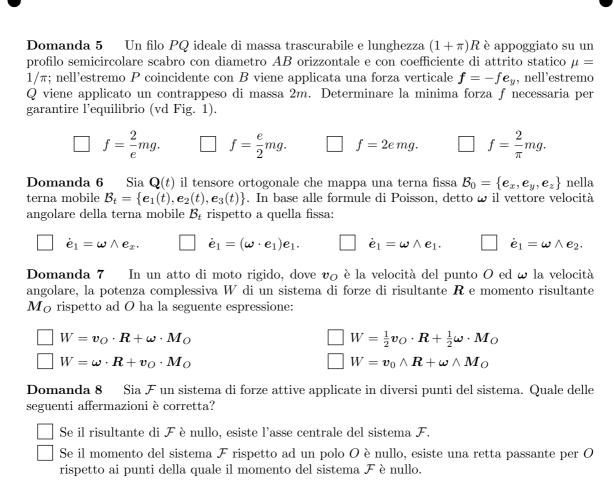
Fisica Matematica Appello del 20 pratile CCXXVI RF
□0 □0 □0 □0 □0 □0 □1 □1 □1 □1 □1 □2 □2 □2 □2 □2 □2 □3 □3 □3 □3 □3 □3 □3 □4 □4 □4 □4 □4 □4 □4 □4 □4 □4 □4 □4 □4 □
Cognome e Nome: 14
Domanda 1 Si consideri il seguente sistema di vettori applicati:
$ \begin{cases} & \boldsymbol{v}_1 = \boldsymbol{e}_x + 3\boldsymbol{e}_y - \boldsymbol{e}_z & \text{applicato in } P_1 - O \equiv (1, 1, 0), \\ & \boldsymbol{v}_2 = 2\boldsymbol{e}_x - 2\boldsymbol{e}_y + \boldsymbol{e}_z & \text{applicato in } P_2 - O \equiv (0, 1, -1), \\ & \boldsymbol{v}_3 = -\boldsymbol{e}_x + \boldsymbol{e}_y + \boldsymbol{e}_z & \text{applicato in } P_3 - O \equiv (1, 2, 2). \end{cases} $
Calcolare il valore del trinomio invariante $\mathscr{I}.$
Domanda 2 Sia \mathcal{B} un sistema di punti materiali <i>nello spazio</i> , e siano I_1 , I_2 ed I_3 i momenti centrali d'inerzia rispetto a $\{e_1, e_2, e_3\}$, direzioni principali d'inerzia, con $0 < I_1 \le I_2 \le I_3$. Quale fra le seguenti affermazioni è <i>sempre</i> vera?
 Non esistono altre direzioni principali d'inerzia all'infuori di {e₁, e₂, e₃}. I₃ = I₁ + I₂. Se I₁ = I₂ = I₃ il tensore centrale d'inerzia è un multiplo dell'identità. Se I₁ = I₂ = I₃ il corpo è una sfera.
Domanda 3 Siano (q_1, q_2, q_3) le coordinate lagrangiane di un sistema olonomo a 3 gradi di libertà; siano $k_i > 0$, $i = 1, 2, \cdots$. Quali fra le seguenti sono espressioni possibili per l'energia potenziale del sistema?
$V(q_1, q_2, q_3) = k_1 q_1^2 \dot{q}_2^2 + k_2 q_1 \dot{q}_2 \dot{q}_3.$ $V(q_1, q_2, q_3) = k_1 q_1^2 \sin(q_2) - k_2 q_1 q_3.$ $V(q_1, q_2, q_3) = k_1 q_1^2 q_2^2 + k_2 q_1 q_2 q_3.$ $V(q_1, q_2, q_3) = k_1 q_1^2 + k_2 \cos(q_1) \sin(q_2) + k_3 \dot{q}_1 \dot{q}_3.$
Domanda 4 Dati i tensori $\mathbf{A} = 2\mathbf{e}_x \otimes \mathbf{e}_x + 2\mathbf{e}_x \otimes \mathbf{e}_y - \mathbf{e}_y \otimes \mathbf{e}_y - \mathbf{e}_y \otimes \mathbf{e}_z$, e $\mathbf{B} = \mathbf{e}_x \otimes \mathbf{e}_x - \mathbf{e}_x \otimes \mathbf{e}_y + 3\mathbf{e}_z \otimes \mathbf{e}_y$, calcolare $\mathbf{AB} - \mathbf{BA}$.
$\square 4e_x \otimes e_x - 2e_x \otimes e_y + 2e_y \otimes e_x.$
\square O (tensore nullo). \square $2e_x \otimes e_x - 2e_x \otimes e_y - 3e_y \otimes e_z$.



Se il trinomio invariante del sistema \mathcal{F} è nullo, esiste sempre una retta passante per O rispetto

Se il trinomio invariante del sistema \mathcal{F} è nullo, il risultante del sistema \mathcal{F} è nullo.

ai punti della quale il momento del sistema \mathcal{F} è nullo.

