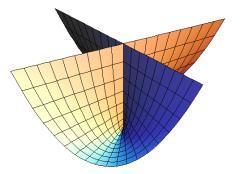
Geometria analitica reale (Pernazza)

Geometria analitica reale.



Geometria analitica reale (Pernazza)

Geometria analitica reale.



L'ombrello di Whitney: $x^2 - y^2z = 0$.

$$x^2 - y^2 z = 0.$$

Tematiche di tesi

In tutti gli argomenti di ricerca appena elencati. E in alcuni altri ...

Tematiche di tesi

In tutti gli argomenti di ricerca appena elencati. E in alcuni altri ...

Negli ultimi anni molti studenti si sono laureati a Pavia su argomenti di carattere algebrico o geometrico. Vari di questi sono entrati al dottorato a Pavia o altrove.