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Abstract. We consider the Maxwell-Stefan model of diffusion in a multi-

component gaseous mixture. After focusing on the main differences with the

Fickian diffusion model, we study the equations governing a three-component
gas mixture. Mostly in the case of a tridiagonal diffusion matrix, we provide

a qualitative and quantitative mathematical analysis of the model. We de-

velop moreover a standard explicit numerical scheme and investigate its main
properties. We eventually include some numerical simulations underlining the

uphill diffusion phenomenon.

1. Introduction. Diffusion is a time-dependent process, originated by the motion
of given entities that spread in space. The most classical description of the diffusion
phenomenon goes back to Fick [13, 14]. He postulated that the flux goes from
regions of high concentration to regions of low concentration, with a magnitude
proportional to the concentration gradient. We refer to [7] for a general physical
and mathematical overview of the Fickian diffusion.

The direct proportionality between flux and concentration gradient provides a
reasonable approximation of the diffusion process in many common situations. Nev-
ertheless, as experimentally observed, this postulate is sometimes too simplistic.
Indeed, the flux magnitude may not be purely proportional to the concentration
gradient, or the flux may go from low concentration regions to high concentration
ones. The first behaviour has been ascertained, for example, in porous media [8],
and the second one has been observed, among other situations, in multicomponent
gaseous mixtures (see, e.g., [17]).
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The diffusion phenomenon in a multicomponent gaseous mixture was first accu-
rately described by Maxwell [20] and Stefan [22]. They suggested an explanation
of the process based on the binary reciprocal interaction of the gas molecules. We
must emphasize that these interactions do not imply binary reactions between the
species. The result of their analysis is a system of coupled and nonlinear partial
differential equations, and the diffusion happens in a much more complex way than
the one foreseen by Fick’s law.

Quite surprisingly, whereas the theory of the heat equation, based on Fick’s law, is
classical (see, for exemple, [12]), and there is a huge literature on the mathematical
properties of porous media-type equations [24], based on Darcy’s law [8] and its
generalizations, a complete mathematical study of the Maxwell-Stefan laws is still
missing. Indeed, the main developments of the mathematical theory concerning
the Maxwell-Stefan equations, up to now, are focused on the study of numerical
algorithms based on the matrix description of the phenomenon [11, 10, 15, 16].
Nevertheless, these equations lie in the class of cross-diffusion models, meaning
that the molar velocity of each species nonlinearly depends on the others’. Such
models, related to population dynamics, were widely studied in the recent years,
see, for instance, [19, 6, 2] and the references therein.

This article aims to contribute to fill the gap on the mathematical analysis of
the Maxwell-Stefan equations.

The paper is organized as follows. In the next section, we briefly analyze the
diffusion process in a gaseous mixture and then, in Section 3, we explain the physical
derivation of the Maxwell-Stefan equations. A mathematical analysis of the system
is then provided in Section 4 in the case of a ternary gaseous mixture where two
species have a similar behaviour with respect to the diffusion phenomenon. Finally,
in Section 5, we propose a numerical scheme for the Maxwell-Stefan equations, for
which we perform a numerical analysis and, in Section 6, we give some numerical
results which emphasize the main features of the model, such as the uphill diffusion.

2. Physics of diffusion in gaseous mixtures. Let us consider a multicomponent
gaseous mixture. The diffusion process of each species into the mixture is driven by
a set of parameters, the binary diffusion coefficients (or binary diffusivities), which
essentially have the physical significance of an inverse drag coefficient. For gaseous
mixtures at moderate pressures, these coefficients do not depend on the mixture
composition (see e.g. [17]).

A celebrated experiment on a ternary gas mixture and the mutual diffusion of
the species has been carried out by Duncan and Toor [9] in 1962. They studied an
ideal gas mixture composed of hydrogen (H2, species 1), nitrogen (N2, species 2),
and carbon dioxide (CO2, species 3) inside an isolated device. The binary diffusion
coefficients of the involved species are not equal. Indeed, we have

D12 = 83.3 mm2 s−1, D13 = 68.0 mm2 s−1, D23 = 16.8 mm2 s−1,

where Dij denotes the binary diffusivity between species i and j, i 6= j.
Whereas the initial concentration of N2 is constant in the whole device, the initial

data for both H2 and CO2 induce a strong concentration gradient.
Under the diffusion process, the high concentration gradients of carbon dioxide

and hydrogen generate initially strong fluxes for these species. Due to the larger
friction force between carbon dioxide and nitrogen (implied by the lower binary dif-
fusion coefficient for this pair with respect to the pair hydrogen-nitrogen), carbon
dioxide drags nitrogen, even though its concentration gradient is almost zero. This
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effect is called the uphill diffusion. It leads to a concentration gradient for nitrogen
from the less concentrated region to the more concentrated one. Together with the
decreasing fluxes of H2 and N2, the mixture eventually reaches a point, called diffu-
sion barrier, where this concentration gradient cancels out with the uphill diffusion
effect. Beyond this point, the concentration gradient has a stronger effect than the
friction forces and hence, the diffusion direction changes. The mixture asymptoti-
cally goes to the equilibrium, as it would have happened for a mixture where Fick’s
law holds. The reader can refer to [3] for more modelling and computational details.

In order to understand why Fick’s law fails to provide a reasonable description of
the diffusion process in a gaseous mixture and, in particular, why the phenomenon
of the uphill diffusion is not captured, it is necessary to take into account how
the friction forces between different species influence the global behaviour of the
mixture.

3. Maxwell-Stefan’s equations. An ideal gaseous mixture, composed by n ∈ N∗
species, is fully described by the mole fractions ξi of each species i, 1 ≤ i ≤ n, and
the total concentration ctot of the mixture. Each mole fraction, which depends on
time t ≥ 0 and space location x ∈ Rd, d ∈ N∗, satisfies the continuity equation

∂tξi +∇ ·Ni = 0, (1)

where Ni = ξiui ∈ Rd is the molar flux of species i, and ui the molar velocity of
that same species.

The relationships between the molar fluxes and the mole fractions depend on the
diffusion model one chooses. In many cases, Fick’s law provides a quite accurate
physical description of the phenomenon but, as emphasized in Section 2, it does not
allow to explain some behaviours which have been experimentally observed.

An explanation of such non-Fickian phenomena can be obtained by carefully
studying the reciprocal action of the different species. The force acting on species i
in a control volume is given by −∇pi, where pi is the partial pressure of that
species in the mixture. In the case of an ideal gas mixture, the equation of state
pi = RTctotξi allows to deduce an explicit expression of the force per mole of species i
at constant temperature and pressure (thus ctot is constant), namely −RT∇ξi/ξi,
where R denotes the ideal gas constant and T the absolute temperature.

At the equilibrium, this force is balanced by the drag/friction forces exerted
by the other species in the mixture. Usually, the drag force is proportional to the
relative velocity as well as to the mole fraction of the other components. The friction
force between species i and j acting on species i then writes RTξj(ui − uj)/Dij .
Here, ui and uj respectively denote the molar velocity of species i and j, and Dij

is the binary diffusion coefficient between the two species. For physical reasons, the
binary diffusion coefficients satisfy the symmetry property Dij = Dji. The constant
RT/Dij can then be seen as a drag coefficient.

We can hence deduce the force balance for species i

− 1

ξi
∇ξi =

∑
j 6=i

1

Dij
ξj(ui − uj).

If we multiply both sides of the previous equation by ξi, and use the relationship
between Ni and ui, we obtain

−∇ξi =
∑
j 6=i

ξjNi − ξiNj
Dij

. (2)
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These equations, which have been obtained here by means of a balance of forces,
are the natural diffusion limit of a kinetic model describing a mixture of non-reacting
gases. We refer to [4] for details (see also [25]).

We note that there is a linear dependence between the Maxwell-Stefan laws (2)
of all the species. Indeed, summing (2) over 1 ≤ i ≤ n implies that

−
n∑
i=1

∇ξi =

 n∑
i=1

∑
j 6=i

ξjNi
Dij

−
n∑
j=1

∑
i 6=j

ξiNj
Dij

 = 0, (3)

because of the symmetry property of the binary diffusion coefficients. Consequently,
we have to add another equation to our system. When the convection is neglected,
the behaviour of the mixture is purely diffusive. Hence the total sum of the diffusive
fluxes is locally zero, i.e.

n∑
i=1

Ni = 0. (4)

Eventually, we can prove the total mass conservation. Indeed, summing (1) over
all i and use (4) implies that

∑
ξi does not depend on t. Consequently, it equals

its initial datum, i.e.
n∑
i=1

ξi = 1. (5)

We observe that, when the binary diffusion coefficients are equal, i.e.Dij = D ≥ 0
for all 1 ≤ i, j ≤ n, thanks to (4)–(5), Maxwell-Stefan’s law (2) reduces into Fick’s
law

Ni = −D∇ξi.
On the contrary, as shown by Duncan and Toor, when the binary diffusion coeffi-

cients are not of the same order of magnitude, Fick’s law clearly becomes inaccurate
to describe the physical behaviour of the system. It is hence necessary to treat the
diffusion problem by using the full Maxwell-Stefan model.

It is worth noticing that, in this case, the PDEs satisfied by the mole fractions
are coupled and, in general, nonlinear: indeed, because of (2), each flux is strongly
related to the others and to all the mole fractions.

We refer to [17] for further considerations on the physical description of the
Maxwell-Stefan diffusion. Note that the question explored in the article is not
of pure academic nature, but is intended to be useful in the context of the lower
respiratory airways, especially in the case of patients who suffer from a severe airway
obstruction [5, 23, 3]. As a matter of fact, these patients may have to inhale a
mixture of oxygen and helium (replacing nitrogen in the same proportion), and
the binary diffusion coefficients involving helium are quite different from the ones
involving nitrogen (up to a factor 5). Therefore, Fick’s law does not seem suitable
to describe the mixture behaviour.

4. Mathematical properties of the three-component system. In the pre-
vious sections, we have pointed out the peculiarity of the uphill diffusion. This
feature is due to the coupling between the fluxes and the fact that at least a binary
diffusion coefficient differs from the other ones.

Here we consider the simplest possible situation that exhibits the phenomenon
of the uphill diffusion. We study the case of Duncan and Toor’s experiment (hence,
a ternary mixture).
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From a mathematical point of view, we are interested in the following problem:

∂tξi +∇ ·Ni = 0, 1 ≤ i ≤ 3, (6)

N1 +N2 +N3 = 0, (7)

ξ2N1 − ξ1N2

D12
+
ξ3N1 − ξ1N3

D13
= −∇ξ1, (8)

ξ1N2 − ξ2N1

D12
+
ξ3N2 − ξ2N3

D23
= −∇ξ2, (9)

posed in a bounded domain Ω ∈ Rd, d ∈ N∗, with a C1 boundary ∂Ω. Note that
(8) or (9) could have been replaced by the equation involving −∇ξ3, because the
three equations are linearly dependent, as stated in (3). The mole fractions satisfy
the initial conditions

ξi(0, ·) = ξini ∈ L∞(Ω), 1 ≤ i ≤ 3,

where we have supposed that

ξini ≥ 0, 1 ≤ i ≤ 3, and

3∑
i=1

ξini = 1.

As we already stated, that implies that

3∑
i=1

ξi = 1 on R+ × Ω. (10)

The boundary conditions are of no-flux type:

Ni = 0, on R+ × ∂Ω, 1 ≤ i ≤ 3. (11)

Thanks to (7) and (10), (6)–(9) can be rewritten in the following reduced form,
only using the two sets of unknowns (ξ1, N1) and (ξ2, N2):

∂tξi +∇ ·Ni = 0, 1 ≤ i ≤ 2, (12)

1

D13
N1 + αN1ξ2 − αN2ξ1 = −∇ξ1, (13)

1

D23
N2 − βN1ξ2 + βN2ξ1 = −∇ξ2, (14)

where

α =

(
1

D12
− 1

D13

)
, β =

(
1

D12
− 1

D23

)
.

The unknown (ξ3, N3) and its properties can then be deduced from the relationships
ξ3 = 1−ξ1−ξ2 and N3 = −N1−N2. From now on, we focus on the reduced system
involving species 1 and 2, i.e. (12)–(14). The associated initial conditions become

ξ1(0, ·) = ξin1 ∈ L∞(Ω), ξ2(0, ·) = ξin2 ∈ L∞(Ω), (15)

where

ξin1 , ξ
in
2 ≥ 0 and ξin1 + ξin2 ≤ 1,

and the boundary conditions

N1 = N2 = 0, on R+ × ∂Ω. (16)

Let us now moreover suppose that the two approximately equal binary diffusivi-
ties in this Duncan and Toor situation are, in fact, equal, for instance, D12 = D13,
i.e. α = 0. We do not make any assumption on β. The terms involving α in (13)
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obviously disappear, and N1 and N2 can be expressed with respect to ξ1 and ξ2
only, i.e.

N1 = −D12∇ξ1, (17)

N2 = −
(

1

D23
+ βξ1

)−1

(∇ξ2 + βD12ξ2∇ξ1) . (18)

Note that, under that form, if β = 0, we clearly recover the Fickian expression
of N2 in (18). Hence we can deduce the equations that govern the mole fractions ξ1
and ξ2 without explicitly using the fluxes, i.e.

∂tξ1 = D12∆ξ1, (19)

∂tξ2 = ∇ ·

[(
1

D23
+ βξ1

)−1

(∇ξ2 + βD12ξ2∇ξ1)

]
. (20)

The following result holds:

Proposition 1. Let ξin1 , ξ
in
2 two nonnegative functions belonging to L∞(Ω) such

that ξin1 + ξin2 ≤ 1. The initial-boundary value problem (12)–(16), where D12 = D13,
admits unique smooth solutions (ξ1, N1) and (ξ2, N2) for all time. Moreover, ξ1
and ξ2 remain nonnegative, and the mass of each species is conserved with respect
to time, i.e.

‖ξ1(t, ·)‖L1(Ω) = ‖ξin1 ‖L1(Ω), ‖ξ2(t, ·)‖L1(Ω) = ‖ξin2 ‖L1(Ω), ∀ t ∈ R+.

Proof. Existence, uniqueness, nonnegativity and regularity of the mole fraction ξ1
are standard because it satisfies (19).

The same properties for the mole fraction ξ2 follow by applying to (20) the results
proved in [18, Chapter 4]. Indeed, since ξ1 solves a heat equation, it is a known
function in (20), which is then uncoupled from the other equation. In fact, (20)
can be reduced to a linear PDE of parabolic type in divergence form. Moreover,
the boundary condition on N2 clearly implies, using (18), a Neumann condition
on ξ2. Since 0 ≤ ξ1 ≤ 1 by the maximum principle of the heat equation (19), the
term (1/D23 + βξ1) of (20) is uniformly upper and lower-bounded by two positive
constants. Hence, (20) is uniformly parabolic: existence, uniqueness, nonnegativity
and regularity of the mole fraction ξ2, as well the maximum principle, are then
proved.

The molar fluxes are directly obtained by means of (17)–(18). The mass conser-
vation of each species is a direct consequence of the integration with respect to x
of the continuity equations (12), together with the initial and boundary conditions
(15) and (16).

We now consider the problem of decay to equilibrium. We first obtain a prelim-
inary result, which can be proven by direct inspection.

Lemma 4.1. Let Ξ1, Ξ2 two nonnegative constants such that Ξ1 + Ξ2 ≤ 1. Then
(Ξ1, 0) and (Ξ2, 0) are steady solutions to (12)–(14) with boundary conditions (16).

We can then prove the following result:

Theorem 4.2. Let ξin1 , ξ
in
2 two nonnegative functions belonging to L∞(Ω) such that

ξin1 + ξin2 ≤ 1. Consider (ξ1, N1) and (ξ2, N2), the unique solutions of the initial-
boundary value problem (12)–(16), where D12 = D13.
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The mole fractions (ξi) asymptotically converge to

ξ̄i := ‖ξini ‖L1(Ω)/meas(Ω)

when t goes to +∞. Moreover, let θ ∈ (0, 1). Then there exists K := Kθ > 0
depending on θ and on the binary diffusion coefficients, such that

H(t) =
K

2

∫
Ω

(ξ1 − ξ̄1)2 dx+
1

2

∫
Ω

(ξ2 − ξ̄2)2 dx

satisfies the following estimate:

H(t) ≤ H(0) exp (−2θmin(D12, D23) Cd,Ωt) ,

where Cd,Ω is the best constant of the Poincaré inequality on the domain Ω ∈ Rd.

Proof. Since ξ1 satisfies (19), we immediately have for any K > 0

K

2

d

dt

∫
Ω

(ξ1 − ξ̄1)2 dx ≤ −KD12

∫
Ω

|∇ξ1|2 dx. (21)

We can write the same kind of inequality for ξ2, i.e.

1

2

d

dt

∫
Ω

(ξ2 − ξ̄2)2 dx ≤ −
∫

Ω

γ |∇ξ2|2 dx− βD12

∫
Ω

γξ2∇ξ1 · ∇ξ2 dx, (22)

where

γ =

(
1

D23
+ βξ1

)−1

.

Let m = min(D12, D23) and M = max(D12, D23). It is clear that γ ∈ [m,M ] on
R+ × Ω. Using in (22) the standard inequality ab ≤ εa2 + b2/4ε, for any ε > 0, we
get

1

2

d

dt

∫
Ω

(ξ2 − ξ̄2)2 dx ≤ ε|β|D12M

∫
Ω

|∇ξ1|2 dx (23)

−
[
m− |β|D12M

4ε

] ∫
Ω

|∇ξ2|2 dx.

By summing (21) and (23), we obtain

H ′(t) ≤ −D12 (K − ε|β|M)

∫
Ω

|∇ξ1|2 dx−
(
m− |β|D12M

4ε

)∫
Ω

|∇ξ2|2 dx.

Let 0 < θ < 1 and set

ε =
|β|D12M

4(1− θ)m
> 0.

This choice obviously ensures that

m− |β|D12M

4ε
= θm > 0.

Then we choose

K =
(βD12M)2

4(1− θ)(D12 − θm)m
> 0,

so that

D12(K − ε|β|M) = Kθm > 0.

Consequently, we have

H ′(t) ≤ −θm
(
K

∫
Ω

|∇ξ1|2 dx+

∫
Ω

|∇ξ2|2 dx

)
.
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Thanks to Poincaré’s inequality, we eventually get

H ′(t) ≤ −2θmCd,ΩH(t),

where Cd,Ω is the best constant (which only depends on the domain Ω and the
dimension of the Euclidean space Rd) of Poincaré’s inequality.

The required estimate is hence proven.

Remark 1. In particular, as shown by Payne and Weinberger [21] and by Bebendorf
[1], Cd,Ω = diam(Ω)/π for bounded, convex domains. This provides an explicit value
of the decay rate to equilibrium.

5. A numerical method for the 1-D Maxwell-Stefan equations. In this
section, we propose a finite-difference numerical scheme for the initial-boundary
value problem (12)–(16).

Since we are mainly interested in exploring the phenomenon of uphill diffusion,
we choose to work in a one-dimensional spatial setting. In this case, indeed, all
phenomena of mass displacement take place on the same straight line, and therefore
the characterization of the uphill diffusion can be easily obtained by considering,
locally in space and time, the sign of the product between the gradient of the mole
fraction and the flux of each species: Ni∂xξi ≥ 0 when the uphill diffusion occurs.
Moreover, since there is no mixed derivative in the equations, it is enough to consider
the one-dimensional case which allows a better readability of the figures.

Hence, from now on, we shall suppose that Ω = (0, 1).
In this section, if necessary, we exchange the species labels so that we can safely

assume that D23 ≥ D13 ≥ D12, i.e. α, β ≥ 0.
We consider a regular subdivision (xj)0≤j≤J of Ω, with J ≥ 1. We set ∆x =

1/J > 0, so that we have xj = j∆x. The mole fractions ξi are computed at the
centers xj+1/2 := (j + 1/2)∆x of each interval [xj , xj+1], 0 ≤ j ≤ J − 1, whereas
the corresponding molar fluxes Ni are computed at the nodes of the subdivision xj ,
0 ≤ j ≤ J . Let us consider ∆t > 0 without any further assumption for the moment.
For each species i ∈ {1, 2}, we consider the approximations

ξ
(k,j)
i ' ξi(k∆t, xj+1/2), k ∈ N, 0 ≤ j ≤ J − 1,

N
(k,j)
i ' Ni(k∆t, xj), k ∈ N, 0 ≤ j ≤ J,

and set

ξ
(k,j−1/2)
i =

1

2

(
ξ

(k,j)
i + ξ

(k,j−1)
i

)
, k ∈ N, 1 ≤ j ≤ J − 1.

The initial-boundary value problem (12)–(16) can then be discretized as follows.

Discretization of (15)–(16), for i ∈ {1, 2}i ∈ {1, 2}i ∈ {1, 2}. We first take into account the initial
and boundary conditions:

ξ
(0,j)
i = ξini (xj+1/2), 0 ≤ j ≤ J − 1 (24)

N
(k,0)
i = 0, k ∈ N, (25)

N
(k,J)
i = 0, k ∈ N. (26)
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Discretization of (13)–(14), for i ∈ {1, 2}i ∈ {1, 2}i ∈ {1, 2}. There is no time derivative in those

equations, so we get a plain linear system of unknowns N
(k,j)
1 ∆x and N

(k,j)
2 ∆x:[

1

D13
+ αξ

(k,j−1/2)
2

]
N

(k,j)
1 − αξ(k,j−1/2)

1 N
(k,j)
2 =

ξ
(k,j−1)
1 − ξ(k,j)

1

∆x
, (27)

−βξ(k,j−1/2)
2 N

(k,j)
1 +

[
1

D23
+ βξ

(k,j−1/2)
1

]
N

(k,j)
2 =

ξ
(k,j−1)
2 − ξ(k,j)

2

∆x
, (28)

for any k ∈ N and j, 1 ≤ j ≤ J − 1. It can be solved with a standard Gauss
elimination, and has unique solutions because the terms inside the brackets are
both positive.

Discretization of (12), for i ∈ {1, 2}i ∈ {1, 2}i ∈ {1, 2}. Eventually, we obtain the updated mole
fractions by

ξ
(k+1,j)
i = ξ

(k,j)
i − ∆t

∆x2

[
N

(k,j+1)
i ∆x−N (k,j)

i ∆x
]
, (29)

for any k ∈ N and j, 0 ≤ j ≤ J − 1.

5.1. Properties of the numerical scheme. The scheme (27)–(29) allowing to
compute the mole fractions conserves the total masses ‖ξi(t)‖L1

x
, i ∈ {1, 2}. Indeed,

using (25)–(26), we can check, for any k ∈ N, that

J−1∑
j=0

ξ
(k+1,j)
i =

J−1∑
j=0

ξ
(k,j)
i +

∆t

∆x2

J−1∑
j=0

∆x
[
N

(k,j)
i −N (k,j+1)

i

]
=

J∑
j=0

ξ
(k,j)
i .

In the following, we investigate the consistency and stability of the scheme, and,
we assume, as in Theorem 4.2, that α = 0.

Proposition 2. The numerical scheme defined by (24)–(29), where we choose
D12 = D13, is of first order in time and second order in space. Moreover, it is
L∞-stable if

D23
∆t

∆x2
≤ 1

2
. (30)

Proof. Since ξ1 satisfies a heat equation, the standard consistency orders are ob-
tained and the corresponding stability condition is obviously satisfied because of (30),

since D12 ≤ D13. In particular, any ξ
(k,j)
1 lies in [0, 1] (discrete maximum principle).

Let us denote

σ =
∆t

∆x2

and set, for u, v ∈ [0, 1],

A(u, v) = σD23
2 + βD12(u− v)

2 + βD23(u+ v)
.

One can check that

∂A

∂u
= −2βD23σ

(D23 −D12)(1− v)

[2 + βD23(u+ v)]2
≤ 0,

∂A

∂v
= −2βD23σ

(D23 +D12) + (D23 −D12)u

[2 + βD23(u+ v)]2
≤ 0.

It is then easy to prove that

σD12 ≤ A(u, v) ≤ σD23, ∀ u, v ∈ [0, 1].
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Let us now set X = ξ
(k,j−1)
1 , Y = ξ

(k,j)
1 and Z = ξ

(k,j+1)
1 , which all lie in [0, 1].

We note that (29), for i = 2, can be rewritten using the function A:

ξ
(k+1,j)
2 = (1−A(Y,Z)−A(Y,X))ξ

(k,j)
2 +A(Z, Y )ξ

(k,j+1)
2 +A(X,Y )ξ

(k,j−1)
2 .

The fact that ξ
(k+1,j)
2 is still positive is then obvious if (30) holds.

Then we prove that ξ
(k,j)
1 + ξ

(k,j)
2 ≤ 1 for any j, by induction on k ∈ N. The case

k = 0 is of course satisfied because ξin1 + ξin2 ≤ 1 must hold. Now we assume that

ξ
(k,j)
1 + ξ

(k,j)
2 ≤ 1 for any j, and we prove the same property at iteration k+ 1. We

can easily write

ξ
(k+1,j)
1 + ξk+1,j

2 ≤ F (X,Y, Z),

where F denotes

F (X,Y, Z) = (1− 2σD12)Y + σD12(X + Z) + (1−A(Y, Z)−A(Y,X))(1− Y )

+A(Z, Y )(1− Z) +A(X,Y )(1−X).

After tedious but not difficult computations, it is possible to prove that F remains
constant equal to 1, which allows to obtain the required inequality.

Remark 2. When α 6= 0, we numerically check that the scheme seems to remain
stable if (30) holds, assuming that D23 = maxDij . In the following section, we
obviously impose the stability condition on ∆t/∆x2.

6. Numerical tests. We now use the numerical code proposed in Section 5 to
explore the main features of the Maxwell-Stefan diffusion equations. The compu-
tations were performed using a numerical code written in C.

6.1. Asymptotic behaviour. In this subsection, we use J = 100. We proved in
Theorem 4.2 that the mole fractions converge with an exponential rate towards the
equilibrium, in the case when α = 0. In fact, that exponential behaviour has been
numerically recovered also for other values of α.

Let us consider the following initial data:

ξin1 (x) =

{
0.8 if 0 ≤ x < 0.5
0 if 0.5 ≤ x ≤ 1

and ξin2 (x) = 0.2, for all x ∈ Ω. (31)

We first study the situation of the Duncan and Toor experiment, henceforth
indicated as (DT), and choose the same values of the binary diffusion coefficients:
D12 = 0.833, D13 = 0.680 and D23 = 0.168 (see Section 2). In Figure 1, we plot
the quantity H defined in Theorem 4.2, for K = 1, with respect to time, and we
clearly obtain an exponential convergence rate towards the equilibrium.

However, this behaviour may not hold anymore if we check the time evolution of
an isolated species of the mixture. For example, if we consider the time evolution of
the quantity ‖ξ2− ξ̄2‖2L2(Ω), we can see on Figure 2 that the exponential convergence

only takes place after a transient period: the reciprocal interaction with the other
species of the mixture induces a temporary growth of the aforementioned quantity,
and, only after some time, the density tends to the expected asymptotic profile.
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Figure 1. Asymptotic behaviour for the (DT)-situation: time
evolution of H(t) for K = 1
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Figure 2. ‖ξ2 − ξ̄2‖2L2(Ω) w.r.t. time.

6.2. Uphill diffusion. We are here interested in the phenomenon of uphill diffu-
sion. We investigate a situation close to the Duncan and Toor experiment, where
we choose D12 = D13 = 0.833 (α = 0) and D23 = 0.168. This case will be indicated
as the semi-degenerate Duncan and Toor experiment (SDDT). The computations
are performed with J = 140. We consider two sets of initial data. The first one is
given by (31), and the second one is continuous:

ξin1 (x) =

 0.8 if 0 ≤ x < 0.25
1.6(0.75− x) if 0.25 ≤ x < 0.75,
0 if 0.75 ≤ x ≤ 1

ξin2 (x) = 0.2 for all x ∈ Ω. (32)

The initial datum in (32) for ξ1 appears as a smoothed version of the one in (31).
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On Figure 3, we plot the space-time region where the concentration gradient of
the species experiencing the uphill diffusion (here, species 2) and the corresponding
flux share the same sign.

The asymmetrical shapes of the uphill diffusion regions can be explained by the
asymmetry of the initial data. We observe that in both figures, the uphill diffusion
zone for ξ2 begins at the variations of the initial values for ξ1 and ξ3 (i.e. the
jumps of ξ1 and ξ3 or their derivatives). Indeed, it corresponds to the zone of the
strongest flux of ξ1 and ξ3, which drags species 2 and causes its uphill diffusion.
Thus, for small times, the space-time regions of uphill diffusion are quite different,
whereas, when we get closer to time 0.2, the shapes of the regions look quite similar.
Eventually, the uphill diffusion phenomenon is localized in space and tends to be
shifted towards the areas which were initially at the equilibrium. Beyond t = 0.27,
the uphill diffusion phenomenon disappears everywhere.

Figure 3. Space-time region where N2∂xξ2 ≥ 0 (a) for (31), and
(b) for (32)

We note that, for the initial conditions (32), there are some regions where uphill
diffusion happens in two non-connected time intervals (see in Figure 3(b)), which
induces, by comparison with Figure 3(a), a significant difference in the topological
form of the uphill diffusion areas. In fact, this proves that at a given point, uphill
diffusion can happen more than once.

In order to get a better understanding of the physical factors leading to this, we
plot on Figure 4 both the flux of ξ2 and the opposite of its concentration gradient
at x = 0.72 with respect to time. We recover the two separated time intervals of
uphill diffusion. Actually, we observe that there is only one sign change for the flux,
and the two intervals of uphill diffusion are due to two sign changes for the mole
fraction gradient. These sign changes are caused by the complex movement of the
other species, 1 and 3, depending on the initial data for the mole fractions.
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[18] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, “Linear and Quasilinear Equations

of Parabolic Type,” Translations of Mathematical Monographs, Vol. 23, American Mathemat-

ical Society, Providence, R.I., 1967.
[19] Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations,

131 (1996), 79–131.
[20] J. C. Maxwell, On the dynamical theory of gases, Phil. Trans. R. Soc., 157 (1866), 49–88.
[21] L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch.
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