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Programma di Istituzioni di Geometria

Docente: Maurizio Cornalba.

Varietà differenziabili.

Campi vettoriali, forme differenziali, teorema di Frobenius.

Gruppi e algebre di Lie.

Elementi di topologia differenziale:
lemma di Sard, teorema di de Rham.

Geometria Riemanniana: curvatura, geodetiche, completezza.

Funzioni olomorfe di più variabili, varietà complesse.



Istituzioni di Algebra

Docenti: Alberto Canonaco, Paola Frediani.

Moduli su un anello. Moduli semisemplici.
Applicazioni alla teoria delle rappresentazioni dei gruppi finiti.

Anelli e moduli artiniani e noetheriani.

Localizzazione. Teoria della dimensione. Dipendenza integrale.

Spettro di un anello commutativo. Insiemi algebrici affini.
Teorema degli zeri di Hilbert.

Introduzione all’algebra omologica. Funtori Ext e Tor.

Introduzione alla teoria delle categorie e ai funtori derivati.

Coomologia dei gruppi.
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Teoria di Hodge e mappa dei periodi.
118 6 Riemann Surfaces

Fig. 6.1 Genus-2 surface.

There is another standard model for these surfaces [99] that is also quite useful
(for instance for computing the fundamental group). A genus-g surface can be con-
structed by gluing the sides of a 2g-gon. It is probably easier to visualize this in
reverse. After cutting the genus-2 surface of Figure 6.1 along the indicated curves,
it can be opened up to an octagon (see Figure 6.2).

Fig. 6.2 Genus-2 surface cut open.

The topological Euler characteristic of the space X is

e(X) =∑(−1)i dim Hi(X ,R).

From Exercise 4.5.5, we have the following lemma:

Lemma 6.1.2. If X is a union of two open sets U and V , then e(X) = e(U)+e(V)−
e(U ∩V ).

Corollary 6.1.3. If X is a manifold of genus g, then e(X) = 2−2g, and the first Betti
number is given by dimH1(X ,R) = 2g.

Proof. This will be left for the exercises. 	

When g = 2, this gives dimH1(X ,R) = 4. We can find explicit generators by

taking the fundamental classes of the curves a1,a2,b1,b2 in Figure 6.1, after choos-
ing orientations. To see that these generate, H1(X ,R), it suffices to prove that they
are linearly independent. For this, consider the pairing

(α,β ) �→
∫

X
α ∧β

∫
aj

ωk = δjk , Bjk :=

∫
bj

ωk ,

B = BT , ImB > 0.
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Superfici algebriche: classificazione, fibrazioni, topologia.

Una superficie K3.

1 + x4 + y4 + z4 + a(x2 + y2 + z2 + 1)2 = 0, a = −0.49
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Teoria di Galois geometrica.

X :=

1.1. Riemann Surfaces 5 

Fig. 1.4. 

Fig. 1.5. 

1.1.3. Closed Riemann Surfaces 

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is 
called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, 
and a torus is of genus 1. It is well-known that every compact Riemann surface 
is a closed Riemann surface of finite genus. A non-compact Riemann surface is 
called an open Riemann surface. 

Take a point Po on a closed Riemann surface R of genus 9 and cut R along 
simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then 
we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7). 

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by 
the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, 
Bg and satisfies the fundamental relation 

9 

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). 
j=l 

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 
'lT1(R,po). 
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mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 
8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.) 

Note that the Riemann surface R of the algebraic function w = vz is also 
regarded as the algebraic curve defined by the equation w2 = z. 

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. 
For any complex number >.(f. 0,1), let R be the algebraic curve defined by the 
equation 

w 2 = z(z - l)(z - >.). (1.1) 

In other words, R consists of all points (z, w) E C x C satisfying algebraic 
equation (1.1) and the point Poo = (00,00). We can define the complex structure 
of R by the complex structure of the z-sphere so that the projection 1f': R -+ 

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering 
surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping 
f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = 
Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function 
w = Jz(z - 1)(z - >.) is single-valued. 

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­
logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann 
spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). 
Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The 
resulting surface is homeomorphic to the Riemann surface R. Hence, R looks 
like the surface of a doughnut. We call such a Riemann surface a torus. A torus 
is also called an elliptic curve; this name comes from the elliptic integral (see 
§1.4). 
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Fig. 1.3. 
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f : X
2:1−−−→ S2 = P1(C),
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1.1.3. Closed Riemann Surfaces 

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is 
called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, 
and a torus is of genus 1. It is well-known that every compact Riemann surface 
is a closed Riemann surface of finite genus. A non-compact Riemann surface is 
called an open Riemann surface. 

Take a point Po on a closed Riemann surface R of genus 9 and cut R along 
simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then 
we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7). 

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by 
the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, 
Bg and satisfies the fundamental relation 

9 

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). 
j=l 

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 
'lT1(R,po). 
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