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1 The Helmholtz equation
The main character in this course is the Helmholtz equation, which is the following partial differential
equation (PDE):

∆u+ k2u = 0. (1)

Here ∆ =
∑n
j=1 ∂

2
xj is the Laplace operator in n variables for n ∈ {1, 2, 3}, k > 0 is a real parameter

called wavenumber, and u is the unknown of the equation, a scalar field defined on a subset of Rn. We
will mostly consider the two-dimensional case n = 2.

In the following, we first introduce the derivation of the Helmholtz equation from different physical
phenomena, showing that it can be used to model different kinds of linear wave problems. Then we show
some simple special solutions of the equation. We describe some boundary value problems (BVPs) and
focus on one of them, the exterior Dirichlet problem. We show how to reformulate this as a boundary
integral equation (BIE) and introduce numerical methods to approximate its solution.

In the first few sections the approach will be more “physical” than “mathematical”, so we will not make
precise assumptions and will gloss over some issues such as the regularity of the objects involved or the
admissibility of some operations.

At the end of this document a few useful references are listed. [CJ77] is classical book that describes
very clearly and succinctly many kinds of wave phenomena, developing both physical intuition and math-
ematical formalism. Several Helmholtz (and Maxwell) BVPs and the corresponding boundary integral
equations (BIEs) are analysed in mathematically rigorous way in [CK1, §3], [CK2, §1–3], [Néd01, §2–3].
[Spence14] is a survey of several variational formulations for Helmholtz and Laplace BVPs, the correspond-
ing BIEs and the numerical methods for their discretisation; it is a very clear introduction to Helmholtz
problems and the related literature. The lecture notes [Sayas15] and [Sayas06] are very good introductions
to BIEs for Laplace and Helmholtz equations, respectively, and their discretisations with the boundary
element method (BEM).

1.1 Derivation of the Helmholtz equation
1.1.1 Acoustics

We want to describe the propagation of a sound wave in a fluid. We denote by ρ(x, t) the density, by
p(x, t) the pressure and by v(x, t) the velocity of the fluid in a point x ∈ Rn at time t ∈ R. We denote
by ∇, div (or ∇·) and ∆ the gradient, the divergence and the Laplacian in the space coordinate x only
(i.e. without derivatives in t). Conservation of mass gives the continuity equation

∂ρ

∂t
+ div(ρv) = 0

and conservation of momentum gives Euler’s equation

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0

1
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where [(v ·∇)v]j =
∑n
m=1 vm∂xmvj . Both PDEs are non-linear as they contain quadratic terms (products

of ρ and v or v and its derivatives). We assume that all three quantities considered are small perturbations
of the constant1 static values:

ρ(x, t) = ρ0 + ρ≈(x, t), p(x, t) = p0 + p≈(x, t), v(x, t) = v0 + v≈(x, t) and that v0 = 0.

p≈ is called acoustic pressure or excess pressure. Linearising both equations around the static values
we obtain

∂ρ≈
∂t

+ ρ0 div(v≈) = 0 and
∂v≈
∂t

+
1

ρ0
∇p≈ = 0. (2)

The pressure is a function of the density p = f(ρ) with p0 = f(ρ0). Linearising this relation and denoting
c2 := ∂f

∂ρ (ρ0) we have p0 +p≈ = f(ρ0 +ρ≈) ≈ f(ρ0)+c2ρ≈, thus p≈ = c2ρ≈. (We can call the equations (2)
together with p≈ = c2ρ≈ the “first-order acoustic wave equations”.) Using this relation in the two linearised
PDEs (2) we obtain that the pressure satisfies the wave equation:

1

c2
∂2p≈
∂t2

−∆p≈ = 0.

(Here we use that the divergence of the gradient is the Laplacian, ∆u = div∇u.) Since ρ≈ = 1
c2 p≈, also

ρ≈ satisfies the same equation.

Exercise 1.1. • Show that the velocity v≈ satisfies the vector wave equation 1
c2
∂2v≈
∂t2 −∇(∇ · v≈) = 0.

• Fix n = 3. Prove that for all vector fields F ∈ C2(R3)3 the following vector calculus identity holds

∇(∇ · F) = ∆F + curl curl F. (3)

Here ∆ is the vector Laplacian (defined componentwise) and curl F = ∇ × F = (∂F3

∂x2
− ∂F2

∂x3
, ∂F1

∂x3
−

∂F3

∂x1
, ∂F2

∂x1
− ∂F1

∂x2
) is the usual curl operator.

• Deduce that if v≈ is irrotational, i.e. curl-free (curl v≈ = 0), then each Cartesian component v≈,1, v≈,2, v≈,3
is solution of the scalar wave equation: 1

c2
∂2v≈,j
∂t2 −∆v≈,j = 0, j = 1, 2, 3.

• Show that if v≈ is irrotational at some given time t0, then it remains irrotational for all t > t0.

Exercise 1.2 (Velocity potential). Assume that, at some initial time t = t0, the velocity v≈(x, t0) is gradient
of a (time-independent) scalar field 1

ρ0
φ0(x). Show that the scalar field φ(x, t) := φ0(x) −

∫ t
t0
p≈(x, s) ds,

called velocity potential, satisfies −∂φ∂t = p≈ and 1
ρ0
∇φ = v≈ (using the linearised Euler equation and the

fundamental theorem of calculus). Show that the velocity potential satisfies the wave equation 1
c2
∂2φ
∂t2 −∆φ = 0.

We have seen that several quantities (the acoustic pressure p≈, the density ρ≈, and, under suitable
assumptions, the velocity potential φ and the components of the velocity v≈,j) satisfy the same wave
equation, so we write it for a general scalar field U :

1

c2
∂2U

∂t2
−∆U = 0. (4)

This is the prototype of second-order, linear hyperbolic PDEs.

Exercise 1.3. Show that for any smooth function F : R → R and any unit vector d ∈ Rn, |d| = 1, the field
U(x, t) = F (x · d− ct) is a solution of the wave equation (4).

Exercise 1.3 shows that any wave profile move across space–time with speed c, which is thus called
wave speed. Indeed, c =

√
p≈
ρ≈

and the square root of the ratio between a pressure and a mass density

has the dimension of a velocity (
√

kgm−1s−2

kgm−3 = m
s ).

Exercise 1.4 (Damped wave equation). The damped wave equation (or equation of telegraphy, see [CJ77,
§9]) with damping parameter γ > 0 is

1

c2
∂2U

∂t2
+
γ

c2
∂U

∂t
−∆U = 0. (5)

1In some applications, the static (time-independent) background quantities ρ0, p0 and v0 are not constant. E.g. in ocean
acoustics the background density and pressure typically depend on the position; in aero-acoustics the velocity of the fluid is
non-zero and variable. This leads to the presence of extra terms in the linearised differential equations.
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Assume that γ is small so that γ2 can be neglected. Show that wave profiles are damped in time with rate
γ
2 while they propagate: for any smooth function F : R → R and any unit vector d ∈ Rn, |d| = 1 the field
U(x, t) = F (x · d− ct)e−

γ
2 t is a solution of the damped wave equation (5) up to a factor − γ2

4c2U ≈ 0.
Conversely, show that if U is solution of the damped wave equation (5), then W (x, t) := e

γ
2 tU(x, t) is

solution of the wave equation (4) up to a factor γ2

4c2W ≈ 0.

When the acoustic waves hits a (smooth) obstacle D ⊂ Rn through which it cannot propagate, on the
interface between the obstacle and the fluid some boundary conditions have to be imposed. Depending
on the nature of the obstacle and of the fluid, different conditions can be imposed.
• If the obstacle is “sound-soft” then the acoustic pressure on its boundary vanishes, i.e. p≈ = 0.
• If the obstacle is “sound-hard” then the normal velocity on the boundary vanishes, i.e. v≈ · n = 0,

where n is the unit normal vector on the boundary of D.
Both sound-soft and sound-hard boundary conditions reflect all the energy carried by the wave.
• A simple way to model a more realistic absorbing boundary condition is to impose that the normal

velocity is proportional to the pressure: v≈ · n = ϑ
cρ0
p≈ for some ϑ > 0 that represents how easily the

obstacle yields to the acoustic pressure. Here we have assumed that n points outwards of the domain
where the waves propagates and into the obstacle D. We have divided by cρ0 to ensure that ϑ is
dimensionless (check this fact). Deriving this relations and using the linearised Euler’s equation (2),
we obtain a relation involving p≈ only: n ·∇p≈+ϑc−1 ∂p≈

∂t = 0. This is called “impedance” boundary
condition.
• If the obstacle is made of a different fluid, then instead of imposing boundary conditions we consider

two copies of the wave equations in the two fluids, with different values of c. The two equations are
coupled by suitable “transmission conditions”, i.e. by imposing the continuity of the pressure and the
normal displacement across the interface.
Similarly, if the obstacle is an elastic solid, acoustic waves in the fluid generates elastic waves in the
solid and vice versa. This is modelled by coupling the acoustic wave equation (4) with the (more com-
plicated) elastodynamic wave equation, whose unknown is the point displacement, through appropriate
transmission conditions. We will briefly describe the equations of elastodynamics below.
When a source of acoustic disturbance is present in the bulk of the fluid, this is modelled by the

inhomogeneous wave equation:

1

c2
∂2U

∂t2
−∆U = F, (6)

where F (x, t) is the source term.

1.1.2 Time-harmonic behaviour

A time-harmonic function is a scalar field whose time-dependence is prescribed to be sinusoidal, in the
form2

U(x, t) = <{u(x)e−iωt} = <{u(x)} cosωt+ ={u(x)} sinωt (7)

for a time frequency ω > 0 and a complex-valued field u which depends on the position in space x but
not on the time variable t. (Here <{·} and ={·} denote real and imaginary parts, and i is the imaginary
unit.) A sound wave in the form (7) is a “pure tone”.

By taking the Laplacian and the second time-derivative of (7) we obtain the following crucial fact.
If U(x, t) is a time-harmonic (7) solution of the wave equation (4),
then u(x) is solution of the Helmholtz equation (1) with wavenumber k := ω/c > 0.

This is the main reason of the interest in the Helmholtz equation: it describes all time-
harmonic solutions of the wave equation. Any solution of the Helmholtz equation has to be inter-
preted via (7): multiplying by e−iωt and taking the real part we obtain a “physical” field depending on
space and time.

The higher the frequency ω and the wavenumber k, the more oscillatory are the solutions of the
Helmholtz equation.

Sound-soft conditions translate to Dirichlet boundary conditions u = 0, sound-hard to Neumann
n · ∇u = 0, and impedance to Robin n · ∇u− ikϑu = 0.

2Unfortunately, several references use the opposite convention U(x, t) = <{u(x)eiωt}, with a different sign at the exponent.
This causes changes in the signs and conjugation in all formulas in the following.
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Exercise 1.5. Let U be time-harmonic as in (7) and be a solution of the inhomogeneous wave equation (6)
with F (x, t) = <{f(x)e−iωt}. Show that u satisfies the inhomogeneous Helmholtz equation −∆u− k2u = f .

Exercise 1.6. Show that complex conjugation of Helmholtz solutions “reverses time”: if U is the space–time
wave solution associated to the Helmholtz solution u, then the space–time wave solution W associated to
u = <w − i=w satisfies W (x, t) = U(x,−t).

Exercise 1.7 (Helmholtz equation with complex wavenumber). Show that if U is a time-harmonic solution of
the damped wave equation (5) then it is solution of the Helmholtz equation with complex wavenumber k, such
that k2 = ω(ω + iγ)/c2. (We always choose the root k with <k > 0 and =k ≥ 0).

This shows that the solutions of the Helmholtz equation with complex wavenumber k can be understood
as waves that are attenuated while they propagate, i.e. they are absorbed by the medium through which they
propagate. The larger the imaginary part of the wavenumber, the stronger the damping. A negative imaginary
part of k corresponds to γ < 0 in (5) and to waves increasing in time, which is an unphysical situation.

Remark 1.8. We have assumed that the medium through which the wave propagate is uniform. In the more
general case of an acoustic wave propagating through heterogeneous materials, both the sound speed c and
the static density ρ0 depend on the position x. Repeating the reasoning done above, one obtains the wave
equation 1

ρ0(x)c2(x)
∂2p≈
∂t2 − div( 1

ρ0(x)∇p≈) = 0. Assuming time-harmonic behaviour (7) for U = p≈ we have

the Helmholtz equation with variable coefficients div( 1
ρ0(x)∇u) + ω2

ρ0(x)c2(x)u = 0, which is often written as
div( 1

ρ0(x)∇u) + k2n(x)u = 0 and n is called refractive index. In the following we will not consider this more
general problem and we will stick to the constant-coefficients case; see e.g. [CK2, §8] for more details on this
problem.

Remark 1.9 (Helmholtz equation = wave equation + Fourier transform). Fourier analysis tells us that any
“reasonable” (e.g. square-integrable) time-dependent field U can be written as a continuous linear combination
of time-harmonic fields eiωtÛ(x, ω) with different frequencies ω ∈ R, where Û is its Fourier transform (in time):

U(x, t) =
1√
2π

∫
R

eiωtÛ(x, ω) dω with Û(x, ω) =
1√
2π

∫
R

e−iωtU(x, t) dt.

Reasoning as above, we can verify that, if U is solution of the wave equation with wave speed c, then its Fourier
transform Û evaluated at a given frequency ω, i.e. u(x) = Û(x, ω), is solution of the Helmholtz equation with
wavenumber k = ω/c. Thus in principle any solution of the wave equation is linear combination of infinitely
many solutions of the Helmholtz equation at different wavenumbers. Numerically, often one approximates a
wave equation solution by solving several Helmholtz problems. This is an important reason for studying the
Helmholtz equation, even if we were not interested in problems at a fixed frequency.

When we study U and the wave equation we say that we work “in time domain”; when we study Û or u
and the Helmholtz equation we say that we work “in frequency domain”.

1.1.3 Electromagnetism

Although the Helmholtz equation is usually associated to acoustic waves, it is important also in the
modelling of other kinds of linear waves, e.g. electromagnetic ones. In this section and in the next one we
fix n = 3, i.e. we consider 3D problems. Electromagnetic waves in a homogeneous material, in the absence
of charges, are described by the Maxwell’s equations:

curl E(x, t) + µ
∂H
∂t

(x, t) = 0, curlH(x, t)− ε∂E
∂t

(x, t)− σE(x, t) = 0, (8)

where E is the electric field, H the magnetic field, ε the electric permittivity, µ the magnetic permeability,
and σ the conductivity. The parameters ε, µ and σ represent the properties of the material through which
the wave propagates. As we consider an homogeneous, isotropic medium, ε and µ are positive constants, σ
is a non-negative constant (0 in a dielectric, i.e. a perfect insulator, and positive in a conducting medium).
The first equation is called Faraday law, the second one Ampère law.

If both the electric and the magnetic field are time-harmonic, i.e. E(x, t) = <{E(x)e−iωt} andH(x, t) =
<{H(x)e−iωt} for some ω > 0, then the time-independent fields E and H satisfy the time-harmonic
Maxwell’s equations:

curl E(x)− iωµH(x) = 0, curl H(x) + iωεE(x)− σE(x) = 0. (9)
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These are two vector-valued PDEs with two vector fields as unknowns. Eliminating H, we obtain the
second-order time-harmonic Maxwell’s equations for the electric field:

curl curl E− k2E = 0 with k2 = ω2εµ+ iωσµ. (10)

Since div curl v = 0 for any vector field v, any solution of (10) is divergence-free (solenoidal). Then
the expansion (3) of the curl curl operator implies that each component of the solution of the second-
order Maxwell’s equations (10) is solution of the Helmholtz equation with (possibly complex, if σ > 0)
wavenumber k:

∆Ej + k2Ej = 0 for j = 1, 2, 3.

The speed of propagation of electromagnetic waves (e.g. of light) is c = 1√
εµ > 0 and the damping factor

(as in Exercise 1.7) is γ = σ
ε ≥ 0.

As for any PDE, time-harmonic Maxwell’s equations are complemented by boundary conditions. When
the domain under consideration is surrounded by a metal, through which electric field do not penetrate,
then typically one imposes the “perfect electric conductor” (PEC) boundary conditions, which impose
that the tangential component of the electric field vanishes. In formulas this is E×n = 0, where × denote
the vector product and n is the unit normal vector on the boundary. In terms of the magnetic field, the
PEC boundary conditions correspond to the vanishing of the normal component: H · n = 0. This is easy
to verify for a plane boundary, e.g. Π = {x1 = 0}: in this case E × n = E × (1, 0, 0) = (0, E3,−E2) so
E2 = E3 = 0 on the whole plane Π, and H · n = 1

iωµ curl E · (1, 0, 0) = 1
iωµ (∂E3

∂x2
− ∂E2

∂x3
) = 0.

We also often encounter impedance boundary conditions: H × n − ϑ(n × E) × n = 1
ikg, or

equivalently µ−1 curl E×n− ikϑ(n×E)×n = g, for a positive parameter ϑ and a boundary source term
g. Here (n×E)× n = E− (E · n)n is the tangential component of E.

Exercise 1.10. Complete the proof of the following statement. For k ∈ C, k 6= 0, a vector field v is solution
of curl curl v − k2v = 0 if and only if it is divergence-free and each of its three components is solution of the
Helmholtz equation ∆vj + k2vj = 0, j = 1, 2, 3.

Exercise 1.11. We have shown that the components of the time-harmonic solutions of the Maxwell’s equations
(8) are Helmholtz solutions. Show again the same fact performing the same operations in different order. First
eliminate H from (8) obtaining second-order Maxwell’s equations in time-domain. Then verify that each
component of E satisfies the wave equation (4). Finally assume that E is time-harmonic.

Remark 1.12. Often the conductivity term σE(x, t) in the time-domain Maxwell’s equation is modelled as
a given current density J (x, t) and treated as a datum. If this is assumed to be time-harmonic J (x, t) =
<{J(x)e−iωt} we obtain the inhomogeneous time-harmonic Ampère law curl H + iωεE = J and the second-
order equation curl 1

µ curl E − ω2εE = iωJ. In absence of charges, the current density is divergence free:
div J = 0 (more generally we would have the continuity equation div J = −∂ρ∂t , where ρ is the charge density),
so the component of the electric field satisfy the inhomogeneous Helmholtz equation ∆Ej + k2Ej = −iωµJj .

Remark 1.13. We have seen that time-harmonic Maxwell solutions are componentwise Helmholtz solutions.
However, in general one cannot reduce the solution of a boundary value problem for the Maxwell equations (10)
to three independent Helmholtz problems for E1, E2, E3, because the boundary conditions required are different.

For instance, when we impose PEC boundary conditions, only the tangential component of the electric
field vanishes. This is equivalent to the imposition of two scalar boundary conditions (e.g. on two Cartesian
components if the domain is a cube) for three unknown scalar fields and three scalar PDEs (Helmholtz); the
boundary value problem is closed by the condition div E = 0 which intertwines the three components.

We see in the next remark that the decoupling of the scalar components and the reduction of Maxwell’s
problems to Helmholtz ones can be performed when symmetries are present.

Remark 1.14 (TE and TM modes). The Helmholtz equation is important in dimensional reductions of the
Maxwell’s equations. Maxwell’s equations simplify when we assume that the dependence on one of the Cartesian
variables of all components of the fields is a given complex exponential, i.e.

E(x1, x2, x3) = Ẽ(x1, x2)eiηx3 , H(x1, x2, x3) = H̃(x1, x2)eiηx3 . (11)

This is relevant when we consider the propagation of waves through very long objects such as optical fibers.
In this case the curl becomes

curl H = eiηx3

(∂H̃3

∂x2
− iηH̃2, iηH̃1 −

∂H̃3

∂x1
,
∂H̃2

∂x1
− ∂H̃1

∂x2

)
.
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Maxwell’s equations (9) (with σ = 0) become

∂Ẽ3

∂x2
− iηẼ2 − iωµH̃1 = 0,

iηẼ1 −
∂Ẽ3

∂x1
− iωµH̃2 = 0,

∂Ẽ2

∂x1
− ∂Ẽ1

∂x2
− iωµH̃3 = 0,

∂H̃3

∂x2
− iηH̃2 + iωεẼ1 = 0,

iηH̃1 −
∂H̃3

∂x1
+ iωεẼ2 = 0,

∂H̃2

∂x1
− ∂H̃1

∂x2
+ iωεẼ3 = 0.

If Ẽ3 = 0, with some manipulation one can see that all other field components can be computed from H̃3

(Ẽ1 = (−iωε+ iη2

ωµ )−1 ∂H̃3

∂x2
, Ẽ2 = (iωε− iη2

ωµ )−1 ∂H̃3

∂x1
, H̃1 = − η

ωµ Ẽ2, H̃2 = η
ωµ Ẽ1) and that H̃3 itself is solution

of the 2D Helmholtz equation ∆H̃3 + (ω2εµ− η2)H3 = 0. These solutions are called “transverse-electric
(TE) modes”, since the electric field is perpendicular to the x3 axis, along which the wave propagates.
Similarly, the “transverse-magnetic (TM) modes” are solutions with H̃3 = 0, which can be computed by
solving the same Helmholtz equation for Ẽ3.

Now assume that we want to compute the solutions of Maxwell’s equation in an infinite cylinder Ω× R =
{x = (x1, x2, x3) ∈ R3 : (x1, x2) ∈ Ω, x3 ∈ R}, where Ω ⊂ R2, and PEC boundary conditions on ∂Ω× R. A
given TE mode will satisfy the PEC conditions if the Neumann condition n ·∇H̃3 = 0 holds, while a TM mode
has to satisfy the Dirichlet one Ẽ3 = 0. Thus there exists an electromagnetic wave propagating through the
“waveguide” Ω×R with frequency η in the x3 direction only if the 2D Helmholtz problem admits a non-trivial
solution. This is the same as saying that ω2εµ− η2 is either a Dirichlet (TM) or a Neumann (TE) eigenvalue
for the 2D Laplacian in Ω. 3D Maxwell’s problems have been reduced to 2D Helmholtz ones.

Exercise 1.15 (TEM modes). Assume that the (non-trivial) pair (E,H) is a “TEM mode”, which means that
it is simultaneously a TE and a TM mode: it is in the form (11) with Ẽ3 = H̃3 = 0. Show the following facts.
• η2 = ω2εµ, i.e. η = k: the wavenumber in the x3 direction coincide with the free-space wavenumber.

• H =
√
ε/µ e3×E, where e3 = (0, 0, 1). This means that E and H are orthogonal vectors in the x1x2-plane.

• If φ is a 2D harmonic function (∆φ = 0), then E = ∇φ(x1, x2)eikx3 and H =
√
ε/µ e3 × E constitute a

TEM mode.

• If the domain Ω ⊂ R2 is simply connected then there is no non-trivial TEM mode with PEC conditions
propagating through Ω× R. (This is a main motivation for the use of coaxial cables.)

Remark 1.16 (Complications). The setting considered in this section is a special case of much more general
ones, which are needed in many applications. If different materials are present in the region considered, or
the properties of the material vary in space, then ε, µ, σ are function of position. In this case, for instance, to
obtain (10) we cannot simply move µ to the second term and find componentwise solution of the Helmholtz
equation, but we obtain some more general elliptic equations. If the material is anisotropic, then the coefficients
are modelled by symmetric positive definite matrices (semi-definite in case of σ). Since the polarisation of a
material given an impinging electromagnetic field is not immediate, the multiplications εE and µH in (8) are
more precisely modelled as convolutions in time between E/H and suitable kernels; however in frequency-domain
these give rise to standard products ε(ω)E and µ(ω)H where now the coefficients depends on the frequency
ω. In some materials and regimes (e.g. in lasers) the coefficients ε and µ need to be modelled as nonlinear
operators acting on E and H: this is the field of nonlinear optics.

1.1.4 Elastodynamics

Waves propagating in solids have more complicated behaviour than those in fluids, as two different types
of waves can be present. The PDE describing small-amplitude time-harmonic waves in (homogeneous,
isotropic) solids is Navier’s equations:

(λ+ 2µ)∇div u− µ curl curl u + ω2ρu = 0. (12)

Here u is the displacement vector field, describing the position of a point of the object with respect to
the rest position; as before, ω is the angular frequency; the positive parameters λ and µ are the Lamé
constants, describing the elastic properties of the material; and ρ > 0 is the density of the medium. We
define the wavenumber of pressure (longitudinal) and shear (transverse) waves, respectively, as:

kP := ω

√
ρ

λ+ 2µ
, kS := ω

√
ρ

µ
.



April 8, 2019 7 DRAFT!

We define the scalar and vector potential, respectively, as

χ := −λ+ 2µ

ω2ρ
div u = −div u

k2
P

, ψ :=
µ

ω2ρ
curl u =

curl u

k2
S

. (13)

From (12), we can use these potentials to represent u:

u = −λ+ 2µ

ω2ρ
∇div u +

µ

ω2ρ
curl curl u = ∇χ+ curlψ, (14)

which is a Helmholtz decomposition of the displacement field. With some manipulation we obtain

∆χ+ k2
Pχ

(13),∆=div∇
= −div∇div u

k2
P

− div u
(12)
= − 1

k2
P

div
( µ

λ+ 2µ
curl curl u− k2

Pu
)
− div u

div curl=0
= 0,

curl curlψ − k2
Sψ

(13)
= curl curl

curl u

k2
S

− curl u
(12)
=

1

k2
S

curl
(λ+ 2µ

µ
∇ div u + k2

Su
)
− curl u

curl∇=0
= 0.

This means that the scalar and vector potentials satisfy Helmholtz and Maxwell’s equations, respectively.
The decomposition (14) shows that any solution u of Navier’s equations (12) is sum of two terms. The

first one is a curl-free, longitudinal, time-harmonic wave propagating at speed cP = ω
kP

=
√

λ+2µ
ρ ; this

is called pressure wave (P-wave). The second one is a divergence-free, transverse, time-harmonic wave
propagating at (lower) speed cS = ω

kS
=
√

µ
ρ ; this is called shear wave (S-wave).

In particular, all time-harmonic elastic waves can be ‘assembled’ from solutions of two copies of the
Helmholtz equation with different wavenumbers. In some applications, such as seismic imaging for oil
retrieval, Navier’s equations are sometimes approximated by the scalar Helmholtz equation, neglecting
shear waves.

The limit µ → 0 corresponds to a fluid material, elasticity reduces to acoustics and shear waves
disappear: Navier’s equations tend to ∇ div u + k2

Pu = 0, which is the equation satisfied by the acoustic
displacement and the acoustic velocity.

All the reasoning done here could be done in time-domain, as opposed to frequency-domain, as well.

Remark 1.17. Using identity (3), equation (12) can also be written as (λ+ µ)∇ div u + µ∆u + ω2ρu = 0.
We denote by Dv the Jacobian of the vector field v, by DSv := 1

2 (Dv + D>v) the symmetric gradient (or
Cauchy’s strain tensor), by div the (row-wise) vector divergence of matrix fields, and by Id the 3× 3 identity
matrix. Using the identity 2 div DS = ∇div +∆ = 2∇ div− curl curl, equation (12) can be written in the
form divσ + ω2ρu = 0, where σ := 2µDSu + λ(div u) Id is the Cauchy stress tensor.

Remark 1.18. The Helmholtz equation, possibly with varying coefficients, is used also to model water waves
on the sea surface, under some conditions. In this setting it is sometimes called “Berkhoff equation”.

1.2 Particular solutions of the Helmholtz equation
We now focus on the construction of some simple analytical solutions of the Helmholtz equation ∆u+k2u =
0 in 2D and we study some of their qualitative properties. This is useful to understand some typical features
of all Helmholtz solutions.

Plots and time-harmonic animation are available on the course webpage
http://matematica.unipv.it/moiola/MNAPDE2019/MNAPDE2019anim.html

1.2.1 The one-dimensional case

We begin with the (boring) simpler case of one space dimension (n = 1). In this case, the Helmholtz
equation reduces to the ordinary differential equation: u′′ + k2u = 0. All solutions are in the form

u(x) = c1 cos(kx) + c2 sin(kx) for some c1, c2 ∈ C.

Equivalently
u(x) = C1eikx + C2e−ikx for some C1, C2 ∈ C.

All 1D Helmholtz solutions are periodic with period λ = 2π
k ; this value is called wavelength.

Let us fix c = 1, so ω = kc = k. When we expand the time-dependence of the corresponding solutions
(7) of the wave equation, we see that u(x) = eikx corresponds to U(x, t) = <{eikx−ikt} = cos(k(x − t)),
which is a wave propagating to the right. On the other hand, u(x) = cos(kx) corresponds to U(x, t) =
<{cos(kx)e−ikt} = cos(kx) cos(kt), which oscillates in time but maintains the same space profile and does
not propagate. See Figure 1 and the animations.

http://matematica.unipv.it/moiola/MNAPDE2019/MNAPDE2019anim.html


April 8, 2019 8 DRAFT!

Figure 1: Panel 1: the real and the imaginary part of the one-dimensional propagative wave u(x) = eikx

over the interval (−1, 1), with k = 10.
Panel 2: the real part of the corresponding solution of the wave equation U(x, t) = <{eikxe−iωt}, plotted
as function of x (horizontal axis) and t (vertical axis). Here we are taking ω = k and c = 1. The wave
propagates towards the right endpoint of the space interval.
Panels 3 and 4: the same plots for the stationary wave u(x) = cos(kx) = 1

2 (eikx + e−ikx). The waves
oscillates in time but does not propagate: the peaks (yellow parts) appear at the same locations in
space.

1.2.2 Plane waves

We have seen in Exercise 1.3 that the space–time field U(x, t) = F (x ·d− ct), propagating in the direction
of d at speed c, is solution of the wave equation (here d ∈ R2 is a unit vector and F a smooth real function).
To have a Helmholtz solution, we want U to be time-harmonic, i.e. U(x, t) = <{u(x)e−iωt}. A simple
way to reconcile these two expressions is to choose F (z) = <{eikz} so that U(x, t) = <{ei(kx·d−ωt)} =
cos(kx · d− ωt) (recalling that ω = kc) and

u(x) = eikx·d = cos(kx · d) + i sin(kx · d).

This is a time-harmonic propagative plane wave, which propagates in the direction d. Plane waves are
probably the simplest solutions of the Helmholtz equation.

Another way to obtain plane waves is to look for Helmholtz solutions that are independent of one of
the Cartesian variables. If u(x1, x2) = ũ(x1), then ũ has to satisfy ũ′′+ k2ũ = 0, so ũ(x1) = c1 cos(kx1) +
c2 sin(kx2) for some c1, c2 ∈ C. Propagative plane waves correspond to the choice c1 = 1, c2 = i.

Plane waves have constant amplitude |u(x)| and are constant on the lines perpendicular to d. Their
complex argument arg(u(x)) = kx·d in a point x is called phase. Plane waves are periodic in the direction
d with period (the distance in space between two peaks) λ = 2π

k ; this value is called wavelength. A
translation along a vector v corresponds to a multiplication by a complex factor of absolute value 1, i.e.
it is a phase shift: u(x + v) = eik(x+v)·d = eikv·du(x).

The sum and the difference of two plane waves with opposite directions are called stationary, or
standing, plane waves:

eikx·d + e−ikx·d = 2 cos(kx · d), eikx·d − e−ikx·d = 2i sin(kx · d).

As in the one-dimensional case of §1.2.1, the reason why these are called stationary while eikx·d is called
propagative is clear if one looks at the evolution in time of the corresponding time-domain wave U(x, t) =
<{u(x)e−iωt}; see Figure 2 and the animations.

Exercise 1.19. Show that the complex-conjugate of a plane wave is a plane wave propagating in the opposite
direction, in accordance with Exercise 1.6.

Exercise 1.20. Show that the vector plane wave E(x) = Aeikx·d is solution of Maxwell’s equations curl curl E
−k2E = 0 if and only if d · d = 1 and d · A = 0. This means that the amplitude vector is orthogonal to
the propagation direction, i.e. electromagnetic plane waves are transverse waves. (The formula u× (v×w) =
v(u ·w)−w(u · v) might help.)

Show that Navier’s equations (12) support both transverse plane waves AeikSx·d, with d · A = 0, and
longitudinal ones deikPx·d. Longitudinal elastic waves are faster and have longer wavelengths than transverse
ones.
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Figure 2: Plane waves of propagative, stationary and evanescent type.

1.2.3 Evanescent plane waves

Propagative and stationary waves are not the only solutions of the Helmholtz equation that are separable
in Cartesian coordinates. If we look for functions in the form u(x) = eik·x = ei(k1x1+k2x2) satisfying
∆u + k2u = 0, we see that we need a “wavevector” k ∈ C2 with k · k = k2

1 + k2
2 = k2. If both k1 and

k2 are real then we obtain again the plane waves. If at least one of the two is not real then we have
a new kind of waves, called evanescent (plane) waves. Expanding k = kR + ikI with kR,kI ∈ R2, we
have u(x) = eik·x = eikR·xe−kI ·x : this field oscillates in the direction kR with wavenumber |kR| ≥ k and
decays exponentially in the orthogonal direction kI (|u(x)| = e−kI ·x). The orthogonality of kR and kI is
a consequence of k ·k ∈ R. Evanescent waves typically appear at the interface between different materials.
See Figure 2 for a representations.

Exercise 1.21. Verify the statements made in the paragraph.

Exercise 1.22. Show that all 2D plane waves, either propagative or evanescent, can be written in the form
eik(x1 cos θ+x2 sin θ) = e

k
2 (i(ν+ 1

ν )x1+(ν− 1
ν )x2), parametrised by 0 6= ν ∈ C or θ ∈ C, with ν = eiθ.

1.2.4 Circular waves

We have seen Helmholtz solutions that are separable in Cartesian coordinates, we now look for those that
are separable in the polar coordinates (x1, x2) = (r cos θ, r sin θ). The 2D Laplacian in polar coordinates
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reads

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

If we have a separable Helmholtz solution u(x) = f(r)g(θ), the functions f, g have to satisfy

f ′′(r)g(θ) +
1

r
f ′(r)g(θ) +

1

r2
f(r)g′′(θ) + k2f(r)g(θ) = ∆u+ k2u = 0.

The angular component g has to be periodic of period 2π, so we take the circular harmonic g(θ) = ei`θ, for
` ∈ Z. Then g′′(θ) = −`2g(θ), so we can cancel g from the expression above, multiply by r2, and obtain
that f satisfies

r2f ′′(r) + rf ′(r) + (r2k2 − `2)f(r) = 0. (15)

For k = 1, this is called Bessel differential equation: it is a linear, second-order ODE with variable
coefficients, it depends on the index ` and degenerates at r = 0. Two linearly independent real-valued
solutions are the Bessel functions of the first kind and order `, denoted J`(r) , and the Bessel

function of the second kind (or Neumann functions) and order `, denoted Y`(r) . Explicit expressions
(e.g. as power series or integral representations), plenty of useful formulas and graphs can be found on the
“NIST Digital Library of Mathematical Functions” at https://dlmf.nist.gov/

Figure 3: The Bessel functions of first and second kind, and the Hankel functions, for ` = 0, . . . , 4.

The Bessel functions of the first and second kind for ` = 0, . . . , 4 are plotted in Figure 3. We see that
both families of functions oscillates around 0 and decays slowly for r → ∞. The distance between two
successive zeros of either J` or Y` is slightly shorter than π for ` = 0 and slightly longer than π for ` 6= 0.
The main difference is that the J`(r)s are smooth over R, while the Y`(r)s have a singularity at r = 0; the
higher ` the stronger the singularity. Useful formulas are J−`(r) = (−1)`J`(r) and Y−`(r) = (−1)`Y`(r).

The Hankel functions (sometimes called Bessel functions of the third kind) are the complex-valued
linear combinations

H
(1)
` (r) := J`(r) + iY`(r), H

(2)
` (r) := J`(r)− iY`(r) = H

(1)
` (r). (16)

The right panel of Figure 3 shows the first few Hankel functions: the argument r is one of the axis, the
real and the imaginary parts of H(1)

` (r) are on the other two axes. An important property of the Hankel
functions is that the magnitude r 7→ |H(1)

` (r)| is a monotonically decreasing function (|H(1)
` (r)| ≈

√
2/(πr)

for large r). For increasing r the complex number H(1)
` (r) spirals clockwise towards the origin.

Bessel and Hankel functions can be used in Matlab with the commands besselj, bessely and besselh.

Exercise 1.23. Verify that if f1 is solution of (15) for k = 1, then, for any k > 0, fk(r) := f1(kr) solves (15).

Exercise 1.24. Compare numerically the plots of the Bessel functions against the asymptotics for small and
large (positive) arguments (from https://dlmf.nist.gov/10.7):

J`(z) ∼
z`

`! 2`
` ∈ N0, Y0(z) ∼ 2

π
log z, Y`(z) ∼ −

(`− 1)! 2`

πz`
` ∈ N, z → 0,

J`(z) ∼
√

2

πz
cos
(
z − `π

2
− π

4

)
, Y`(z) ∼

√
2

πz
sin
(
z − `π

2
− π

4

)
` ∈ N0, z →∞.

https://dlmf.nist.gov/
https://dlmf.nist.gov/10.7
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Figure 4: The Fourier–Bessel function J3(kr)ei3θ, the Fourier–Hankel functionH(1)
5 (kr)ei5θ, and the sum

of two Fourier–Hankel functions with opposite indices H(1)
5 (kr)ei5θ + H

(1)
−5 (kr)e−i5θ. Since the Hankel

functions are unbounded at the origin, the field has been set to 0 where the value is larger than 2.

From what we have said, we deduce that for any ` ∈ Z the two fields

J`(kr)e
i`θ, Y`(kr)e

i`θ

and their linear combinations are the solutions of the Helmholtz equations that are separable in polar
coordinates. They are called circular waves or Fourier–Bessel functions. Of all the elements of the
2-dimensional space span{J`(kr)ei`θ, Y`(kr)e

i`θ}, only J`(kr)ei`θ is defined in the whole of R2, while all the
others are defined in the punctured plane R2 \ {0}. They are all of class C∞ in their domain of definition.
From the angular dependence, we see that all these function are invariant under rotations of an angle
multiple of 2π/|`|; a rotation by an angle α corresponds to a multiplication by a complex factor ei`α.

Special circular waves are the Fourier–Hankel functions, namely

H
(1)
` (kr)ei`θ = J`(kr)e

i`θ + iY`(kr)e
i`θ, H

(2)
` (kr)ei`θ = J`(kr)e

i`θ − iY`(kr)e
i`θ, ` ∈ Z.

We will see soon why the the Fourier–Hankel functions H(1)
` (kr)ei`θ are important for problems posed in

unbounded domains.
Plotting the time evolution (7) of these fields, one notes that the Fourier–Bessel functions J`(kr)ei`θ

and Y`(kr)ei`θ rotate around the origin (anticlockwise if ` > 0, clockwise if ` < 0) and do not propagate
in the radial direction. The Fourier–Hankel functions H(1)

` (kr)ei`θ rotate and move towards infinity, while
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the H(2)
` (kr)ei`θ towards the origin. This can be seen in the animations on the course webpage. Figure 4

shows some circular waves.

Remark 1.25 (Herglotz functions). For g ∈ L2(0, 2π), the field u(x) =
∫ 2π

0
g(θ)eik(x1 cos θ+x2 sin θ) dθ ∈

C∞(R2) is called Herglotz function with kernel g. It can be thought as a continuous linear combination of
plane waves with different directions (cos θ, sin θ) weighted by g(θ). Some interesting cases are the following.
• When g approximates a Dirac δ function in θ then u approximates the corresponding plane wave.

• When g is constant in a small interval of (0, 2π) and 0 otherwise, then u approximates a plane wave in a
strip of the plane and decays away from it. In some applications this is more realistic than a plane wave,
which has an infinite propagating front. You can see the plot of such a Herglotz function in Figure 5.

• When g is a circular harmonic g(θ) = ei`θ we obtain a Fourier–Bessel function u(x) = (2πi`)J`(k|x|)ei`θx ,
where θx is the angular coordinate of x.

(Prove this fact using the Jacobi–Anger formula eiz cosα =
∑
`∈Z i`J`(z)e

i`α and the L2(0, 2π)-orthogonality
of circular harmonics.)

Plot with Matlab some Herglotz functions with different kernels.

Figure 5: The Herglotz function with kernel g(θ) = 1 if 0 < θ < π
6 and 0 otherwise, on (−1, 1)2. See

Remark 1.25.

Remark 1.26 (Special Helmholtz solutions in 3 dimensions). Plane waves on R3 are defined exactly as in 2D.
The 3D analogous of circular waves are called “spherical waves”. In their expression, Bessel and Hankel

functions are substituted by the similar “spherical Bessel functions” and “spherical Hankel functions”, denoted
j`, y`, h

(1)
` , h

(2)
` . The angular component ei`θ is substituted by the “spherical harmonics” Y m` , which are smooth

functions defined on the unit sphere and indexed by two indices ` and m. All these functions are described in
details in e.g. [Néd01, §2.4, 2.6] or [CK2, §2.3, 2.4]. In the definition of the Herglotz functions, the circle is
substituted by the unit sphere.

2 Boundary value problems for the Helmholtz equation

2.1 Plane waves reflected by a straight line
To understand what happens when a wave hits an impenetrable obstacle we start with a very simple case
that can be solved analytically. Let uInc(x) = eikx·d be a plane wave with |d| = 1, d1 ≥ 0 and d2 ≤ 0 (i.e.
propagating rightward and downward in the plane). This is called the “incoming field”, or “incident
field”. Assume that we truncate the domain of propagation to the upper half plane Ω+ = {x2 > 0} and
on the horizontal line Γ = {x2 = 0} we impose some boundary conditions that reflect the impinging wave.
We call uScat the reflected wave, i.e. the “scattered field”, and uTot = uInc +uScat the “total field”. uTot

is the physical field we would measure in a point of the half plane.
Given uInc, which is a datum, we now want to find uTot that satisfies the Helmholtz equation in the

upper half plane, and satisfies some desired homogeneous boundary conditions on Γ. This is the same as
saying that we want uScat that satisfies the Helmholtz equation in the same region, and satisfies boundary
conditions that depend on uInc on Γ.

By the law of reflection, we expect uScat to propagate upwards and to make with the horizontal
line Γ the same angle as uInc. This means that uScat is a plane wave with direction d̃ = (d1,−d2):
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uScat(x) = Aeikd̃·x = Aeik(x1d1−x2d2) for some reflection coefficient A ∈ C that gives the amplitude and
the phase of uScat itself. The coefficient A depends on the particular type of boundary condition chosen.
• When the line Γ is sound-soft, the Dirichlet trace of the total field uTot vanishes on Γ:

0 = uTot(x1, 0) = uInc(x1, 0) + uScat(x1, 0) = eikx1d1 +Aeikx1d1 ∀x1 ∈ R ⇒ A = −1.

• When the line Γ is sound-hard, the Neumann trace of the total field uTot, i.e. its normal derivative,
vanishes on Γ:

0 =
∂uTot

∂x2
(x1, 0) =

∂

∂x2

(
uInc(x1, 0)+uScat(x1, 0)

)
= ikd2eikx1d1−Aikd2eikx1d1 ∀x1 ∈ R ⇒ A = 1.

• To impose the impedance boundary condition ∂uTot

∂n − ikϑuTot = 0 with ϑ > 0, we recall that n is the
outward-pointing unit normal vector on Γ so n = (0,−1). In this case we have

0 =
∂uTot

∂n
− ikϑuTot = −∂u

Tot

∂x2
− ikϑuTot =

(
ikd2(−1 +A)− ikϑ(1 +A)

)
eikx1d1 .

This vanishes for d2(−1 +A) = ϑ(1 +A), i.e. A = d2+ϑ
d2−ϑ .

Summarising, the fields are

uInc(x) = eik(x1d1+x2d2),

uScat(x) = Aeik(x1d1−x2d2),

uTot(x) = eik(x1d1+x2d2) +Aeik(x1d1−x2d2),

with A =


−1 for sound-soft Γ,

1 for sound-hard Γ,
d2+ϑ
d2−ϑ for impedance Γ.

The plane waves reflected by sound-soft or sound-hard interfaces have the same amplitude of the incoming
plane waves and either opposite (sound-soft) or the same (sound-hard) phase. On the other hand, since
|A| < 1, the waves reflected by an impedance line have amplitude smaller than the incoming wave:
the impedance boundary absorbs some of the wave energy. The amount of wave that is reflected and
the amount that is absorbed depend on the direction of the incoming wave; in particular, if ϑ ≤ 1
the impedance boundary does not reflect (but absorbs completely) the impinging waves propagating in
direction d = (

√
1− ϑ2,−ϑ). An impedance boundary with ϑ = 1 does not reflect the waves hitting

perpendicularly.
For ϑ → 0 the impedance boundary condition converges to the sound-hard one, and consistently

A→ 1; for ϑ→∞ it converges to the sound-soft boundary condition and A→ −1.
Here we have considered a wave with infinite front hitting an infinite obstacle: clearly this is not a

very realistic problem, but it helps to get an intuition of what happens when a wave hits an impenetrable
obstacle.

Remark 2.1. When we solve a well-posed boundary value problem the solution is typically determined by
the PDE and by the boundary datum. Here we have used something more. Let us look for example at the
sound-soft case. Given uInc, any combination uScat

λ (x) = −λeik(x1d1+x2d2)− (1−λ)eik(x1d1−x2d2) satisfies the
Helmholtz equation and the boundary condition uScat

λ = −uInc on Γ. We have chosen the case λ = 0 because
from the law of reflection we expect the scattered field to propagate upwards. We will see that in all problems
posed on unbounded domains we need to select the waves propagating in the desired direction, and that this
is equivalent to imposing conditions “at infinity”.

Remark 2.2. The same reasoning made above shows that if uInc is any wave propagating downwards, then
the reflected wave uScat

D (x) = −uInc(x1,−x2) propagates upwards and uInc + uScat
D vanishes on Γ. So uTot

D =
uInc + uScat

D is the field reflected by a sound-soft line.
You can see the reflection of the Herglotz function uInc(x) =

∫ −π/6
−π/3 eik(x1 cos θ+x2 sin θ) dθ by a sound-soft

horizontal line in Figure 6 and in the animation on the course webpage.
Similarly, uScat

N (x) = uInc(x1,−x2) propagates upwards and ∂
∂n (uInc + uScat

N ) vanishes on Γ, so uTot
N =

uInc + uScat
N is the reflection of any downward uInc by a sound-hard line.

For an impedance line Γ, the argument is slightly more complicated: since the reflection coefficient A
depends on the direction of the incoming wave, to compute uScat we need to be able to decompose uTot in
plane waves with different directions and reflect each one of them with its own coefficient. This is possible if
uInc is a Herglotz function with kernel supported in the lower half of the unit circle (g(θ) = 0 for 0 < θ < π).

Exercise 2.3. Plot the total field when the incoming field is the same Herglotz function as in Figure 6 and in
Remark 2.2, but the horizontal line Γ acts as a Neumann boundary. Start from the Matlab file provided.

Repeat the same for an impedance boundary.
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Figure 6: Reflection of the Herglotz function with kernel g(θ) = χ(−π3 ,−
π
6 )(θ) by the sound-soft line

{x2 = 0}. See Remark 2.2.

2.2 Tools from analysis
2.2.1 Lipschitz domains

We say that an open set Ω ⊂ R2 with bounded boundary is Lipschitz if (1) there is a finite family of
open sets {Wj}j=1,...,J that cover ∂Ω (i.e. ∂Ω ⊂

⋃
j=1,...,JWj), (2) there is a family of rotated Lipschitz

hypographs {Ωj}j=1,...,J (i.e. Ωj = {(x′1, x′2) : x′2 < fj(x
′
1)}, where (x′1, x

′
2) is a system of rotated Cartesian

coordinates in R2 and fj is a Lipschitz function), and (3) Wj ∩ Ω = Wj ∩ Ωj .
Intuitively, for each x ∈ ∂Ω, there is a neighbourhood where the boundary can be represented as the

graph of a Lipschitz function, and Ω lies only on one side of ∂Ω. Smooth domains and polygons are
Lipschitz. Domains with cusps (such as {0 < √x2 < x1 < 1}) or cracks (such as {|x| < 1, x2 6= 0}) are
not allowed.

We also say that Ω is of class Cm, m = 0, 1, . . . ,∞, if the functions fj are of class Cm.
An important property of Lipschitz domains is that the unit normal vector field is defined almost

everywhere on their boundary (a.e. with respect to the 1-dimensional measure).

2.2.2 Function spaces on Lipschitz domains

To study boundary value problems we need some function spaces. Let Ω ⊂ R2 be an open, Lipschitz set.
We denote by D(Ω) the space of the “test functions”: complex-valued C∞ functions defined on Ω whose
support is compactly contained in Ω.

We denote by L2(Ω) the usual Lebesgue space of complex-valued, square-integrable functions. This

is an Hilbert space with inner product (v, w)L2(Ω) =
∫

Ω
vw dx and norm ‖v‖2L2(Ω) =

∫
Ω
|v|2 dx. Since

we are dealing with complex-valued functions, the inner product is a sesquilinear form (with a complex
conjugation on the second entry) and the norm requires the use of the absolute value of the argument.

Definition 2.4 (H1(Ω) and H1
0 (Ω)). The Sobolev space H1(Ω) is space of complex-valued L2(Ω) func-

tions, whose first (distributional) partial derivatives are in L2(Ω). It is provided with the following seminorm,
norm, and inner product:

|v|2H1(Ω) := ‖∇v‖2L2(Ω)2 =

∥∥∥∥ ∂v∂x1

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ ∂v∂x2

∥∥∥∥2

L2(Ω)

, ‖v‖2H1(Ω) := |v|2H1(Ω) + ‖v‖2L2(Ω) ,

(v, w)H1(Ω) :=
( ∂v
∂x1

,
∂w

∂x1

)
L2(Ω)

+
( ∂v
∂x2

,
∂w

∂x2

)
L2(Ω)

+ (v, w)L2(Ω) =

∫
Ω

(∇v · ∇w + vw) dx.

The space H1
0 (Ω) is the subspace of H1(Ω) of the elements that can be approximated in H1(Ω) norm by

a sequence of elements of D(Ω).

Remark 2.5. When we say that a partial derivative “in the sense of distributions” ∂v
∂x1

of an L2(Ω) function is
in L2(Ω), we mean that there is a function w ∈ L2(Ω) such that

∫
Ω
v ∂ϕ∂x1

= −
∫

Ω
wϕ for all ϕ ∈ D(Ω).
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The two terms in the definition of the H1(Ω) norm are not dimensionally homogeneous, so when

dealing with Helmholtz problems we often weigh the norm with the wavenumber k > 0 as ‖v‖2H1
k(Ω) :=

|v|2H1(Ω) + k2 ‖v‖2L2(Ω).
We define also the subspace ofH1(Ω) of the functions with square-integrable (distributional) Laplacian:

H1(Ω; ∆) = {v ∈ H1(Ω) : ∆v ∈ L2(Ω)}.

Finally, we say that u ∈ H1
loc(Ω) if the restriction of u to any bounded open subset D of Ω belongs

to H1(D), [Sayas06, p. 12]. If Ω is bounded, then H1
loc(Ω) = H1(Ω), while if Ω is unbounded then the

“local space” H1
loc(Ω) includes functions that do not decay at infinity. For instance, all plane and circular

waves belong to H1
loc(Ω) \H1(Ω) if Ω is the complement of a bounded set (which must contain the origin,

if the circular waves are the singular ones). We haven’t defined a norm on H1
loc(Ω), so this is not a Hilbert

space; on the other hand the H1(D) norms are seminorms on H1
loc(Ω). Similarly, u ∈ H1

loc(Ω; ∆) if the
restriction of u to any bounded open subset D of Ω belongs to H1(D; ∆).

The elements of H1(Ω) are in general not continuous, so their point evaluation is not well-defined.
However we will see that their values on the boundary of Ω, or any other Lipschitz curve, are well-defined.

2.2.3 Spaces on boundaries

We will need spaces of functions defined on boundary of Lipschitz sets with regularity weaker than H1

and stronger than L2. How to define functions with “half derivative”?
Let S1 = {x ∈ R2, ‖x‖ = 1} be the unit circle. For a function v defined on S1 we write v(θ), with

θ ∈ [0, 2π], for its value in polar coordinates. We say that v ∈ L2(S1) if ‖v‖2L2(S1) :=
∫ 2π

0
|v|2 dθ <∞ and

v ∈ H1(S1) if ‖v‖2H1(S1) :=
∫ 2π

0
(|v|2 + |v′|2) dθ <∞, where v′ is the derivative in the angular coordinate.

The expansion of v in circular harmonics is v(θ) =
∑
`∈Z v̂`e

i`θ, for a sequence of coefficients v̂` ∈ C. We
can compute the norms using this expansion, exploiting their orthogonality

∫ 2π

0
ei`θe−i`′θ dθ = 2πδ`,`′ and

the derivation formula ∂
∂θ ei`θ = i`ei`θ:

‖v‖2L2(S1) =

∫ 2π

0

|v|2 dθ = 2π
∑
`∈Z
|v̂`|2, ‖v‖2H1(S1) =

∫ 2π

0

(|v|2 + |v′|2) dθ = 2π
∑
`∈Z
|v̂`|2(1 + `2).

(Write down the intermediate computations.) Thus, a function defined on the circle is in L2(S1) if the
sequence of its Fourier coefficients is an element of the sequence space l2(Z) = {(a`), ` ∈ Z, ‖(a`)‖2l2 :=∑
`∈Z |a`|2 <∞}, and in H1(S1) if its Fourier coefficients weighted with (1 + `2)1/2 are in l2(Z).
This suggests a way to define Sobolev spaces with other regularities:

‖v‖2Hs(S1) := 2π
∑
`∈Z
|v̂`|2(1+`2)s, Hs(S1) :=

{
v(θ) =

∑
`∈Z

v̂`e
i`θ : ‖v‖Hs(S1) <∞

}
, ∀s ∈ R. (17)

For s = 0 and s = 1 we recover L2(S1) and H1(S1) as defined above. High-order Fourier coefficients
correspond to rapidly oscillating components: imposing that they decay faster in ` is the same as imposing
some regularity on v. So the higher s the smoother are the elements of Hs(S1): for any real s− < s+,
Hs+(S1) ⊂ Hs−(S1) and ‖v‖Hs− (S1) ≤ ‖v‖Hs+ (S1). If s > 1/2, the elements of Hs(S1) are continuous
functions, if s ≥ 0 they are simply L2(S1) classes of equivalence, for s < 0 they can only be understood as
distributions.

Given a Lipschitz bounded domain Ω, if there is a bi-Lipschitz map Φ : B1 = {|x| ≤ 1} → Ω that maps
S1 in ∂Ω, we can define the space Hs(∂Ω) as the space of functions v defined on ∂Ω whose pullback
v∗(x) = v(Φ(x)) is an element of Hs(S1). For −1 ≤ s ≤ 1 this gives a well-defined space Hs(∂Ω)
independently of the choice of Φ. Different maps Φ give equivalent norms. If we do not have such a map
Φ, Hs(∂Ω) (for −1 ≤ s ≤ 1) can be defined in a slightly more complicated way, using the cover of ∂Ω
from the definition of a Lipschitz set and a so-called “partition of unity”.

Several other definitions of the spaces Hs(∂Ω) exist and can be found in the literature. The norms
obtained with different definitions are equivalent (for −1 ≤ s ≤ 1) but not necessarily equal.

We will need Hs(∂Ω) only for s = ±1/2: H
1
2 (∂Ω) ⊂ L2(∂Ω) ⊂ H− 1

2 (∂Ω).

An important property of these spaces is that H−s(∂Ω) can be identified to the anti-dual space of
Hs(Ω), i.e. the space of anti-linear continuous functionals on Hs(∂Ω). Let us look at what this means in
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the case of S1. If v ∈ Hs(S1) and w ∈ H−s(S1) then we can define the duality product

〈v, w〉S1 =
〈∑
`∈Z

v̂`e
i`θ,
∑
`∈Z

ŵ`e
i`θ
〉
S1

:= 2π
∑
`∈Z

v̂`ŵ`.

This series is bounded: by Cauchy–Schwarz inequality in l2(Z),

|〈v, w〉S1 | ≤ 2π
∑
`∈Z

(1 + `2)s/2|v̂`|(1 + `2)−s/2|ŵ`| ≤ ‖v‖Hs(S1) ‖w‖H−s(S1) .

Moreover, if v, w ∈ L2(S1), then the duality product coincides with the L2 inner product: 〈v, w〉S1 =∫
S1 v(θ)w(θ) dθ.

Similarly, it is possible to define a duality product 〈·, ·〉∂Ω on ∂Ω such that

|〈v, w〉∂Ω| ≤ C ‖v‖
H

1
2 (∂Ω)

‖w‖
H−

1
2 (∂Ω)

∀v ∈ H 1
2 (∂Ω), w ∈ H− 1

2 (∂Ω), and

〈v, w〉∂Ω =

∫
∂Ω

vw ds, if w ∈ L2(∂Ω).

Because of this, we sometimes write the duality product simply as
∫
∂Ω
vw ds, even when one of the two

distributions is not in L2 and the product is not strictly speaking an integral. We write 〈v, w〉∂Ω also
when v ∈ H−

1
2 (∂Ω) and w ∈ H

1
2 (∂Ω). To be more clear we might write 〈v, w〉

H
1
2 (∂Ω)×H−

1
2 (∂Ω)

and
〈v, w〉

H−
1
2 (∂Ω)×H

1
2 (∂Ω)

, depending on the regularity of the arguments.

These spaces are closely related to trace operators. Given a smooth function v ∈ C1(Ω), we define
its Dirichlet and Neumann traces, respectively, as

γv := v|∂Ω, ∂nv := n · γ(∇v)

where n is the outward-pointing unit normal vector field on ∂Ω (which is defined almost everywhere if the
domain is Lipschitz). Can we define these traces for more general functions, such as elements of Sobolev
spaces?

Theorem 2.6 (Trace theorem). The Dirichlet trace γ can be extended to a surjective continuous operator
mapping γ : H1(Ω)→ H

1
2 (∂Ω). The kernel of γ is H1

0 (Ω).
The Neumann trace ∂n can be extended to a surjective continuous operator ∂n : H1(Ω; ∆)→ H−

1
2 (∂Ω).

This theorem says that the spaces H
1
2 (∂Ω) and H−

1
2 (∂Ω) are precisely the spaces of the Dirichlet and

the Neumann traces of H1(Ω) and H1(Ω; ∆) functions, respectively. See [Spence14, p. 6] for more details.
A consequence is that the following are equivalent norms on H±

1
2 (∂Ω):

inf{‖U‖H1(Ω) : γU = u} ∼ ‖u‖
H

1
2 (∂Ω)

, inf{‖U‖H1(Ω;∆) : ∂nU = u} ∼ ‖u‖
H−

1
2 (∂Ω)

.

The trace operators are local, i.e. γv and ∂nv depend only on the value of v in an arbitrary small
neighbourhood of ∂Ω. Thus, if Ω is unbounded (but ∂Ω is still bounded), in the trace theorem we can
substitute H1(Ω) and H1(Ω; ∆) with H1

loc(Ω) and H1
loc(Ω; ∆), respectively.

2.2.4 Green’s identities

The divergence theorem says that for any F ∈ C1(Ω)2 we have
∫

Ω
div F dx =

∫
∂Ω

F · n ds, where n is
the outward pointing unit normal vector field on ∂Ω. The product rule for the divergence is div[wG] =
∇w ·G + w div G. The combination of these two ingredients gives Green’s first and second identity
for the Helmholtz equation: for u,w ∈ C2(Ω), k ∈ R∫

Ω

(∆u+ k2u)w dx =

∫
∂Ω

∂nu γw ds+

∫
Ω

(k2uw −∇u · ∇w) dx, (18)∫
Ω

(
(∆u+ k2u)w − u(∆w + k2w)

)
dx =

∫
∂Ω

(∂nu γw − γu ∂nw) ds. (19)

Exercise 2.7. Write in detail the proof of (18)–(19) for u, v ∈ C2(Ω).
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Do these identities hold for Sobolev functions?

Proposition 2.8. If Ω is a bounded Lipschitz domain, Green’s first identity (18) holds for u ∈ H1(Ω; ∆) e
w ∈ H1(Ω). Green’s second identity (19) holds for u, v ∈ H1(Ω; ∆).
The boundary integrals must be understood as the duality products 〈∂nu, γw〉∂Ω and 〈γu, ∂nw〉∂Ω.

Green’s identities are the main tools in the derivation of boundary integral equations. This is the
reason why the Sobolev spaces we need are H1(Ω), H1(Ω; ∆) and their trace spaces H±

1
2 (∂Ω).

2.2.5 Variational problems, Fredholm alternative, Gårding inequality

As we do for Laplace equation, we typically write Helmholtz problems in variational form. The abstract
linear variational problem in the (complex) Hilbert space H is

find u ∈ H such that A(u,w) = F(w) ∀w ∈ H, (20)

where A is a sesquilinear form in H and F is a anti-linear functional in H. We recall that an anti-linear
functional satisfies F(λv + µw) = λF(v) + µF(w) for all λ, µ ∈ C and v, w ∈ H. A sesquilinear form is
linear in the first argument and anti-linear in the second one.

Given a variational problem such as (20), the (conforming) Galerkin method consists of choosing
an N -dimensional subspace VN ⊂ H and a basis ϕ1, . . . , ϕN , and of looking for a solution of the problem
restricted to VN :

find uN ∈ VN such that A(uN , wN ) = F(wN ) ∀wN ∈ VN . (21)

This is achieved computationally by solving the N ×N linear algebraic system AU = F where Aj,m :=

A(ϕm, ϕj), Fj := F(ϕj) and uN =
∑N
j=1 Ujϕj .

To a continuous sesquilinear form A, we can associate a linear operator A : H → H∗ by 〈Au,w〉H∗×H =
A(u,w) for all u,w ∈ H, where H∗ is the anti-dual of H, [Spence14, Lemma 5.4]. The operator A admits
a continuous inverse if and only if, for all F ∈ H∗, the variational problem (20) is well-posed.

In the case of Laplace equation, the crucial result from functional analysis is Lax–Milgram theorem: if
A is continuous (|A(u,w)| ≤ CA ‖u‖H ‖w‖H ∀u,w ∈ H) and coercive3 (|A(w,w)| ≥ γA ‖w‖2H ∀w ∈ H),
and F is continuous (|F(w)| ≤ CF ‖w‖H ∀w ∈ H), then the corresponding variational problem is well-
posed. Moreover, several good properties of all Galerkin discretisations follow (well-posedness, stability
bounds, quasi-optimality, bounds on the number of linear solver iterations, . . . ).

Unfortunately, for most variational formulations of the Helmholtz equation coercivity does not hold,
so we cannot rely on Lax–Milgram. The branch of functional analysis that we need is called “Fredholm
theory” and studies compact perturbations of operators. We recall that a linear operator K : H1 → H2 is
compact if the image of all bounded sequences admits a converging subsequence ((vj)j∈N ⊂ H1, ‖vj‖H ≤
C ∀j ∈ N⇒ ∃jm →∞, w ∈ H2 such that Kvjm → w). All compact operators are continuous. The main
result is the “Fredholm alternative”, which, in its simplest form, reads as follows.

Theorem 2.9 (Fredholm alternative). Let T : H1 → H2 be the sum of a continuous invertible linear operator
and a compact one. Then T is injective if and only if it is surjective. In this case its inverse T−1 is bounded.

We say that an operator is a Fredholm operator if it is sum of an invertible one and a compact one
(more precisely, we should say it is a Fredholm operator of index 0). Fredholm alternative says that if we
want to prove that a Fredholm operator is invertible, then it suffices to prove its injectivity. A useful idea
to keep in mind is that, under this respect, Fredholm operators behave like square matrices.4

How do we use Fredholm alternative? The general strategy is the following. We will show that some
linear operator T mapping “problem solution” to “problem data” are Fredholm. When we can show that
the homogeneous problem (with data equal to 0) only admits the trivial solution (i.e. T is injective),
Fredholm alternative guarantees that all data admit a solution (i.e. T is surjective), which is unique
by injectivity, and that the solution is controlled by the data (i.e. T−1 is bounded). A linear problem
whose “solution-to-data” operator is Fredholm is well-posed if the same operator is injective.

3Here terminology can be confusing. Coercivity is sometimes called “sign-definiteness”, “V -ellipticity”, “strong ellipticity”,
or “strict coercivity”, see [Spence14, §5.2]. In some of these cases, the word “coercive” is used for sesquilinear forms satisfying
a Gårding inequality, which is a weaker condition. Here we follow the convention of [Spence14].

4Indeed, an invertible linear operator between finite-dimensional spaces corresponds to a square matrix. All finite-range
operators are compact because all bounded sequences of Rn and Cn admit converging subsequences. Thus the operators
between finite-dimensional spaces that are Fredholm are precisely those associated to square matrices. We know from linear
algebra that a square matrix is injective if and only if it is surjective. This proves the Fredholm alternative in the case of
operators between finite-dimensional spaces.
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Typically, in time-harmonic problems, sesquilinear forms are not coercive but satisfy a weaker inequal-
ity, called Gårding inequality.

Definition 2.10 (Gårding inequality). Let H ⊂ V be two Hilbert spaces provided with the norms ‖·‖H and
‖·‖V , and let the embedding H ↪→ V be continuous. A sesquilinear form satisfies a Gårding inequality if
there exists two positive constants α and CV such that

A(v, v) ≥ α ‖v‖2H − CV ‖v‖
2
V ∀v ∈ H. (22)

Here we follow the notation of [Spence14, §5.3], where H and V are swapped with respect to the
classical choice for Hilbert triples.

The main use of Gårding inequality comes from the next result, see [Spence14, Theorem 5.20].

Proposition 2.11. Assume that H and V are as in Definition 2.10, the embedding H ↪→ V is compact and
the continuous sesquilinear form A(·, ·) satisfies the Gårding inequality (22).
Then the operator A : H → H∗ associated to A(·, ·) is Fredholm.

Proposition 2.11 and Theorem 2.9 imply that, in order to prove well-posedness of a variational problem
(20) whose sesquilinear form A(·, ·) satisfies a Gårding inequality, it suffices to study the homogeneous
problem (with F = 0):

Corollary 2.12. Assume that H and V are as in Definition 2.10, the embedding H ↪→ V is compact and
the continuous sesquilinear form A(·, ·) satisfies the Gårding inequality (22).
If the homogeneous variational problem A(u,w) = 0 for all w ∈ H admits only the trivial solution u = 0
then also the non-homogeneous problem (20) is well-posed, for any F ∈ H∗.

To be able to exploit Corollary 2.12, we need to know when the embedding between two function
spaces is compact. A classical result, called Rellich embedding theorem, says that H1(Ω) ↪→ L2(Ω) is
compact, when Ω is a bounded Lipschitz domain. Similarly, one can show that Hs+(∂Ω) ↪→ Hs−(∂Ω) is
compact for all s+ > s−, [Néd01, Theorem 2.5.7].

An extensive description of the relations between variational problems satisfying Lax–Milgram assump-
tions, Gårding inequality or the inf-sup inequality, and the consequences for the Galerkin method, can be
found in [Spence14, §5.3].

2.3 Boundary value problems in bounded domains
Let Ω ⊂ R2 be a bounded, open, Lipschitz set. The Dirichlet BVP for the Helmholtz equation is: given a
source term f defined in Ω and a boundary datum gD defined on ∂Ω find u on Ω such that

∆u+ k2u = −f in Ω, γu = gD on ∂Ω. (23)

We know that the Dirichlet problem for the Poisson equation (problem (23) with k = 0) is well-posed
when the data f, gD are sufficiently smooth. Despite the Helmholtz equation looks like an innocuous
low-order perturbation of the Laplace equation, well-posedness of the Helmholtz Dirichlet problem is not
guaranteed.

We start from a simple example. Let Ω be the rectangle (0, L1) × (0, L2). Then for all j1, j2 ∈ N
the field uj1,j2(x) = sin( j1πL1

x1) sin( j2πL2
x2) vanishes on ∂Ω and is solution of ∆u + k2

j1,j2
u = 0 with

k2
j1,j2

=
j21π

2

L2
1

+
j22π

2

L2
2
. So there are infinitely many values of k such that the homogeneous (f = 0 and

gD = 0) Helmholtz Dirichlet BVP admits non-trivial solutions. It follows that for these values of k the
problem (23) is not well-posed: if there is a solution then it cannot be unique.

Solutions of the homogeneous Helmholtz Dirichlet problem are called Dirichlet eigenfunctions of
the Laplacian with eigenvalue Λ = k2, as they satisfy the eigenproblem −∆u = Λu.

As a second example, if Ω is a disc of radius R, then the circular waves J`(kr)e±i`θ are Dirichlet
eigenfunctions for Λ = k2 and k such that kR is a zero of the `th Bessel function J` (recall the plots in
the left panel of Figure 3 and the top panel of Figure 4).

In other domains we find the same situation as in the two examples described, even if we cannot
compute eigenvalues and eigenfunctions explicitly.

To understand the problem in more general bounded Lipschitz domains, we study the problem from
a variational point of view. From Green’s first identity (18), the variational problem for the Helmholtz
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Dirichlet BVP (23) with homogeneous boundary conditions gD = 0 is

find u ∈ H1
0 (Ω) such that A(u,w) :=

∫
Ω

(∇u∇w − k2uw) dx =

∫
Ω

fw dx =: F(w) ∀w ∈ H1
0 (Ω). (24)

The sesquilinear form A(·, ·) and the linear functional F(·) are continuous in H1
0 (Ω). On the other hand,

A(·, ·) is not coercive (for k sufficiently large), as the two terms (∇u∇w and −k2uw) have opposite signs,
[Spence14, Lemma 6.2]. However, it satisfies a Gårding inequality (22) with α = 1 and CV = 2k2:

A(w,w) = ‖w‖2H1
k(Ω) − 2k2 ‖w‖2L2(Ω) ∀w ∈ H1(Ω).

Proposition 2.11, together with the compactness of H1
0 (Ω) in L2(Ω), gives that the operator A : H1

0 (Ω)→
(H1

0 (Ω))∗, A : u 7→ f , is Fredholm. Corollary 2.12 of Fredholm alternative then implies that, given Ω and
k, only two situations can happen:
• If Ω and k are such that the homogeneous (f = 0) problem (24) admits only the trivial solution u = 0,

then also problem (24) with any f ∈ L2(Ω) (or more generally F ∈ (H1
0 (Ω))∗) admits a unique solution.

• On the other hand, if there is a u 6= 0 such that A(u,w) = 0 ∀w ∈ H1
0 (Ω), then the problem (24) is

not well-posed for any f . It might have no solutions for some f , and many solutions for some other f .
We have proved part of the following proposition. To prove the remaining part (the existence, discrete-

ness and divergence at infinity of the eigenvalues), one needs the spectral theory of self-adjoint compact
operators, see e.g. §6 of Brezis’ book. To treat non-homogeneous Dirichlet boundary conditions gD 6= 0,
one uses a “lifting”, i.e. a uD ∈ H1(Ω) such that γuD = gD (which exists because of the surjectivity of the
trace operator), and then solves for u0 = u− uD ∈ H1

0 (Ω).

Proposition 2.13. For a Lipschitz bounded domain Ω, there exist a sequence of positive numbers k1 < k2 <
. . ., with kj →∞, such that:
• If k = kj for some j, then the Dirichlet problem (23) is not well-posed.

In particular, the homogeneous case with f = 0 and gD = 0 admits non-trivial solutions.

• If 0 < k 6= kj for all j, then the Dirichlet problem (23) is well-posed in H1
0 (Ω) for all f ∈ L2(Ω) and

gD ∈ H
1
2 (∂Ω).

Exercise 2.14 (Neumann Helmholtz BVP).
• What are the eigenvalues and the eigenfunctions for the Laplacian with Neumann boundary conditions
∂nu = 0 on the rectangle and on the disc?

• Show that the positive Neumann eigenvalues for a rectangle coincide with the Dirichlet eigenvalues but the
eigenfunctions differ. (On the other hand, using subtle properties of the Bessel functions it is possible to
see that there are no Neumann eigenvalues of the disc that are also Dirichlet eigenvalues.)

• Write the variational formulation of the Neumann Helmholtz BVP with inhomogeneous conditions ∂nu =
gN ∈ H−

1
2 (∂Ω): the sesquilinear form coincides with that in (24) but the linear functional and the function

space differs.

Exercise 2.15 (Absorption gives well-posedness.). Show that the Dirichlet and the Neumann problems

∆u+ k2u = −f in Ω, γu = 0 on ∂Ω, or

∆u+ k2u = −f in Ω, ∂nu = gN on ∂Ω,

are well-posed if =k > 0, f ∈ L2(Ω) and gN ∈ H−
1
2 (∂Ω).

Hint: First write the two BVPs as variational problems A(u,w) = F(w) in H1
0 (Ω) and H1(Ω), respectively.

Then use Lax–Milgram theorem. To prove the coercivity |A(w,w)| ≥ c ‖w‖2H1
k(Ω) of the sesquilinear form

obtained, first control the L2 norm of u, then the H1 seminorm by using the triangle inequality.
Deduce a bound on ‖u‖H1

k(Ω). The bounding constant C will blow up for =k ↘ 0.

If instead of sound-soft and sound-hard conditions we have impedance ones we obtain a different
result. Consider the impedance BVP:

∆u+ k2u = −f in Ω, ∂nu− ikϑ γu = gI on ∂Ω, (25)
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for ϑ > 0, f ∈ L2(Ω), gI ∈ H−
1
2 (∂Ω). Its variational form is: find u ∈ H1(Ω) such that

AI(u,w) :=

∫
Ω

(∇u∇w−k2uw) dx− ikϑ

∫
∂Ω

γu γw ds =

∫
Ω

fw dx+

∫
∂Ω

gI γw ds =: F(w) ∀w ∈ H1(Ω).

(26)
As before, the sesquilinear form is continuous, coercive only for small k, and satisfies a Gårding inequality.
So to check the well-posedness we only have to look at the homogeneous problem. If u satisfies (26) with
F = 0 (i.e. f = 0 and gI = 0), taking the imaginary part of AI(u, u) = 0, we see that γu = 0 on ∂Ω, and
from the boundary condition that also ∂nu = 0 on ∂Ω. We will see that this implies that the impedance
BVP is always well-posed.

2.4 Exterior boundary value problems
A typical problem in computational wave propagation is that of scattering. In a scattering problem we
want to compute how a given incoming wave is perturbed by the interaction with an obstacle. Here we
consider only sound-soft obstacles.

We fix some notation. Let Ω− ⊂ R2 be a bounded Lipschitz domain, denote Ω+ := R2 \ Ω− and

Γ = ∂Ω−. We will always assume that Ω+ is connected, i.e. Ω− has no holes. We choose the unit normal
vector field n on ∂Ω that points out of Ω− and into Ω+. We will take traces of fields defined in Ω− and

in Ω+: for clarity we will write γ± and ∂±n for the traces taken from Ω+ and Ω−. If u ∈ H1
loc(R2) then

γ+u = γ−u (and we might write γu); if instead u ∈ H1
loc(Ω− ∪ Ω+) then γ+u and γ−u might differ. The

same holds for the Neumann traces ∂±n .
Let uInc be the incoming wave, or incident wave, a given Helmholtz solution which will be the datum

of our scattering problem. We want to find the field uScat scattered by Ω−, that is a Helmholtz solution
in the exterior domain Ω+ and such that γ(uTot) = 0 on Γ, where uTot = uInc + uScat. We see in the next
section that these two conditions are not enough to determine uScat.

2.4.1 Example: scattering by a disc

Let us consider a simple example. Assume that (i) Ω− is a disc of radius R > 0, centred at the origin
and (ii) the trace of uInc on Γ is a circular harmonic, in polar coordinates (γ+uInc)(R, θ) = ei`θ for some
` ∈ Z. From §1.2.4, we know that all fields in the form5

uScat
λ (r, θ) = −λ

H
(1)
` (kr)

H
(1)
` (kR)

ei`θ − (1− λ)
H

(2)
` (kr)

H
(2)
` (kR)

ei`θ, λ ∈ C,

are Helmholtz solutions in Ω+ and satisfy γ+(uInc + uScat
λ ) = 0 on the circle Γ. Which value of λ should

we choose?
The scattered field is produced by the interaction of the obstacle Ω− and the incoming field uInc. So

it should look like a wave propagating away from Ω− towards infinity.
First of all, we would like the “energy” |u(x)|2 to decrease like r−1 for r →∞, so that

∫
{|x|=R} |u|

2 ds

is constant for R→∞. All Fourier–Bessel and Fourier–Hankel functions decay as
√

2/πkr for r →∞, so
this does not help choosing λ.

If we plot uScat in a position x very far from Ω−, we expect it to point away from Ω−, i.e. radially
towards infinity. We would like uScat close to x to look like a plane wave pointing away from Ω−, i.e. in
the direction d = x

r :
uScat(x) ≈ Aeikx· xr = Aeikr x = (r cos θ, r sin θ).

Here A ∈ C includes the amplitude, proportional to 1√
r
, and the phase of the wave.

We use the fact that Bessel functions for large arguments can be approximated by the following
formulas, [CK2, (3.59)]:

J`(z) =

√
2

πz
cos
(
z − `π

2
− π

4

)(
1 +O

(1

z

))
, Y`(z) =

√
2

πz
sin
(
z − `π

2
− π

4

)(
1 +O

(1

z

))
, z →∞.

5Here we have chosen the Hankel functions as opposed to J` and Y` because they are different from 0 for all values of kR,
so we can normalise as written.
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Recalling the relations (16) between Bessel and Hankel functions, we can write the scattered field as

uScat
λ (x) ≈ −

√
2

πkr

(
λ

ei(kr− `π2 −
π
4 +`θ)

H
(1)
` (kR)

+ (1− λ)
ei(−kr+ `π

2 +π
4 +`θ)

H
(1)
` (kR)

)(
1 +O

( 1

kr

))
. (27)

We see that the H(1)
` term gives a factor eikr, while H(2)

` term gives a factor e−ikr. This means that only
the first component is propagating outward, while the second one is directed towards the origin. So we
want to keep the first term only and choose λ = 1.

Exercise 2.16. Check all computations.

Another way to see that the eikr terms are outgoing is to recall the meaning of time-harmonic waves,
as described in §1.1.2. For u(x) = r−1/2eikr, the time-dependent field (7) is U(x, t) = r−1/2 cos(kr−ωt) =
r−1/2 cos(k(r−ct)) which spreads (in time) radially from the origin. Conversely, ũ(x) = r−1/2e−ikr = u(x)
gives Ũ(x, t) = r−1/2 cos(kr + ωt) = U(x,−t) which moves towards the origin.

Exercise 2.17. Using the Matlab code provided, make time-harmonic animations of different combinations of
Fourier–Bessel and Fourier–Hankel functions and observe in which direction they propagate.

For a general uInc, we can expand its trace on the circle Γ in circular harmonics as uInc(R, θ) =∑
`∈Z a`e

i`θ. The scattered field and the total field are then

uScat(r, θ) = −
∑
`∈Z

a`
H

(1)
` (kr)

H
(1)
` (kR)

ei`θ, uTot(x) = uInc(x) + uScat(x).

This choice ensures that (i) uScat is Helmholtz solution in Ω+, (ii) γ+uTot = 0 on ∂Ω, and (iii) uScat is
made of outgoing waves only. This is an example of “Mie series”.

You can see an example of scattered field computed with this formula in Figure 7 and on the webpage.

Exercise 2.18. Let uInc be a plane wave with direction d. Compute the field scattered by a disc of radius R
using Jacobi–Anger formula eiz cosα =

∑
`∈Z i`J`(z)e

i`α.

2.4.2 Sound-soft scattering problems

We have seen how to select “outgoing” waves using the expansion in polar coordinates. How to do the
same without this expansion?

The radial dependence of all the outgoing terms in the circular wave approximation (27) is 1√
r
eikr

(ignoring high-order terms). Deriving with respect to the radial direction r we have ∂r(
1√
r
eikr) =

ik 1√
r
eikr− 1

2r
−3/2eikr. So if uScat is a linear combination of H(1)

` (kr)ei`θ then it satisfies ∂ruScat− ikuScat =

O(r−3/2). On the other hand, the bad terms H(2)
` (kr)ei`θ satisfy only the condition with the opposite sign

∂ru+ iku = O(r−3/2) (recall that H(2)
` = H

(1)
` ). This suggests the following classical definition.

Definition 2.19. Let u be an H1
loc(R2 \ BR) solution of the Helmholtz equation in the complement of a

ball. We say that u is radiating, or outgoing, if it satisfies the Sommerfeld radiation condition:

|∂ru− iku| = o(r−1/2) r →∞. (28)

Sommerfeld condition is meant to hold uniformly in all directions, namely

lim
r→∞

sup
θ∈[0,2π]

√
r
∣∣∂ru(r, θ)− iku(r, θ)

∣∣ = 0.

Since radiating solutions can be expanded in series of Fourier–Hankel functions, Sommerfeld condition (28)
is equivalent (for Helmholtz solutions only) to the apparently stronger condition

∃C,R > 0 such that
∣∣∂ru(r, θ)− iku(r, θ)

∣∣ ≤ Cr−3/2 ∀r > R, θ ∈ [0, 2π].

Sommerfeld condition also implies that limR→∞
∫
∂BR
|∂ru − iku|2 ds = 0, ∂BR = {x : |x| = R}. The

approximation (27) implies that all linear combinations of H(1)
` (kr)ei`θ that converge outside of some ball

are radiating. On the the other hand, no H(2)
` (kr)ei`θ term is allowed in radiating functions.
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Figure 7: Scattering of a plane wave with direction d = (
√

3
2 ,

1
2 ) by a a sound-soft disc with radius 0.25

at k = 30. Top: scattered field; bottom: total field. We can observe that the uScat field is strongest in
the shadow region, and has phase opposite to uInc, so that uTot is minimal there. In uTot we see the
complicated pattern produced by the interference between uScat and uInc.

A more rigorous derivation of the Sommerfeld radiation condition can be done using the “limiting
absorption principle”: first consider the problem with absorption, i.e. =k > 0, where the eikr behaviour
corresponds to solutions decaying towards infinity, then study the limit for =k ↘ 0.

We can now define the class of exterior boundary value problems that we will consider in the following.

Definition 2.20 (Exterior Dirichlet problem—EDP). Let Ω− a bounded Lipschitz domain, k > 0 and
gD ∈ H

1
2 (Γ). We say that u ∈ H1

loc(Ω+) satisfies the exterior Helmholtz Dirichlet problem if

∆u+ k2u = 0 in Ω+,

γ+u = gD on Γ,

u is radiating.

(29)

In the language of scattering theory:

Definition 2.21 (Sound-soft scattering problem—SSSP). Let Ω− a bounded Lipschitz domain, k > 0 and
uInc is a Helmholtz solution in a neighbourhood of Γ. We say that uScat ∈ H1

loc(Ω+) satisfies the sound-soft
scattering problem if

∆uScat + k2uScat = 0 in Ω+,

γ+(uScat + uInc) = 0 on Γ,

uScat is radiating.

(30)

The sound-soft scattering problem is an exterior Dirichlet problem with u = uScat and gD = −γ+uInc.
We will see that problems (29) and (30) are well-posed.
In Definition 2.21 we have assumed that uInc is defined only in a neighbourhood of the scatterer’s

boundary. If the incoming wave is a plane wave, then of course it is defined in the whole of R2, but
this definition allows to include more realistic incoming waves such as “point sources”, i.e. Fourier–Hankel
functions centred at some point of Ω+.

The EDP and the SSSP are defined and analysed in details in, e.g., [CK2, p. 46]. However, [CK2]
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considers the 3D case (so the powers of r in Sommerfeld condition are different) and Cm spaces rather
than Sobolev spaces.

Ω−
Sommerfeld

radiation condition
∂ru

Scat−ikuScat=o(r−1/2)
∆uScat + k2uScat = 0

Ω+

γ+(uScat + uInc) = 0 on ΓuInc

uScat

uScat

n

Figure 8: A diagram of the sound-soft scattering problem (30).

Remark 2.22 (Truncated problems). Often one does not want to deal with BVPs posed on unbounded domains
such as in Definition 2.21, for example because one wants to approximate the solution with a finite element
method. A possibility to reduce this problem to one posed on a bounded domain is to choose a large ball BR
(or a different shape) with Ω− ⊂ BR and solve a Helmholtz BVP on the truncated domain BR ∩ Ω+. On Γ
we impose the Dirichlet condition as above. On the artificial boundary ΓR = ∂BR one has to impose some
artificial boundary condition that mimics the Sommerfeld radiation condition. The simplest choice is to choose
impedance conditions ∂ruScat − ikuScat = 0 (compare with (28)). Many more efficient and more complicated
boundary conditions exist. They are called absorbing, non-reflecting, radiation, generalised-impedance boundary
conditions (ABC, NRBC, GIBC. . . ). The quality of an artificial boundary condition depends on the ability to
absorb the waves coming from the domain and to not reflect them back.

Remark 2.23 (Far-field pattern). It is possible to prove (e.g. [CK2, eq. (3.63)]) that if u is a radiating Helmholtz
solution, then it satisfies

u(x) =
eikr

√
r

(
u∞(θ) +O(r−1)

)
for r = |x| → ∞,

for a function u∞ ∈ C∞(S1) (recall that S1 is the unit circle, and that θ denotes the angular polar coordinate
of x). This means that, up to factoring out the phase factor eikr and the decay factor 1√

r
, when we move

towards infinity along a straight line in the direction θ, a radiating field converges to a given value u∞(θ). The
function u∞ is called far-field pattern. If u is defined in Ω+ and admits Dirichlet and Neumann traces on Γ,
the far-field pattern can be computed using the formula

u∞(θ) =
eiπ4
√

8πk

∫
Γ

(
γ+u(y)∂+

n e−iky·d − ∂+
n u(y)e−iky·d

)
ds(y) d = (cos θ, sin θ). (31)

The far-field pattern is one of the main quantities of interest in remote-sensing applications, for example to
quantify the amount of radiation “backscattered” by an obstacle when it is hit by a wave.

Exercise 2.24. Compute (as a circular harmonic expansion) and plot with Matlab the far-field pattern of the
field scattered by a disc hit by a plane wave. Use the Fourier expansion computed in Exercise 2.18. Study how
the far-field pattern vary with k, R and the propagation direction of uInc. Denote u∞(θ, ξ) the far-field for
uInc(x) = eik(x1 cos ξ+x2 sin ξ): can you find any symmetry between the two angles? See [CK2, Thm. 3.13].

Remark 2.25 (Direct and inverse scattering). The SSSP is a direct scattering problem: we know the incoming
wave, we know the obstacle, we want to compute the scattered field. In applications (such as medical imaging,
oil retrieval, seismic and atmospheric remote sensing, fault detection in materials, radar and sonar. . . ) it is very
important to consider also inverse scattering problem: given the scattered field or the far-field (typically from
measurements), one wants to compute the obstacle and/or the incoming wave. Inverse problems are ill-posed
and much harder than direct ones, both theoretically and computationally. Most of the book [CK2] is devoted
to inverse scattering problems.

2.5 Well-posedness of the exterior Dirichlet problem (EDP)
The most common proof of the well-posedness of the EDP (29) relies on properties of BIOs and BIEs,
e.g. [CK1, Thm. 3.21] and [CK2, Thm. 3.9]. Here instead we prove well-posedness using a variational
formulation on a truncated domain and the “DtN map”. However, both proofs rely on the same main
tools: Fredholm theory and a “Rellich lemma”, which ensures uniqueness.
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Figure 9: Scattering of a plane wave with direction d = ( 1
2 ,
√

3
2 ) by a sound-soft triangle. Here k = 20

(so λ = π
10 ), the cathetus of the triangle has length 1 and the fields are plotted on a square of side 3.

2.5.1 DtN map

Let R > 0 be the radius of an open ball BR centred at the origin such that Γ ⊂ BR. We define the operator
DtN, which acts on functions defined on ∂BR by multiplying each terms in their Fourier expansion by the
ratio of the radial derivative of the corresponding Fourier–Hankel function and the value of the Fourier–
Hankel function itself:

DtN(v) = DtN
(∑
`∈Z

v̂`e
i`θ
)

=
∑
`∈Z

T`v̂`e
i`θ, for T` :=

kH
(1)
`

′
(kR)

H
(1)
` (kR)

.

This operator is calledDirichlet-to-Neumann (DtN) map or capacity operator (see [Néd01, (2.6.92)]
for the 3D version).

If u is a radiating solution in Ω+, then in R2 \BR it can6 be expanded as u(x) =
∑
`∈Z a`H

(1)
` (kr)ei`θ.

Then its traces on ∂BR are

γ+
∂BR

u =
∑
`∈Z

a`H
(1)
` (kR)ei`θ and ∂+

n ∂BR
(u) =

∑
`∈Z

a`kH
(1)
`

′
(kR)ei`θ thus DtN(γ+

∂BR
u) = ∂+

n ∂BR
(u).

6We haven’t proved that all radiating solutions can be expanded in Fourier–Hankel series; see [CK1, Thm. 3.6] for the
proof in the 3D case.
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In words: the DtN operator maps the Dirichlet trace (on ∂BR) of a radiating solution to its
Neumann trace (on ∂BR).

From the formulas (https://dlmf.nist.gov/10.6#i and https://dlmf.nist.gov/10.19#E2) for
the derivative and the large-index asymptotics of the Hankel functions

H
(1)
`

′
(z) =

H
(1)
`−1(z)−H(1)

`+1(z)

2
, H

(1)
` (z) ∼ −i

√
2

π

( 2

ez

)`
``−

1
2 for `→∞

we have

T` = k
H

(1)
`−1(kR)−H(1)

`+1(kR)

H
(1)
` (kR)

∼ k
(ekR

2`
− 2`

ekR

)
= O(`) `→∞.

From the definition of the fractional norms (17) on the circle we have that DtN is continuous as an operator
DtN : Hs(∂BR)→ Hs−1(∂BR) for any s ∈ R: for some C > 0,

‖DtNv‖2Hs−1(∂BR) = 2π
∑
`∈Z
|v̂`|2 |T`|2︸︷︷︸

∼`2

(1 + `2)s−1 ≤ C
∑
`∈Z
|v̂`|2(1 + `2)s ≤ C ‖v‖2Hs(∂BR) .

2.5.2 Truncated problem

The EDP (29) is equivalent to the following problem on the
truncated domain ΩR := BR ∩ Ω+:

∆u+ k2u = 0 in ΩR,

γu = gD on Γ,

DtN(γu)− ∂nu = 0 on ∂BR.
(32)

Γ
Ω−

ΩR = BR ∩ Ω+

∂BR

n

n

The last condition on the exterior boundary ∂BR is equivalent to the Sommerfeld radiation condition.
To write this BVP as a variational problem we define the space H1

0,R(ΩR) := {u ∈ H1(ΩR) : γu = 0 on Γ}
(the H1 functions whose trace vanishes on the interior boundary Γ but not necessarily on ∂BR).

From the surjectivity of the trace operator (Theorem 2.6) there exists a lifting uD ∈ H1(ΩR) such that
γ+uD = gD; it is possible to choose uD ∈ H1(ΩR; ∆) (e.g. by solving an auxiliary Laplace BVP). If we
can solve the problem

∆u0 + k2u0 = −f in ΩR,

γu0 = 0 on Γ,

DtN(γu0)− ∂nu0 = gR on ∂BR,
f := −∆uD − k2uD, gR := −DtN(γuD) + ∂nuD,

then u = uD + u0 would solve (32). (We could also choose uD such that gR = 0.) Using Green’s first
identity it is easy to deduce a variational problem for u0:

find u0 ∈ H1
0,R(ΩR) such that AR(u0, w) = FR(w) ∀w ∈ H1

0,R(ΩR) where (33)

AR(u0, w) :=

∫
ΩR

(∇u0∇w − k2u0w) dx−
∫
∂BR

(DtNγu0)(γw) ds,

FR(w) :=

∫
Ω

fw dx−
∫
∂BR

gRγw ds.

Using the continuity of the trace operator (γ : H1
0,R(ΩR) → H

1
2 (∂BR)) and the DtN map (DtN :

H
1
2 (∂BR)→ H−

1
2 (∂BR)) we deduce the continuity of AR and FR in H1

0,R(ΩR).

2.5.3 Gårding inequality

We first look at the real part of the boundary sesquilinear form associated to DtN: for all v(x) =∑
`∈Z v̂`e

i`θ ∈ H 1
2 (∂BR) we have

<
∫
∂BR

(DtNv)v ds(x) = R <
∫ 2π

0

(∑
`∈Z

T`v̂`e
i`θ
)(∑

`∈Z
v̂`e
−i`θ

)
dθ = 2πR

∑
`∈Z
|v̂`|2<{T`}.

https://dlmf.nist.gov/10.6#i
https://dlmf.nist.gov/10.19#E2


April 8, 2019 26 DRAFT!

For any complex-valued differentiable function f of a real variable we have

<
{f ′(t)
f(t)

}
= <

{f ′(t)f(t)

|f(t)|2
}

=
f ′(t)f(t) + f ′(t)f(t)

2|f(t)|2
=

1

2|f(t)|2
∂
(
f(t)f(t)

)
∂t

=
1

2|f(t)|2
∂(|f(t)|2)

∂t
.

Choosing f(r) = H
(1)
` (kr) we have

<{T`} = <
{f ′(R)

f(R)

}
=

1

2|H(1)
` (kR)|2

∂(|H(1)
` (kr)|2)

∂r

∣∣∣∣
r=R

< 0

since the absolute value of the Hankel function is monotonically decreasing. Combining all these ingredients
we see that the sesquilinear form satisfies a Gårding inequality:

|AR(w,w)| ≥ <{AR(w,w)} =

∫
ΩR

(|∇w|2 − k2|w|2) dx−<
∫
∂BR

(DtNγw)γw ds

= ‖∇w‖2L2(ΩR)2 − k2 ‖w‖2L2(ΩR) − 2πR
∑
`∈Z
|ŵ`|2<{T`}︸ ︷︷ ︸

≤0

≥ ‖∇w‖2L2(ΩR)2 − k2 ‖w‖2L2(ΩR) = ‖w‖2H1
k(ΩR) − 2k2 ‖w‖2L2(ΩR) ,

where we have expanded (γw)(θ) =
∑
`∈Z ŵ`e

i`θ on ∂BR. Moreover, H1
0,R(ΩR) is compactly embedded

in L2(ΩR). From Corollary 2.12 we have that if the homogeneous version of the variational problem (33)
(find u0 ∈ H1

0,R(ΩR) such that AR(u0, w) = 0 for all w ∈ H1
0,R(ΩR)) admits only the trivial solution

u0 = 0, then (33) is well-posed for any right-hand side.

2.5.4 Uniqueness

We first prove the following important result.

Theorem 2.26 (Rellich’s lemma, [CK1, Thm. 3.12]). If u is a radiating Helmholtz solution in Ω+ then

=
∫
∂BR

∂nu γuds ≤ 0 ⇒ u = 0 in Ω+.

Proof. As before, we assume that u admits a Fourier–Hankel expansion u =
∑
`∈Z û`e

i`θH
(1)
` (kr), [CK1,

Thm. 3.6]. With this normalisation, on ∂BR we have

=
∫
∂BR

∂nu γuds = R =
∫ 2π

0

(∑
`∈Z

û`e
i`θkH

(1)
`

′
(kr)

)(∑
`∈Z

û`e
−i`θH

(1)
` (kr)

)
dθ

= 2πR
∑
`∈Z
|û`|2={kH(1)

`

′
(kR)H

(1)
` (kR)}

= 2πR
∑
`∈Z
|û`|2k

(
Y ′(kR)J(kR)− Y (kR)J ′(kR)

)
= 2πR

∑
`∈Z
|û`|2

2

πR
= 4

∑
`∈Z
|û`|2 ≥ 0,

from the Wronskian identity http://dlmf.nist.gov/10.5.E2 . Since all terms in the series are positive,
if the series is ≤ 0 then it is 0 and û` = 0 for all ` ∈ Z, so u = 0.

If we choose u0 to be the solution of the homogeneous variational problem (33) with FR = 0, then

0 = ={FR(u0)} = ={AR(u0, u0)} = −=
∫
∂BR

(DtNγu0)γu0 ds = −=
∫
∂BR

∂nu0 γu0 ds

and u0 = 0 by Rellich’s lemma 2.26.

We can now complete the proof of the well-posedness. The homogeneous variational problem ((33)
with FR = 0) admits only the trivial solution u0 = 0 (§2.5.4) and its sesquilinear form satifies a Gårding
inequality (§2.5.3). By Corollary 2.12 the problem (33) is well-posed for all f and gR. Thanks to the
equivalence with (32), also the EDP (29) and the special case of the SSSP (30) are well-posed.

http://dlmf.nist.gov/10.5.E2
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3 Boundary integral equations and boundary element method

3.1 Single-layer potential, operator and the first boundary integral equation
7We define the 2D Helmholtz fundamental solution:

Φk(x,y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y ∈ R2. (34)

For a given point y, this is a radiating Fourier–Hankel function of order 0 centred at y. It is a smooth
Helmholtz solution in R2 \{y} and has a logarithmic singularity at y. The roles of x and y are symmetric.
It represents the field produced by a point source located in y. The value of Φk(x,y) only depends on
the distance |x − y| between the arguments (more precisely: it depends on the number of wavelengths
contained in that distance: |x−y|λ = k|x−y|

2π ).
We will see that the normalisation factor i

4 in (34) gives that, for all y ∈ R2, ∆Φk(·,y)+k2Φk(·,y) = δy,
in the sense of distributions, where δy is the Dirac delta centred at y. Moreover this coefficient will allow
to write a simple Green’s integral representation.

Any linear combination
∑
j ψjΦk(·,yj) of fundamental solutions centred at points y ∈ Ω− satifies

the Helmholtz equation in Ω+ and is radiating.8 We can also take a continuous linear combination of
fundamental solutions, which we write as

(Sψ)(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Ω+, (35)

where ψ is a function on Γ. We can think at ψ as the density of acoustic sources generating the field Sψ
(in the case of Laplace equation this is the density of electric charges generating an electrostatic potential).
The function x 7→ Φk(x,y)ψ(y) belongs to C∞(Ω+) for any given y ∈ Γ. Thus, by the differentiation
under integral sign theorem, the function Sψ belongs to C∞(Ω+), is radiating and is a solution of the
Helmholtz equation. The operator S is called (acoustic) single-layer potential or, sometimes, simple-
layer potential. It is possible to prove that the single layer potential is continuous as a mapping
S : H−

1
2 (∂Ω)→ H1

loc(Ω+).
This suggests to look for a solution of the EDP (29) in the form u(x) = (Sψ)(x) for some “density” ψ.

But, how can we find ψ? We need to relate Sψ to the boundary condition.
We first introduce the single-layer operator S:

(Sψ)(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Γ. (36)

The only difference between the single-layer potential S and operator S is that the former is evaluated
in points off the boundary, and the latter on the boundary Γ. When ψ ∈ C0(Γ), then the evaluation of
(Sψ)(x) is the integral of a continuous function. On the other hand, no matter the regularity of ψ, the
evaluation of (Sψ)(x) is a singular integral, because of the singularity of Φ(x,y) at x = y. The single-layer
operator is a first example of boundary integral operator (BIO), in particular it is a weakly singular
integral operator, as the singularity of Φk is logarithmic.

The Dirichlet trace operator relates S and S:

Sψ = γ+(Sψ). (37)

To justify this (intuitively very plausible) fact when ψ ∈ C0(Γ), one can fix x ∈ Γ and a sequence
(xj)j∈N ⊂ Ω+ with xj → x, define g(y) = Φ(x,y)ψ(y) and gj(y) = Φ(xj ,y)ψ(y) for y ∈ Γ. Clearly gj(y)
converges to g(y) for all y ∈ Γ except y = x. Decomposing∫

Γ

|gj(y)|ds(y) ≤
∫

Γ

∣∣Φk(xj ,y)− Φk(x,y)
∣∣|ψ(y)|ds(y) +

∫
Γ

∣∣Φk(x,y)
∣∣|ψ(y)|ds(y)

7This section closely follows [Sayas06, §3]. However we use the notation S, S of [Spence14], while [Sayas06] uses SΓ, VΓ.
8This suggests a numerical method consisting in choosing N points y1, . . . ,yN ∈ Ω− and in searching the coefficients

ψ1, . . . , ψN that minimise
∥∥∥∑N

j=1 ψjΦk(·,yj)− gD(·)
∥∥∥
L2(Γ)

(or some other norm on Γ). This is a well-known scheme

called the “method of fundamental solutions” (MFS). It can give extremely good accuracy but has some drawbacks: it is
very sensitive with respect to the location of the yjs, the minimisation generally leads to ill-conditioned linear systems, it
struggles to approximate solutions for scatterers with corners.
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and using the properties of the Hankel function H
(1)
0 (which appears in the definition of Φk) obtain

that
∫

Γ
|gj(y)|ds(y) is bounded uniformly in j, if the points xj are sufficiently close to x. By Lebesgue’s

dominated converge theorem it follows that
∫

Γ
gj(y) ds(y)→

∫
Γ
g(y) ds(y), which means that (Sψ)(xj)→

(Sψ)(x).
If we are able to find ψ on Γ such that

Sψ = gD on Γ, (38)

where gD is the Dirichlet datum of the EDP (29), then

u = Sψ in Ω+ (39)

is a radiating Helmholtz solution in Ω+ with γ+u = γ+Sψ = Sψ = gD by (37), thus u itself is a solution
of the EDP (29).

Equation (38) is the first example of boundary integral equation (BIE) and (39) is the corresponding
representation formula. The unknown of the BIE is ψ, which is a distribution supported on Γ and does
not need to have a physical meaning: for this reason this is called indirect method. If we could solve the
BIE and compute ψ, then the solution u of the EDP is obtained from the representation formula, which
amounts to the computation of an integral on Γ for each point x ∈ Ω+ where we want to evaluate u.

We will see in the following that the BIE (38) is well-posed under some conditions on Γ and k.

Figure 10: A log-log plot of the multipliers A` =
(̂Sv)`
v̂`

in the circular-harmonic expansion of the
single-layer operator S on the boundary of a circle. They decay proportionally to 1

` , demonstrating the
continuity of S : Hs(Γ)→ Hs+1(Γ). Each colour correspond to a wavenumber k. See Remark 3.1.

Remark 3.1. From the continuity of the single-layer potential S : H−
1
2 (Γ)→ H1

loc(Ω+), the trace formula (37)
and the trace theorem 2.6, it follows that the single-layer operator is continuous as a mapping S : H−

1
2 (Γ)→

H
1
2 (Γ). We can try to verify this continuity for a circular boundary Γ = ∂BR = {x : |x| = R} for R > 0, where

these norms can be computed from Fourier coefficients. Let v(θ) =
∑
`∈Z v̂`e

i`θ be a function (or distribution)
defined on Γ. Then, for x = (R cos θ,R sin θ) ∈ Γ,

(Sv)(x) =

∫
Γ

Φ(x,y)v(y) ds(y) =
i

4
R

∫ 2π

0

H
(1)
0 (k|(R cos θ,R sin θ)− (R cosα,R sinα)|)

∑
`∈Z

v̂`e
i`α dα

=
i

4
R
∑
`∈Z

v̂`

∫ 2π

0

ei`αH
(1)
0

(
kR
√

(cosα− cos θ)2 + (sinα− sin θ)2
)

dα

=
i

4
R
∑
`∈Z

v̂`

∫ 2π

0

ei`αH
(1)
0

(
kR
√

2(1− cos(α− θ))
)

dα

=
i

4
R
∑
`∈Z

v̂`e
i`θ

∫ 2π

0

ei`αH
(1)
0

(
kR
√

2(1− cosα)
)

dα

⇒ (̂Sv)` = A`v̂`, A` :=
iR

4

∫ 2π

0

ei`αH
(1)
0

(
kR
√

2(1− cosα)
)

dα.
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Each Fourier coefficient is multiplied by a factor A` computed as an integral. The integrand is singular at
α = 0. In Figure 10 we show the log-log plot of the factors A` for 0 ≤ ` ≤ 100, R = 1 and different values
of k, computed by approximating the integral with a quadrature formula. The coefficients decay as A` ∼ `−1.
Recallying the definition of the fractional Sobolev norms (17) on the circle, this gives that ‖Sv‖Hs+1(Γ) ≤
C ‖v‖Hs(Γ) for all s ∈ R and all v ∈ Hs(Γ). This kind of bounds can be proved rigorously for all boundaries
and for a range of s that depends on the boundary regularity.

3.2 Piecewise-constant BEM for the single-layer BIE (38)
We have seen that if we were able to find a solution ψ to the BIE (38) then we would have a solution
u = Sψ of the EDP. In general we cannot solve the BIE analytically, thus we resort to a numerical method.

The boundary element method (BEM) consists of choosing an N -dimensional space VN ⊂ H−
1
2 (Γ)

and looking for a ψN ∈ VN that approximately solves the BIE (38). There are two ways of imposing the
BIE.
• Collocation-BEM. We choose N points x1, . . . ,xN on Γ and look for

ψN ∈ VN such that (SψN )(xj) = gD(xj), j = 1, . . . , N.

• Galerkin-BEM. The Galerkin method requires a sesquilinear form. When we deal with BVPs for
PDEs we obtain sesquilinear forms from integration by parts. With BIEs we simply multiply the
equation by a test function and integrate on Γ. So the Galerkin-BEM reads: find ψN ∈ VN such that9

A(ψN , ξN ) :=

∫
Γ

(SψN )ξN ds =

∫
Γ

gDξN ds =: F(ξN ) ∀ξN ∈ VN

We recall that H−
1
2 (Γ) is a space larger than L2(Γ), so it accommodates discontinuous functions. This

makes the construction of the discrete space VN simpler. The simplest choice of VN is the following:
we partition the curve Γ in a mesh TN (Γ) of N (possibly curvilinear) segments K1, . . . ,KN ⊂ Γ (with⋃N
j=1Kj = Γ and Kj∩Kj′ = ∅ for j 6= j′) and choose VN to be the space of piecewise constant functions

on TN (Γ).
The obvious basis {ϕj}Nj=1 of VN is defined by ϕj(x) = 1 if x ∈ Kj and ϕj(x) = 0 if x ∈ Γ \Kj .

We expand the BEM solution in coordinates as ψN =
∑N
j=1 Ψjϕj , where Ψj = (Ψ)j is the jth element

of the vector Ψ ∈ Cn. So ψN (x) = Ψj if x ∈ Kj .
With this discrete space and basis, in the collocation-BEM we choose the collocation nodes xj such

that xj ∈ Kj for all j = 1, . . . , N and obtain the linear system ACΨ = FC , where

ACj,m := (Sϕm)(xj) =

∫
Γ

Φk(xj ,y)ϕm(y) ds(y) =

∫
Km

Φk(xj ,y) ds(y), FCj := gD(xj). (40)

Indeed, by the linearity of S, if ψN is the collocation-BEM solution then its coefficient vector Ψ solves
ACΨ = FC :

FCj = gD(xj) = (SψN )(xj) =
(
S

N∑
m=1

Ψmϕm

)
(xj) =

N∑
m=1

Ψm(Sϕm)(xj) = (ACΨ)j .

To be able to evaluate the collocation-BEM right-hand side vector FC we need gD ∈ C0(Γ), which is
typically satisfied if the EDP comes from a scattering problem such as (30).

Similarly, if ψN is the Galerkin-BEM solution then its coefficient vector Ψ solves AGΨ = FG with

AGj,m : = A(ϕm, ϕj) = 〈Sϕm, ϕj〉Γ =

∫
Γ

(Sϕm)(x)ϕj(x) ds(x) =

∫
Γ

∫
Γ

Φk(x,y)ϕm(y)ϕj(x) ds(y) ds(x)

=

∫
Kj

∫
Km

Φk(x,y) ds(y) ds(x), (41)

FGj : = F(ϕj) = 〈gD, ϕj〉Γ =

∫
Γ

gD(x)ϕj(x) ds(x) =

∫
Kj

gD(x) ds(x).

9To be more precise, in general we should use duality products in place of integrals: A(ψN , ξN ) := 〈SψN , ξN 〉Γ =

〈gD, ξN 〉Γ =: F(ξN ) ∀ξN ∈ VN . The duality 〈SψN , ξN 〉Γ makes sense because ψN , ξN ∈ VN ⊂ H−
1
2 (Γ) so SψN ∈ H

1
2 (Γ).

However, since in all concrete cases we choose VN ⊂ L2(Γ), the expression with the boundary integrals is correct.
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Multiplying each row of AC and FC by the length of the corresponding element, we see that the
collocation-BEM is a Galerkin-BEM with a simple 1-point quadrature. Formally, one can also think at
the collocation method as a Petrov–Galerkin method with delta functions as test functions, but this is
not mathematically correct in the H±

1
2 (Γ) framework because delta functions do not belong to H−

1
2 (Γ).

Exercise 3.2. Show that the Galerkin-BEM with piecewise-constant functions is equivalent to impose that the
integral averages of SψN and gD coincide on each element.

Both matrices AC and AG are dense: this is a major difference between the BEM and the finite
element method (FEM). The Galerkin matrix is also complex-symmetric, but not Hermitian.

This shortcoming of the BEM with respect to the FEM is compensated by a dimensional reduction:
to solve a 2D problem we only need to mesh a 1D object, the boundary Γ. Thus typically BEM requires
much fewer degrees of freedom (DOFs) than FEM for comparable problems and accuracies.

Another advantage of BEM is that it deals with a BVP posed on the unbounded domain Ω+ by
discretising only a bounded object, Γ. To treat the EDP with FEM one has to truncate Ω+ as in
Remark 2.22, introducing additional errors.

The collocation-BEM is clearly simpler to implement than the Galerkin-BEM. However, in many
situations the choice of the collocation nodes adversely affects the performance of the method. Moreover,
the stability and convergence theory for the Galerkin-BEM is much more complete.

3.2.1 BEM and quadrature

From (40) and (41) we see that to compute each entry of the system matrix we need to compute an
integral of the fundamental solution: it is a single integral on a mesh element for the collocation-
BEM and a double integral on the Cartesian product of two elements for the Galerkin-BEM. To compute
each entry of the right-hand side vectors, in the collocation-BEM we only need to evaluate the boundary
datum gD while for the Galerkin-BEM we need an integral over an element.

All these integrals require accurate quadrature formulas: these are among the main difficulties in a
BEM implementation. In particular, for both matrices, the diagonal entries require the approxima-
tion of singular integrals, because of the (logarithmic) singularity of Φk(x,y) at x = y.

Let us assume that Ω− is a connected polygon and each mesh element is a straight segment.
For j = 1, . . . , N , the element Kj has endpoints pj and pj+1 and length hj := |pj+1 − pj | (of course
pN+1 = p1). The element is parametrised by Xj : (0, hj)→ Kj , Xj(s) := pj +sτ j , where τ j :=

pj+1−pj
|pj+1−pj |

is the unit tangent vector to Kj . Recalling the definition of the fundamental solution (34), the entries of
the BEM matrices and vectors are then computed as integrals over intervals and rectangles:

ACj,m =
i

4

∫ hm

0

H
(1)
0 (k|pm + sτm − xj |) ds, FCj = gD(xj), FGj =

∫ hj

0

gD(pj + sτ j) ds,

AGj,m =

∫ hj

0

(∫ hm

0

Φk(pj + tτ j ,pm + sτm) ds

)
dt =

i

4

∫ hj

0

(∫ hm

0

H
(1)
0

(
k|pj − pm + tτ j − sτm|

)
ds

)
dt.

The jth diagonal entry of the collocation-BEM matrix is a singular integral, as xj ∈ Kj . A simple
recipe to compute ACj,j is to split the element in the two components of Kj \ {xj} and apply Gauss
quadrature on each side. The obvious choice for the collocation nodes is to take the element midpoints:
xj = 1

2 (pj + pj+1).
The jth diagonal entry of the Galerkin-BEM matrix is a double integral on the square {0 < s, t < hj},

whose integrand has a singularity along the diagonal s = t. One can use a quadrature formula for triangles
(e.g. based on Duffy transform) on each half of the square. Alternatively, splitting the square in four
triangle, exploiting the symmetries, and using the isometric change of variables ξ = s−t√

2
, η = s+t√

2
, we obtain

AGj,j =

∫ hj

0

∫ hj

0

i

4
H

(1)
0

(
k|s− t|

)
dsdt = 4

∫ hj√
2

0

(∫ hj√
2

ξ

i

4
H

(1)
0 (
√

2kξ) dη

)
dξ

=

∫ hj√
2

0

i
( hj√

2
− ξ
)
H

(1)
0 (
√

2kξ) dξ.
s

t

ξ

η
hj

hj

This is a one-dimensional integral with a weak singularity at one extreme.
If all elements are identical, e.g. straight segments of the same length, then also the diagonal terms are

identical and they need to be computed only once.
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In the Galerkin-BEM, also when two element share an endpoint we have a singularity. For example, if
the segments Kj and Kj+1 are aligned (τ j = τ j+1), we have

AGj,j+1 =

∫ hj

0

(∫ hj+1

0

i

4
H

(1)
0

(
k|hj − s+ t|

)
dt

)
ds.

This is a double integral on the rectangle {0 < s < hj , 0 < t < hj+1} with a singularity at the vertex
s = hj , t = 0.

Exercise 3.3. Write the entries of the collocation- and Galerkin-BEM when Ω− is not a polygon but a general
Lipschitz domain and its boundary is defined by a parametrisation X : [0, L]→ Γ.

Remark 3.4 (Singularity extraction quadrature). A typical technique to compute the singular integrals is the
“singularity extraction”. The small-argument asymptotics of the Hankel function (H(1)

0 (z) ∼ 2i
π log z for z ↘ 0)

give Φk(x,y) = − 1
2π log |x− y| +R(x,y) for a reminder R of class C1. Inserting this in the expression of

A
C/G
j,j one can compute analytically the terms coming from the log and use a standard quadrature for the

remainder R.

Once we have assembled and solved the BEM linear system we have obtained an approximation
ψN ∈ VN of the solution ψ ∈ H−

1
2 (Γ) of the BIE (38). However to approximate the solution of the

EDP (29)/SSSP (30), we need to approximate u in the unbounded domain Ω+. Recalling the representa-
tion formula u = Sψ (39), the BEM approximation of u is

uN (x) = (SψN )(x) =

∫
Γ

Φk(x,y)ψN (y) ds(y) =

N∑
j=1

Ψj

∫
Kj

Φk(x,y) ds(y) x ∈ Ω+.

Again, each term in this sum is an integral that needs to be approximated with a quadrature formula.
For all x ∈ Ω+ the integrand is C∞, however if x lies very close to Γ the accurate evaluation of uN (x)
requires a careful use of the quadrature as the integral is near-singular.

Remark 3.5. Another difficulty is the oscillatory behaviour of both Φk and the solution for large values
of the wavenumber k.

A first issue is that to approximate the solution one needs to use more DOFs for larger values of k. A typical
recipe for “engineering accuracy” (a few percent relative errors) is to use at least 10 DOFs per wavelength λ.
This means that the length of each element should not exceed λ

10 = π
5k . (Sometimes the rule of thumb is to

use 6 DOFs per wavelength, corresponding roughly to khj ≤ 1, for 10%/15% error.) This implies that the
number of DOFs must grow like N = O(k) for increasing k: high-frequency problem are computationally very
expensive. On the other hand, a 2D FEM needs at least O(k2) DOFs as the wavelength has to be resolved in
two dimensions.

The fundamental solution oscillates with wavelength close to λ = 2π
k . Thus, even for elements Kj , Km

far from each other, in the assembly of the matrices AC/G one has to use a sufficiently accurate quadrature
formula to take into account the oscillations.

Obvious improvements of the piecewise-constant BEM use piecewise-polynomial discrete spaces of
higher order. They can be discontinuous, or C0(Γ) or of higher continuity (at least away from corners of
Γ) such as splines. The choice of basis functions, collocation points and quadrature rules is in general non-
trivial. When Γ is smooth one can use also global functions such as mapped trigonometric functions, in
the spirit of spectral methods. Close to the corners of Γ, if it is not smooth, the solution has a singularity:
to approximate it efficiently one can use a graded mesh, i.e. whose elements are smaller the closer they
are to a corner.

3.2.2 BEM coding project

Implement the collocation-BEM method for the scattering of a plane wave by a polygon Ω−.
Use a discrete space VN of piecewise-constant functions. Choose a mesh such that the elements on a
given side of Γ have equal length. Plot the scattered field uN and the total field on a portion of Ω+.
You can use the quadrature routine provided.

A possible suggestion for the main steps in the code:
1. Prepare the geometric data structure. Given the vertices of the polygon, decide the number of elements

on each side, and generate (for each element Kj) the endpoint pj , the length hj , the tangent vector
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τ j , and the collocation point xj , chosen as the element midpoint. (In Matlab it might be convenient
to treat points and vectors in the plane as complex numbers with the usual identification C ∼ R2; then
the abs function allows for immediate computation of distances.)

2. Assemble the matrix AC (being careful with the quadrature) and the right-hand side FC .
3. Solve the linear system.
4. Evaluate the near-field uN on a grid of points in 2D using the representation formula and plot it.

To generate the grid of points for the plot use meshgrid. To plot the field you can use one of the
Matlab commands pcolor, surf, mesh or contour. To hide the grid points that lie inside Ω− you can
locate them with inpolygon and set them to 0 or NaN (or use the command patch).

Plenty of interesting extensions are possible:
• Choose as incident wave uInc a fundamental solution centred in some x0 ∈ Ω+. (The total field cannot

be plotted close to x0.) You can also try more exotic incident waves, such as Herglotz functions.
• Implement the problem of scattering by multiple polygons, i.e. Ω− made of several components.
• Implement the Galerkin-BEM for the same problem, on the same mesh. The only difference is in the

assembly of the matrix and the right-hand side. Compare the solutions obtained with the two versions
of the scheme.
• Generate a time-harmonic animation of the scattered and total fields (use the file provided).
• Implement the singularity extraction quadrature of Remark 3.4.
• Use meshes refined locally towards the corners of Γ.
• Study the dependence of the results on the parameters. You can see how the plots and the norms

of the solution vary when you change the number N of DOFs, the wavenumber k, the quality of the
quadrature, the shape of Ω−. . .
You can plot the convergence of the error committed by the scheme against N . You can measure the
error e.g. as ‖ψN − ψref‖L2(Γ) or ‖uN − uref‖L2(Ω∗)

where Ω∗ is the portion of Ω+ where you plot the
near-field and ψref/uref are the reference solutions obtained with the finest mesh.
You can also test the code (for a square scatterer) by computing the near-field error against the reference
solution provided. This was computed with MPSpack https://github.com/ahbarnett/mpspack.
How does the condition number depends on N?
• Extend the code to curvilinear polygons and/or smooth scatterers.
• Implement a spectral BEM on a smooth curvilinear scatterer (hard!).

Choose a smooth scatterer defined by a parametrisation X : [0, 2π] → Γ. E.g. a shape often used as
example for scattering problems is the kite X(t) = (cos t+ 0.65(cos 2t− 1), 1.5 sin t), [CK2, p. 71]. For
L ∈ N and N = 2L+ 1, choose as basis functions the mapped complex exponentials ϕ`(x) = ei`X−1(x),
−L ≤ ` ≤ L, or the corresponding trigonometric functions.
• . . .

3.3 Green’s integral representation
The Green’s integral representation, or Green’s third identity, is an important tool to derive new BIEs
and BEMs, and to understand the properties of the corresponding BVPs. We write it and prove it for
bounded and unbounded Lipschitz domains.

We keep using the notation introduced in §2.4. In particular, we recall that the unit normal n on the
boundary of the bounded domain Ω− is defined to point outwards, into the complement Ω+; this enters
the definition of the Neumann trace ∂n. Since the fundamental solution Φk depends on two variables, we
write ∂Φk(x,y)

∂n(x) and ∂Φk(x,y)
∂n(y) to make clear which is the variable with respect to which we derive and take

the trace. We recall that when we write
∫

Γ
ϕψ ds for ϕ ∈ H− 1

2 (∂Ω) and ψ ∈ H 1
2 (∂Ω) (or vice versa) we

mean the duality product 〈ϕ,ψ〉Γ.

Theorem 3.6 (Green’s representation in Ω−). Let Ω− be a bounded Lipschitz domain and u ∈ H1(Ω−; ∆)∩
C2(Ω−) be a Helmholtz solution in Ω−. Then:∫

Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
u(x) if x ∈ Ω−,

0 if x ∈ Ω+.
(42)

https://github.com/ahbarnett/mpspack
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Proof. If x ∈ Ω+, then both u and Φk are Helmholtz solution in Ω− thus the volume integral in Green’s
second identity (19) vanishes and what is left is (42).

If x ∈ Ω− we take ε > 0 such that the ball Bε(x) := {z ∈ R2 : |z − x| < ε} ⊂ Ω−. Applying again
Green’s second identity in Ω− \Bε(x) we have∫

Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

∫
∂Bε(x)

(
∂nu(y)Φk(x,y)− γu(y)

∂Φk(x,y)

∂n(y)

)
ds(y),

where n points out of the ball (this is why we do not have a minus sign in front). We
now want to take the limit for ε↘ 0 of the right-hand side, and see that the first term
vanish, while the second converges to u(x). The advantage of using a ball centred at x,
is that on its boundary the value of Φk(x, ·) and its normal derivative are constant.

n

n

Ω−
Γ

x
ε

To this purpose, we need some properties of Hankel functions: the formula for the first derivative of
H

(1)
0 and the asymptotics for small arguments (from https://dlmf.nist.gov/10.7):

∂

∂z
H

(1)
0 (z) = −H(1)

1 (z), H
(1)
0 (z) ∼ 2i

π
log z, H

(1)
` (z) ∼ − i

π
(`−1)!

2`

z`
, ` ∈ N, z → 0. (43)

(Here a(z) ∼ b(z) for z → 0 means that limz↘0
a(z)
b(z) = 1.)

We take the limit limε→0 of the first term using the expression of the fundamental solution, the
divergence theorem, div∇ = ∆, ∆u = −k2u, the asymptotics (43), the mean value theorem (in the form
lim
ε→0

1
πε2

∫
Bε(x)

f(y) dy = f(x)), the boundedness of u in x:∫
∂Bε(x)

∂nu(y)Φk(x,y) ds(y) =
i

4
H

(1)
0 (kε)

∫
∂Bε(x)

∂nu(y) ds(y)

=
i

4
H

(1)
0 (kε)

∫
Bε(x)

∆u(y) dy

= − i

4
H

(1)
0 (kε)k2

∫
Bε(x)

u(y) dy ∼ − i

4

(2i

π
log kε

)
k2πε2u(x)

ε↘0−−−→ 0.

The symbol “∼” stands for “have the same limit for ε→ 0”. Using the expression of the radial derivative
of Φk, the asymptotics (43), the mean value theorem (lim

ε→0

1
2πε

∫
∂Bε(x)

f(y) ds(y) = f(x)) we get

−
∫
∂Bε(x)

u(y)
∂Φk(x,y)

∂n(y)
ds(y) = k

i

4
H

(1)
1 (kε)

∫
∂Bε(x)

u(y) ds(y)

∼ k i

4

(−2i

πkε

)∫
∂Bε(x)

u(y) ds(y) ∼
( 1

2πε

)
2πεu(x) = u(x).

(This also explains why we chose the coefficient i
4 in the definition (34) of Φk: it allows to write a simple

Green’s representation.)

From Green’s representation it follows immediately that:

Corollary 3.7. If u is a Helmholtz solution in Ω− and γ−u = ∂−n u = 0 then u = 0.
In particular, u 6= 0 is not simultaneously Dirichlet and Neumann eigenfunction in Ω− for the Laplacian.

We have seen at the end of §2.3 that the solution of the impedance BVP (25) in Ω− satifies a Fredholm-
type variational problem. We have also seen that the solution u0 of the homogeneous impedance BVP
has zero traces: γ−u0 = ∂−n u0 = 0. From Green’s representation (42), u0 = 0, so the operator associated
to the sesquilinear form AI(·, ·) is injective. Since the operator is Fredholm, by Theorem 2.9 it is also
invertible and the following corollary holds.

Corollary 3.8 (Well-posedness of interior impedance BVP). The impedance BVP (25) (equivalently, (26))
in Ω− is well-posed.

The Fredholm alternative implies that the solution of the impedance BVP (25) exists and is unique,
and also that its H1

k(Ω−) norm is controlled by the norm of the data (f and gI). However, the bounding
constant is not explicit as in the situations where we can use Lax–Milgram theorem.

Exercise 3.9. Let ΩR = BR\Ω−, where BR is an open ball containing Ω−. Write a truncation of the EDP (29)
to ΩR, as described in Remark 2.22 imposing impedance boundary conditions on ∂BR and sound-soft conditions
on Γ. Show that the BVP obtained is well-posed.

https://dlmf.nist.gov/10.7
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Remark 3.10. If u in (42) were not Helmholtz solution we would need to add the left-hand side of Green’s
representation the volume integral term −

∫
Ω−

(
∆u(y) + k2u(y)

)
Φk(x,y) dy. When x ∈ Ω− the integrand is

weakly singular, see (43), and the integral is well-defined.

Remark 3.11. In the 3-dimensional case all the arguments are similar. The fundamental solution has the
simpler expression Φk(x,y) = eik|x−y|

4π|x−y| , which does not involve Bessel and Hankel function, so checking the
limits for ε↘ 0 is simpler.

To write a Green’s representation formula for unbounded domains, we denote by BR the ball of radius
R > 0 centred at 0 and fix n = x

r on ∂BR. We will work in the bounded region BR ∩ Ω+, for sufficiently
large R and use Sommerfeld condition to take the limit R→∞. The unit normal n points into BR ∩Ω+

on the inner boundary Γ and out of BR ∩ Ω+ on the outer boundary ∂BR.

Γ
Ω−

BR ∩ Ω+

∂BR

n

n

Lemma 3.12. Let Ω− be a bounded Lipschitz domain, Γ = ∂Ω−, Ω+ = R2 \Ω−, and u,w ∈ H1
loc(Ω+; ∆)∩

C2(Ω+) be two radiating Helmholtz solutions in Ω+. Then:

lim
R→∞

∫
∂BR

|u|2 ds <∞, =
∫

Γ

∂nu γuds ≥ 0 lim
R→∞

∫
∂BR

(∂nu w − u∂nw) ds = 0. (44)

Proof. We first prove the boundedness of the limit of ‖u‖L2(∂BR). The imaginary part of Green’s first
identity (18) with w = u in BR ∩ Ω+ gives

=
∫

Γ

∂nu γuds = =
∫
∂BR

∂nu γuds+ =
∫
BR∩Ω+

(k2|u|2 − |∇u|2) dx︸ ︷︷ ︸
=0, imaginary part of real value

=
1

2k

∫
∂BR

(
k2|u|2 + |∂nu|2 − |∂nu− iku|2

)
ds,

where we have used the identity |a− ib|2 = |a|2 + |b|2 − 2<{a ib} = |a|2 + |b|2 − 2={ab}, which holds for
all a, b ∈ C, applied to a = ∂nu, b = ku. Taking the limit for R→∞, the term

∫
∂BR
|∂nu− iku|2 ds→ 0,

by the Sommerfeld condition (28). The left-hand side is independent of R, thus

lim
R→∞

1

2k

(
k2 ‖u‖2L2(∂BR) + ‖∂nu‖2L2(∂BR)

)
= =

∫
Γ

∂nu γuds <∞.

Since the norms are non-negative and the limit is finite, each of them is bounded, which is the desired
inequality. In particular u = O(r−1/2) for r → ∞. Moreover the left-hand side is non-negative, so also
the second inequality is proved.

Sommerfeld condition, together with u,w = O(r−1/2), gives the identity involving w:∫
∂BR

(∂nu w − w∂nu) ds =

∫
∂BR

((
iku+ o(R−1/2)

)
w − u

(
ikw + o(R−1/2)

))
ds

=

∫
∂BR

(
o(R−1/2)O(R−1/2)−O(R−1/2)o(R−1/2)

)
ds =

∫
∂BR

o(R−1) ds
R→∞−−−−→ 0.

Recall that we have already seen in Theorem 2.26 a stronger version of the second inequality in (44):
if this integral is 0 then u = 0 (see the first formula in the proof to relate the integrals on Γ and on ∂BR).

The Sommerfeld radiation condition can be extended to problems with complex wavenumbers with
=k ≥ 0, Lemma 3.12 holds also in this case, see [CK1, Thm. 3.3].
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Theorem 3.13 (Green’s representation in Ω+). Let Ω− be a bounded Lipschitz domain, Γ = ∂Ω−, Ω+ =
R2 \ Ω−, and u ∈ H1

loc(Ω+; ∆) ∩ C2(Ω+) be a radiating Helmholtz solution in Ω+. Then:

−
∫

Γ

(
∂+
n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
0 if x ∈ Ω−,

u(x) if x ∈ Ω+.
(45)

Proof. Let R > 0 be the radius of a ball such that Γ ⊂ BR and, if x ∈ Ω+ also x ∈ BR. Then Green’s
representation (42) applied in Ω+ ∩BR gives

(∫
∂BR

−
∫

Γ

)(
∂+
n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
0 if x ∈ Ω−,

u(x) if x ∈ Ω+.

Taking the limit for R→∞, the integral over ∂BR vanishes by the identity in (44) and we conclude.

Exercise 3.14. Show that the fundamental solution deserves its name: for any y ∈ R2, it satisfies ∆Φk(·,y)+
k2Φk(·,y) = δy in distributional sense, where δy is the Dirac delta at y.

This means that
∫
R2 Φk(x,y)

(
∆ρ(x) + k2ρ(x)

)
dx = ρ(y) for all ρ ∈ D(R2) and y ∈ R2.

Hint: integrate by parts in R2 \ Bε(y) and take the limit for ε → 0 using the technique of the proof of
Theorem 3.6.

3.4 Double-layer potential and operator
Green’s representation formulas (42) and (45) mean that all Helmholtz solutions in Ω− and all radiating
Helmholtz solutions in Ω+ can be written as boundary integrals over Γ. The integral of ∂nu Φk is the
single layer potential Sψ for ψ = ∂±n u we already know from (35). Now we are evaluating (Sψ)(x) for
both x ∈ Ω+ and x ∈ Ω−, so we are slightly extending the definition of the single layer operator to all
points in the complement of Γ:

(Sψ)(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Ω+ ∪ Ω−.

In particular, for any ψ ∈ H− 1
2 (Γ), Sψ is a Helmholtz solution both in Ω− and Ω+ and is radiating. With

the same reasoning as in (37), the Dirichlet traces from both sides of Γ coincide:

γ+(Sψ) = γ−(Sψ) = Sψ.

In particular, if ψ ∈ C0(Γ), then Sψ ∈ C0(R2) but Sψ /∈ C1(R2) because, as we will see, the normal
derivative of Sψ jumps on Γ.

The second term in (42) and (45) is a new potential:

(Dψ)(x) :=

∫
Γ

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) x ∈ Ω− ∪ Ω+. (46)

This is called acoustic double-layer potential.10 For a function ψ on Γ, sufficiently smooth, Sψ is a
smooth Helmholtz solution in both Ω− and Ω+, and satisfies the radiation condition. It can be proved
that it is continuous as mapping D : H

1
2 (Γ)→ H1

loc(Ω− ∪Ω+) (here we need the density to be in H
1
2 (Γ),

while for the single-layer potential H−
1
2 (Γ) was enough, this is because the singularity of ∇Φk is stronger

than that of Φk).
Then Green’s representation can be written as:

if u is Helmholtz solution in Ω− : u = S∂−n u−Dγ−u in Ω−,

if u is radiating Helmholtz solution in Ω+ : u = −S∂+
n u+Dγ+u in Ω+.

(47)

This means that any (radiating) Helmholtz solution is known once we know the “Cauchy data” γu and
∂nu, i.e. its Dirichlet and Neumann traces.

10The double layer potential has this name because it can be thought as the acoustic potential generated by two “sheets” of
charges with opposite signs, parallel to Γ, in the limit when the distance between the sheets decreases to 0 (from ∂Φk(x,y)

∂n(y)
=

limδ→0
1
2δ

(Φk(x,y + δn)− Φk(x,y − δn)).
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As we did for the single layer, we can define the double-layer operator:

(Dψ)(x) :=

∫
Γ

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) x ∈ Γ. (48)

If Γ is of class C2 and ψ ∈ C0(Γ), then Dψ is well-defined as a standard (weakly singular) integral and
Sψ ∈ C0(Γ). On the other hand, if Γ is only Lipschitz and ψ ∈ L2(Γ), then Dψ must be understood as
Cauchy principal value:

(Dψ)(x) = lim
ε→0

∫
Γ∩{y:|y−x|>ε}

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) a.e. x ∈ Γ.

Then Dψ ∈ L2(Γ).

Exercise 3.15. Assume that Γ∗ ⊂ Γ is a straight segment and that ψ ∈ C0(Γ) is supported in Γ∗. Show that
(Dψ)(x) = 0 for all for all x ∈ Γ∗.

Hint: you do not need the precise value of Φk but only the fact that it only depends on |x− y|.

We have seen in (37) that S = γS. One might expect that D = γD, but this is not the case. To see
this fact, we first extend Green’s representation (42)/(45)/(47) to the case x ∈ Γ.

For x ∈ Γ define
σ(x) := lim

ε→0

1

2πε

∫
y∈Ω−,|y−x|=ε

ds.

If Γ is C1 in x then σ = 1
2 ; if Γ forms an angle with opening α at x then σ(x) = α

2π . By Rademacher
theorem (Lipschitz functions are differentiable a.e.), for a Lipschitz Γ, σ = 1

2 almost everywhere on Γ.

Lemma 3.16. Let u ∈ H1(Ω−; ∆) ∩ C0(Ω−) be a Helmholtz solution. Then∫
Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) = σ(x)u(x) x ∈ Γ. (49)

If u ∈ H1
loc(Ω+; ∆) ∩ C0(Ω+) is a radiating Helmholtz solution then

−
∫

Γ

(
∂+
n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) = (1− σ)(x)u(x) x ∈ Γ. (50)

Proof. We prove the first identity, the second one is analogous.
For x ∈ Γ, we apply Green’s second identity on Ω− \Bε(x). Its boundary is decomposed in Γ \Bε(x)

and ∂Bε(x) ∩ Ω−; on both parts we choose n pointing outwards.

0 =

∫
∂(Ω−\Bε(x))

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y)

=

(∫
Γ\Bε(x)

+

∫
∂Bε(x)∩Ω−

)(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y).

n

Ω−
Γ

x
ε

The limit for ε→ 0 of the integral over Γ\Bε(x) is exactly (S∂−n u)(x)− (Dγ−u)(x), the left-hand side
of the assertion. Proceeding as in the proof of Theorem 3.6 we see that limε→0

∫
∂Bε(x)∩Ω−

∂−n u(y)Φk(x,y)

ds(y) = 0, while the last term gives:

−
∫
∂Bε(x)∩Ω−

γ−u(y)
∂Φk(x,y)

∂n(y)
ds(y) = k

i

4
H

(1)
1 (kε)

∫
∂Bε(x)∩Ω−

u(y) ds(y)

∼k i

4

(−2i

πkε

)∫
∂Bε(x)∩Ω−

u(y) ds(y) ∼
( 1

2πε

)
2πσ(x)εu(x) = σ(x)u(x).

The assertions of Lemma 3.16 can be written in terms of layer operators as (compare against (47))

S∂−n u−Dγ−u = σγ−u, Dγ+u− S∂+
n u = (1− σ)γ+u. (51)
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Now let u be a Helmholtz solution in Ω− and denote ψ := γ−u ∈ H 1
2 (Γ). We have

ψ = γ−u

Green repr.
(42)
= γ−S∂−n u− γ−Dψ

single-layer
trace (37)

= S∂−n u− γ−Dψ and σψ
(51)
= S∂−n u−Dψ

Taking the difference between these two equations we have the Dirichlet trace formula for the double
layer potential:

γ−Dψ = Dψ − (1− σ)ψ, γ+Dψ = Dψ + σψ. (52)

The second of these equations is obtained similarly using (45) in place of (42) and (50) in place of (49).
Recall that σ = 1

2 in all smooth points, so (52) reads almost everywhere as

γ±Dψ = Dψ ± 1

2
ψ, or, in operator form, γ±D = D ± 1

2
I,

where I is the identity operator. All these formulas tell us that the Dirichlet trace of D is not simply D
but a correction term is needed, due to the singular behaviour of ∂Φk

∂n . Taking the difference between the
two equations in (52), the correction terms ± 1

2ψ give the jump relation:

[[Dψ]] := γ+Dψ − γ−Dψ = ψ.

Given a ψ on the boundary Γ, the double layer potential Dψ is a radiating Helmholtz solution in the
complement of Γ, whose jump on Γ is ψ itself.

For simplicity, in the following we will write 1
2 instead of σ and 1 − σ, with the implicit convention

that equalities on Γ hold almost everywhere (everywhere except possibly at corners).

3.5 Neumann traces of the potentials: two more BIOs
In the previous section we have learned how to construct fields in Ω−∪Ω+ from distributions defined on Γ:

∀ψ ∈ H− 1
2 (Γ), ∀ϕ ∈ H 1

2 (Γ), Sψ, Dϕ ∈ H1(Ω−; ∆)×H1
loc(Ω+; ∆) (53)

are radiating Helmholtz solution in the complement of the boundary Γ. Moreover, the Dirichlet traces of
Sψ coincide: γ+Sψ = γ−Sψ, so Sψ ∈ H1

loc(R2; ∆), while Dϕ is discontinuous on Γ, (52).
We now want to look at the Neumann traces of Sψ, Dϕ. To this purpose, we need to introduce two more

BIOs (the last ones!): the adjoint double-layer operator D′ and the hypersingular operator H:

(D′ϕ)(x) :=

∫
Γ

∂Φk(x,y)

∂n(x)
ϕ(y) ds(y), (Hϕ)(x) :=

∂

∂n(x)

∫
Γ

∂Φk(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ Γ. (54)

Note that D′ differs from D only in that the normal derivation is taken with respect to a different variable
of Φk. If Γ is not C2 or ϕ /∈ C0(Γ), the adjoint double layer operator has to be understood as a principal
value integral, in the same way as D. Its name and notation are due to the fact that it is possible to
prove, using Fubini theorem and with some complications due to the singularity of the integrand, that∫

Γ
(Dϕ)ψ ds =

∫
Γ
ϕ(D′ψ) ds for all ϕ,ψ ∈ L2(Γ).

The hypersingular operator is more complicated: it has to be understood as a limit (Hϕ)(x) =
limz→x n(x) · ∇(Dϕ)(x), for a suitable choice of the points z. In its definition we are not allowed move
∂

∂n(x) inside the integral because the second derivatives of Φk are not integrable.
The main properties of the BIOs are their relations with the traces of the two layer potentials:

γ±S = S, γ±D = D ± 1

2
I,

∂±n S = D′ ∓ 1

2
I, ∂±nD = H.

(55)

Here I is the identity operator. We have already derived the formulas of the Dirichlet traces, those for
the Neumann ones are proved in a similar way, [CK1, §2.4–2.5]. Taking the difference between outer and
inner traces we find the jump relations (we have already encountered those for the Dirichlet traces)

[[γSψ]] =γ+Sψ − γ−Sψ = 0, [[γDψ]] = γ+Dψ − γ−Dψ = ψ,

[[∂nSψ]] =∂+
n Sψ − ∂−n Sψ = −ψ, [[∂nDψ]] = ∂+

nDψ − ∂−nDψ = 0.
(56)
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From (55), using (53) and the trace theorem 2.6, the mapping (continuity) properties of the BIOs follow:

S : H−
1
2 (Γ)→ H

1
2 (Γ), D : H

1
2 (Γ)→ H

1
2 (Γ), D′ : H−

1
2 (Γ)→ H−

1
2 (Γ), H : H

1
2 (Γ)→ H−

1
2 (Γ).

From (55) we also see that all four operators are averages of traces of the potentials:

S = {{γS}} =
γ+S + γ−S

2
, D = {{γD}} =

γ+D + γ−D
2

,

D′ = {{∂nS}} =
∂+
n S + ∂−n S

2
, H = {{∂nD}} =

∂+
nD + ∂−nD

2
.

These formulas can be taken as alternative rigorous definitions of the four BIOs, given those of the two
layer potentials.

Remark 3.17. There is no universal notation for boundary integral operators and sometimes the same symbol is
used by different authors to mean different BIOS: comparing references can be a nightmare. To help navigating
the literature, we list here the notation used in several good references on BIEs for Helmholtz (some of these
only consider the 3D case).

Φk S D S D D′ H

[Spence14, p. 36], [Chandler-Wilde et al, Acta Num. 2012, pp. 108–113] Φk Sk Dk Sk Dk D′k Hk
[Sayas06, §3,§11.1] φ SΓ DΓ VΓ KΓ Kt

Γ WΓ

[CK1, §2.7], [CK2, (3.8–11)] Φ S K K′ T
[Néd01, p. 116] E S D D∗ N
[Antoine, notes 2012, §3.3] G L S L N D S
[Hsiao and Wendland 2008, §2.1] Ek Vk Wk Vk Kk K′k Dk
[Martin 2006, §5.1–5.3] G S D S K K

∗
N

[McLean 2000, pp. 217–218] G SL DL S T T̃ R
[Sauter and Schwab 2011, §3.9] Gk Sk Dk Vk Kk K′k Wk

[Steinbach 2008, §6.9] (W used for Laplace d.l.p.) U∗k Ṽk Vk Kk K′k Dk

Moreover, in some cases the hypersingular operator is defined with the opposite sign, e.g. [Sayas06, §11.1]. In
other cases all four BIOs include a factor 2 [CK2, eq. (3.8)–(3.11)] (to avoid the factor 1

2 in the trace relations).
[Martin, (5.1)] defines the fundamental solution as (−2) times our (standard) definition.

3.5.1 Consequences for the single-layer BIE applied to the SSSP

Consider the SSSP (30) and the corresponding single-layer BIE Sψ = gD (38). The representation formula
uScat = (Sψ)|Ω+ (39) gives the value of the scattered field in Ω+ as a single-layer potential. Denote by
u− the same potential evaluated in Ω−, i.e. u− = (Sψ)|Ω− . Then u− is a Helmholtz solution in Ω− with
trace γ−u− = γ−Sψ = Sψ = gD = −γuInc. We now assume that: (i) k2 is not a Dirichlet eigenvalue and
(ii) uInc is an incoming wave that is Helmholtz solution also in Ω−, e.g. a plane wave. Then

(Sψ)|Ω− = u− = −uInc.

This equality has a few useful consequences.
From one of the jump relations (56) we can relate the BIE density ψ to a “physical” quantity, the

Neumann trace of the total field:

ψ = −[[∂nSψ]] = ∂−n Sψ − ∂+
n Sψ = ∂n(−uInc)− ∂+

n u
Scat = −∂+

n u
Tot.

This allow to compute the Neumann trace of the scattered field from the data and the BIE solution as

∂+
n u

Scat = −ψ − ∂nuInc.

We can use this formula to compute the far-field pattern u∞ (31) of the SSSP (30) solution u from the
BIE (38) solution ψ:

u∞(θ) =
eiπ4
√

8πk

∫
Γ

(
γ+uScat(y)∂ne−iky·d − ∂+

n u
Scat(y)e−iky·d

)
ds(y)

=
eiπ4
√

8πk

∫
Γ

(
− γuInc(y)∂ne−iky·d +

(
ψ(y) + ∂nu

Inc(y)
)
e−iky·d

)
ds(y)

=
eiπ4
√

8πk

∫
Γ

ψ(y)e−iky·d ds(y) d = (cos θ, sin θ)

where the last equality comes from Green’s representation (42) applied to uInc and the plane wave y 7→
e−iky·d.
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Exercise 3.18. Use your BEM code to approximate the far-field pattern of the field scattered by a polygon;
see an example in Figure 11.

Figure 11: Some polar logarithmic plots (Matlab’s polarplot command) of the magnitudes of far-
field patterns log10 |u∞| computed with BEM. In this scattering problem, a plane wave with direction
π
3 hits a sound-soft triangular scatterer with vertices (0, 0), (1, 0) and (0, 1), as in Figure 9. Each
plot corresponds to a different wavenumber (k = 5, 10, 20, 40): for increasing frequencies the far field
becomes more complex and focused in few directions. The far-field pattern has maximal intensity in the
direction π

3 of the incoming wave (up right), where the triangle projects its shadow. Two other peaks
are in directions −π3 and 2π

3 , corresponding to the wave reflected by the two illuminated sides. The field
in all other directions is due to the diffraction by the corners.

Figure 12: Left: the density ψ = −∂+
n u

Tot for the problem of Figure 9 with k = 20, computed with
the BEM of §3.2. The x-axis represent the curvilinear abscissa along the boundary of the triangle Γ,
starting from the lower-left vertex and proceeding anticlockwise. We observe that ψ oscillates on the
two illuminated sides of Γ, is small (but non-zero) on the shadow side, and has singularities at the three
vertices. Right: the same for k = 40.

Remark 3.19 (Checking BEM accuracy). The formula (Sψ + uInc)|Ω− = 0 is useful to check a BEM imple-
mentation of the BIE (38). The routine used to evaluate the numerical near-field uN = SψN in a portion of
Ω+ can be used to approximate Sψ in Ω−. The value |SψN +uInc| in Ω− must be small for an accurate BEM
implementation and must decrease to 0 when the BEM mesh is refined.

Test your BEM code by computing e.g.
∥∥Sψ + uInc

∥∥
L2(Ω−)

/
∥∥uInc

∥∥
L2(Ω−)

and see how this ratio depend
on the problem parameters and on the numerical ones (k, Ω−, N , quadrature,. . . ).

3.6 Well-posedness of the single-layer BIE
We want to study the well-posedness of the single-layer BIE Sψ = gD (38). To this purpose, we want to
verify that the single-layer operator S : H−

1
2 (Γ) → H

1
2 (Γ) is (i) injective and (ii) Fredholm. When both

conditions are satisfied, then Fredholm alternative (Theorem 2.9) implies that S is invertible and the BIE
is well-posed. However, injectivity is not always true: the EDP (29) is always well-posed (§2.5) but its
BIE (38) might fail.
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3.6.1 Injectivity of the single-layer operator

As in §2.3, two cases may happen:
• If Λ = k2 is a Laplace–Dirichlet eigenvalue in Ω−, then there exists an eigenfunction w 6= 0 such that

∆w+k2w = 0 and γ−w = 0. Define ψ = ∂−n w. By Green’s representation (42), w = S∂−n w−Dγ−w =
S∂−n w = Sψ. Then ψ 6= 0 because a non-trivial Dirichlet eigenfunction has non-trivial Neumann trace
(Corollary 3.7) and Sψ = γ−Sψ = γ−w = 0. In this case the single-layer operator is not injective:
0 6= ψ ∈ kerS. The BIE (38) is not well-posed.

• If Λ = k2 is not a Laplace–Dirichlet eigenvalue in Ω−, then assume that Sψ = 0 and define u = Sψ.
We have that u− = u|Ω− is Helmholtz solution in Ω− and γ−u− = γ−Sψ = Sψ = 0. But the interior
homogeneous Helmholtz Dirichlet BVP is well-posed by Proposition 2.13 and admits only the solution
u− = 0. Similarly u+ = u|Ω+ is a radiating Helmholtz solution in Ω+ with γ+u+ = γ+Sψ = Sψ = 0.
By the well-posedness of the EDP of §2.5 also u+ = 0. The jump relation (56) gives ψ = [[∂nSψ]] =
∂+
n u

+ − ∂−n u− = 0, so the single-layer operator is injective.
Combining with Proposition 2.13 we obtain the following fact.

For each Ω− there exist a sequence of positive number k1 < k2 < . . ., limj→∞ kj = ∞, such that S is
injective if and only if k 6= kj for all j ∈ N.

These values are called spurious resonances or spurious frequencies. Even if the BIE (38) is not
solvable in this case, the EDP (29) is well-posed: the interior eigenvalues perturb the BIE formulation
of the exterior problem. This can be understood as follows: the same BIE solves both an exterior and
an interior Helmholtz Dirichlet problem (with solutions (Sψ)|Ω+

and (Sψ)|Ω−), when the latter is not
well-posed then the BIE cannot be well-posed either. We will see other (slightly more complicated) BIEs
that always admit a solution.

Exercise 3.20. Spurious resonances affect numerical computations. Plot the condition number of the BEM
matrix AC/G and the accuracy test of Remark 3.19 (e.g.

∥∥SψN + uInc
∥∥
L2(Ω−)

) for several values of k close
to a resonance to see how they blow up.

Hint: choose Ω− as a square, so that the values of kj are easily computed by hand as in §2.3.

3.6.2 The single-layer operator is Fredholm

We now want to show that the single layer operator S : H−
1
2 (Γ) → H

1
2 (Γ) is Fredholm, i.e. it is sum of

an invertible and a compact operator.
We define the single-layer operator for Laplace equation as

(S0ψ)(x) := − 1

2π

∫
Γ

log
|x− y|
d

ψ(y) ds(y), x ∈ Γ (57)

where d is a parameter11 satisfying d > diam(Γ) = supx,y∈Γ |x− y|.
The following two facts hold:

• S − S0 : H−
1
2 (Γ)→ H

1
2 (Γ) is compact.

• S0 : H−
1
2 (Γ)→ H

1
2 (Γ) is coercive, i.e. 〈S0ψ,ψ〉Γ ≥ c ‖ψ‖2

H−
1
2 (Γ)

for all ψ ∈ H− 1
2 (Γ).

Then, by Lax–Milgram, S0 : H−
1
2 (Γ)→ H

1
2 (Γ) is invertible.

By Fredholm alternative 2.9, S = S0 + (S − S0) is invertible if and only if it is injective.
By §3.6.1, the single-layer BIE Sψ = gD is well-posed (i.e. S is invertible) if and only if −k2 is not a

Laplace–Dirichlet eigenvalue for Ω−. Combining with what we already know about the eigenvalues, we
obtain the following fact.
For each Ω− there exist a sequence of positive number k1 < k2 < . . ., limj→∞ kj = ∞, such that the
BIE Sψ = gD is well-posed for all gD ∈ H

1
2 (Γ) if and only if k 6= kj for all j ∈ N.

We study the properties of compactness and coercivity in the following, starting from the case of a
circular scatterer.

11Different values of d give different “versions” of the single layer. This corresponds to adding a constant to S0: recall the
difference between Laplace and Helmholtz solutions ∆u = 0⇒ ∆(u+ c) = 0 but (∆ + k2)u = 0⇒ (∆ + k2)(u+ c) 6= 0 for
all constants c 6= 0. This is related to the fact that the 2D Laplace fundamental solution does not decay to 0 at infinity. We
will see in §3.6.5 that the precise value of d only matters to ensure the coercivity of S0. This is not true in 3D, where there
is no need for the parameter d.
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Remark 3.21. This decomposition of the Helmholtz operator in a “Laplace part” and “whatever is left” should
remind you the technique used in §2.3 for Helmholtz problems on bounded domains. In that case, using the
Gårding inequality, we have decomposed the Helmholtz sesquilinear form (either A of (24) or AI of (26)) in a
coercive part corresponding to an elliptic equation and a compact perturbation term multiple of k2

∫
Ω
uw dx.

3.6.3 Continuity, compactness and coercivity of single-layer BIOs on a circle

Let K be a BIO on the circle ∂BR with kernel κ : R→ C, i.e.

(Kv)(x) =

∫
∂BR

κ(|x− y|)v(y) ds(y), (58)

for v defined on Γ. The distance between two points on the circle in polar coordinates reads

|x− y| = R|eiθx − eiθy | = R|1− ei(θx−θy)| = R
√

2− 2 cos(θx − θy).

The action of the operator K on a function v can be written as the multiplication of the Fourier coefficients
of the argument v(x) =

∑
`∈Z v̂`e

i`θ by some coefficients K`:

(Kv)(x) =

∫
∂BR

κ(|x− y|)v(y) ds(y) = R

∫ 2π

0

κ(R
√

2− 2 cos(θx − θ))
∑
`∈Z

v̂`e
i`θ dθ (α = θ − θx)

=
∑
`∈Z

v̂`e
i`θx R

∫ 2π

0

κ(R
√

2− 2 cosα)ei`α dα︸ ︷︷ ︸
=:K`

=
∑
`∈Z

v̂`K` ei`θx .

If K` = O(`a) for some a ∈ R then, from the definition (17) of the Sobolev spaces on the circular boundary,
K : Hs(∂BR)→ Hs−a(∂BR) as a bounded operator. But, how to estimate the K`?

The values K` are the Fourier coefficients of the function α 7→ Rκ(R
√

2− 2 cosα) on (0, 2π). Parseval’s
theorem (

∫ 2π

0
|f(θ)|2 dθ = 2π

∑
`∈Z |f̂`|2) implies that the Fourier coefficients of an L2(0, 2π) function decay

as o(`−1/2). As we have seen in §2.2.3 using that (ei`θ)′ = i`ei`θ, if f ′ ∈ L2(0, 2π) then f̂` = o(`−3/2).

The function α 7→ R
√

2− 2 cosα is Lipschitz (verify that its derivative is ±
√

1+cosα
2 ). Thus, if

κ ∈ L2(0, 2R) then K` = o(`−1/2), if moreover κ′ ∈ L2(0, 2R) then K` = o(`−3/2). So, useful relations
between the properties of the kernel κ and the continuity of the operator K in the form (58) are

κ ∈ L2(0, 2R) ⇒ K : Hs(∂BR)→ Hs+ 1
2 (∂BR), κ ∈ H1(0, 2R) ⇒ K : Hs(∂BR)→ Hs+ 3

2 (∂BR).

(From the formulas above, the properties of κ(t) for t > 2R, the diameter of the circle, are irrelevant.)

What are the kernels of the Helmholtz and Laplace single layer operators? We have

K = S ⇒ κ(t) =
i

4
H

(1)
0 (kt) ∈ L2(0, 2R),

K = S0 ⇒ κ(t) = − 1

2π
log
|t|
d

∈ L2(0, 2R),

K = S − S0 ⇒ κ(t) =
i

4
H

(1)
0 (kt) +

1

2π
log
|t|
d

∈ H1(0, 2R).

The first line gives S : Hs(∂BR) → Hs+ 1
2 (∂BR). This is not new: we already mentioned that S :

H−
1
2 (Γ)→ H

1
2 (Γ) for all Lipschitz boundaries, which, for s = − 1

2 , is a stronger result. We have also seen
from the numerical computations in Figure 10 and Remark 3.1 that K` ∼ `−1, so we cannot expect any
stronger continuity property than this.

We now look at the difference between Helmholtz and Laplace single-layer operators S−S0. From the
asymptotic formula H(1)

0 (z) = i 2
π log z+ 1 + i 2

π (γ− 2) +O(z2) by, e.g., https://dlmf.nist.gov/10.8.E2
with the Euler’s constant γ ≈ 0.57721 we have that κ is bounded and κ′ is bounded (with a jump at 0
because of the

√
2− 2 cosα term). So S − S0 : H−

1
2 (∂BR) → H1(∂BR). (In Figure 13 we demonstrate

numerically a stronger continuity property, i.e. that S − S0 : H−
1
2 (∂BR) → H

5
2 (∂BR).) Since the

inclusion ι : H1(∂BR) → H
1
2 (∂BR) is compact, then the difference between the two single layers

S − S0 : H−
1
2 (∂BR)→ H

1
2 (∂BR) is compact.12

12Recall that the property of compactness of an operator depends heavily on the norms of the function spaces chosen as

https://dlmf.nist.gov/10.8.E2
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Figure 13: A log-log plot of the Fourier coefficients K` for the operator S − S0, difference between
Helmholtz and Laplace single layer operators, on a circle. The coefficients decay as K` ∼ `−3, so the
operator is continuous Hs(∂BR)→ Hs+3(∂BR). In particular it is compact H−

1
2 (∂BR)→ H

1
2 (∂BR).

Compare with the coefficients of S in Figure 10.

We can use the expansion in circular harmonics also to check the coercivity of an integral operator.
The sesquilinear form associated to K diagonalises in the Fourier basis (recall §2.2.3):

〈Kv,w〉∂BR =

〈∑
`∈Z

v̂`K`e
i`θx ,

∑
m∈Z

ŵ`e
imθx

〉
∂BR

= 2πR
∑
`∈Z

v̂`K`ŵ`.

If K` ∈ R and K` ≥ c(1+ `2)s for all ` and some c > 0, s ∈ R 13, then |〈Kv, v〉∂BR | ≥ 2πRc
∑
`∈Z |v̂`|2(1+

`2)s = c ‖v‖2Hs(∂BR), i.e. K is coercive in Hs(∂BR).

Now look at the Laplace single layer, i.e. K with κ(t) = − 1
2π log |t|d . Since κ(R

√
2− 2 cos(t)) is real

and even-symmetric, its Fourier coefficients K` are real.

Exercise 3.22. Compute with Matlab the coefficients K` for the Laplace single-layer S0 and show that they
satisfy K`(1 + `2)

1
2 > c. (For R = 1, c ≈ 1

2 .)

From this exercise it follows that the Laplace single-layer operator S0 is coercive in H−
1
2 (∂BR).

3.6.4 Compactness of S − S0

We sketch the main ideas used to prove the compactness of (S − S0) : H−
1
2 (Γ) → H

1
2 (Γ). Making them

precise and rigorous is not trivial.
The key result to prove compactness of BIOs is the following: an operator K : L2(Γ)→ L2(Γ) in the

form (Kv)(x) =
∫

Γ
κ(|x− y|)v(y) ds(y) is compact if the kernel κ : R→ C is a bounded function (L∞).

From the asymptotic expansion of the Hankel function at the origin, as in §3.6.3, we see that the kernel
of S−S0 is bounded (and continuous). The operator T defined by Tv = (Sv−S0v)′, where the derivative
is the tangential derivative along Γ, also has a bounded (but discontinuous) kernel, for the same reason.
From this it follows that S − S0 : L2(Γ) → H1(Γ) is a compact operator. However we want to lower the
Sobolev exponents of both spaces by 1

2 .
From functional analysis we know that if an operator K : H1 → H2 is compact, then its adjoint

K∗ : H∗2 → H∗1 (defined by (K∗ϕ)(ψ) = ϕ(Kψ) for ϕ ∈ H∗2 and ψ ∈ H1) is also compact.
Fubini theorem implies that the single layer is self-adjoint in L2(Γ):

∫
Γ
(Sϕ)ψ ds =

∫
Γ
ϕ(Sψ) ds for all

ϕ,ψ ∈ L2(Γ) (you can prove this). The same holds for S0. Thus the adjoint of S−S0 : L2(Γ)→ H1(Γ) is
the extension of S−S0 itself to S−S0 : H−1(Γ)→ L2(Γ), where H−1(Γ) is the dual of H1(Γ) as in §2.2.3,

domain and codomain. E.g. the identity operator I : H1(Ω)→ H1(Ω) is not compact for a bounded Lipschitz Ω, but when
we view it as I : H1(Ω) → L2(Ω) (and we call it embedding) then it is compact (Rellich theorem). The technique used in
this section is very standard: we show that an operator K maps in a space that is slightly smoother (here H1(∂BR)) than
the desired domain (here H

1
2 (∂BR)), then we compose the operator with the embedding (here ι : H1(∂BR)→ H

1
2 (∂BR))

and if this embedding is compact the same holds for ι ◦ K. Recall that the composition of a continuous operator and a
compact one is compact; you can prove this from the definition.

13We could also take <{αK`} > c(1 + `2)s for some α ∈ C, |α| = 1.
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and is compact. A technique called “operator interpolation” allows to deduce from the compactness of
S − S0 in L2(Γ)→ H1(Γ) and H−1(Γ)→ L2(Γ) the compactness in all intermediate spaces, in particular
the compactness of S − S0 : H−

1
2 (Γ)→ H

1
2 (Γ).

3.6.5 Coercivity of S0

We sketch the proof of the coercivity of the Laplace single-layer operator S0 following [Steinbach 2008,
Thm. 6.22–23] and [McLean 2000, Thm. 8.12–16]. In this section we use real-valued function spaces.

Most of the results derived and stated in the previous sections (traces, jumps, . . . ) for the Helmholtz
equation hold also for the Laplace equation, using Φ0(x,y) = − 1

2π log |x−y|d as fundamental solution.
Fix ψ ∈ H− 1

2 (Γ) and denote u = S0ψ ∈ H1(Ω−,∆) ×H1
loc(Ω+,∆), S0 being the Laplace single-layer

potential. Then ∆u = 0 in Ω− ∪ Ω+, [[γu]] = 0 and [[∂nu]] = −ψ, in analogy to (56).
Integration by parts (Green’s first identity (18) with k = 0) gives that ‖∇u‖2L2(Ω−) =

∫
Ω−
∇u ·∇udx =∫

Γ
∂−n uγ

−uds. The radiation condition for Laplace equation (which we do not discuss here) gives that a
similar identity holds in Ω+: if the 0-average condition 〈ψ, 1〉Γ = 0 holds, then ‖∇u‖2L2(Ω+) =

∫
Ω+
∇u ·

∇udx = −
∫

Γ
∂+
n uγ

+uds. Note that (1) this integral/norm on Ω+ would not be bounded in the Helmholtz
case, (2) in 2D this holds only for potentials u whose density ψ satisfies the 0-average condition, (3) in 3D
this holds for all ψ ∈ H− 1

2 (Γ).
The continuity of the normal trace operator

H(div; Ω±) = {v ∈ L2(Ω±)2; div v ∈ L2(Ω±)} 3 v 7→ γ±v · n ∈ H−
1
2 (Γ)

applied to ∇u, which is divergence-free because ∆u = 0, allows to control the Neumann traces with the
L2 traces of the gradient. Combining all this we have that, for all ψ ∈ H− 1

2 (Γ) with 〈ψ, 1〉Γ = 0,

‖ψ‖2
H−

1
2 (Γ)

= ‖[[∂nu]]‖2
H−

1
2 (Γ)

ψ = −[[∂nu]]

≤ 2
∥∥∂−n u∥∥2

H−
1
2 (Γ)

+
∥∥∂+

n u
∥∥2

H−
1
2 (Γ)

triangle inequality

≤ C(‖∇u‖2L2(Ω−)2 + ‖∇u‖2L2(Ω+)2) normal trace continuity in H(div; Ω±)

= C

∫
Ω−∪Ω+

∇u · ∇udx

= C

∫
Γ

(∂−n uγ
−u− ∂+

n uγ
+u) ds Green’s first identity, in 2D it requires 〈ψ, 1〉Γ = 0

= −C
∫

Γ

[[∂nu]]γuds γ+u = γ−u

= C

∫
Γ

ψS0ψ ds [[∂nu]] = −ψ, γu = γS0ψ = S0ψ.

This is precisely the coercivity of S0 in H−
1
2

∗ (Γ) := {ψ ∈ H− 1
2 (Γ) : 〈ψ, 1〉Γ = 0}. (In 3D this would hold

in the whole of H−
1
2 (Γ), so the proof would be complete.)

To deal with the general case (ψ ∈ H− 1
2 (Γ) instead of ψ ∈ H−

1
2

∗ (Γ)) we have to work a bit more. The
coercivity for 0-average densities ensures that there exists a unique (non zero)

β∗ ∈ H
− 1

2
∗ (Γ) 〈S0β∗, ξ∗〉Γ = 〈S01, ξ∗〉Γ ∀ξ∗ ∈ H

− 1
2

∗ (Γ).

Define βeq := 1
|Γ| (1 − β∗) ∈ H−

1
2 (Γ). Then βeq is real, 〈βeq, 1〉Γ = 1, and 〈S0βeq, ξ∗〉Γ = 0 for all

ξ∗ ∈ H
− 1

2
∗ (Γ), so S0βeq is a constant. Recalling the definition (57) of S0,

(S0βeq)(x) =
1

2π

∫
Γ

βeq(y)
(

log d− log |x− y|
)

ds(y)

=
1

2π
log d

∫
Γ

βeq(y) ds(y)− 1

2π

∫
Γ

βeq(y) log |x− y|ds(y)

=
1

2π
log d− 1

2π

∫
Γ

βeq(y) log |x− y|ds(y) ∀x ∈ Γ.
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This is where we need the (so far unused) parameter d > 0: if d is sufficiently large then S0βeq > 0. It is
possible to show that d > diam Γ is enough to guarantee that S0βeq > 0.14 Then also

〈S0βeq, βeq〉Γ = S0βeq〈1, βeq〉Γ = S0βeq > 0.

We want to decompose a general ψ ∈ H− 1
2 (Γ) in a H−

1
2

∗ (Γ) component and a remainder: instead of taking
a constant remainder as one might expect, we take a remainder whose image under S0 is constant, i.e. a
multiple of βeq. For all ψ ∈ H−

1
2 (Γ) define

ψ∗ := ψ − 〈ψ, 1〉Γβeq ⇒ 〈ψ∗, 1〉Γ = 〈ψ, 1〉Γ
(

1− 〈βeq, 1〉Γ
)

= 0.

Now we use the decomposition ψ = ψ∗ + 〈ψ, 1〉Γβeq to show the positivity of the single-layer potential:

〈S0ψ,ψ〉Γ = 〈S0(ψ∗ + 〈ψ, 1〉Γβeq), ψ∗ + 〈ψ, 1〉Γβeq〉Γ

= 〈S0ψ∗, ψ∗〉Γ + 2〈ψ, 1〉Γ 〈S0βeq, ψ∗〉Γ︸ ︷︷ ︸
=0

+|〈ψ, 1〉Γ|2 〈S0βeq, βeq〉Γ︸ ︷︷ ︸
>0

≥ c
(
‖ψ∗‖2

H−
1
2 (Γ)

+ |〈ψ, 1〉Γ|2
)

which gives coercivity when combined with the triangle inequality

‖ψ‖
H−

1
2 (Γ)
≤ ‖ψ∗‖

H−
1
2 (Γ)

+ |〈ψ, 1〉Γ| ‖βeq‖
H−

1
2 (Γ)
≤ C

(
‖ψ∗‖

H−
1
2 (Γ)

+ |〈ψ, 1〉Γ|
)
.

Exercise 3.23. Using the BIO expansion in §3.6.3 show that for a circle Γ = ∂BR, we have β∗ = 0, βeq = 1
2πR ,

S0βeq = 1
2πRS01 = 1

2π log d
R . Thus d > R is enough to prove the coercivity of S0 on H−

1
2 (∂BR).

Hint: use that
∫ 2π

0
log
√

2− 2 cosα dα = 0 and the properties of the logarithm.

Remark 3.24. The coercivity of S0 implies that the single-layer BIE for the Laplace equation S0ψ = gD
is always well-posed. Moreover, as we are in a Lax–Milgram setting, every Galerkin-BEM discretisation of
〈S0ψ, ξ〉Γ = 〈gD, ξ〉Γ is well-posed, quasi-optimal and gives symmetric positive-definite matrices. This is not
true in the Helmholtz case but some conditions on the Galerkin discrete space are needed to ensure well-
posedness, see [Spence14, Thm. 5.21].

3.7 The BIE zoo
We have seen that the single-layer BIE fails for some values of k. We want to derive some other BIEs
that allow to compute the solution of the EDP/SSSP also for these values of k. We will write a total of
six BIEs; their properties are summarised in Table 1.

First of all, it is instructive to recall how we found the BIE (38). We wrote the solution u of the EDP
(29) as a single layer u = Sψ, then we took the Dirichlet trace γ+ of this representation, and from one of
the trace formulas (55) obtained the BIE Sψ = gD (recall that we need to impose the boundary condition
γ+u = gD). Also for the other BIEs the key steps will be the same: (i) choose a potential representation,
(ii) take a trace using (55).

3.7.1 Indirect double-layer BIE

If instead of a single-layer we assume that the EDP solution is a double-layer potential

u = Dψ, ψ ∈ H 1
2 (Γ),

taking the Dirichlet trace γ+ (55) we obtain(1

2
+D

)
ψ = gD in H

1
2 (Γ), ψ ∈ H 1

2 (Γ). (59)

This is another BIE for the same BVP. Here and in the following, 1
2 stands for the identity operator

multiplied by the number 1
2 , i.e. the equation is to be read 1

2ψ +Dψ = gD.
This can be discretised with collocation-BEM or Galerkin-BEM in the same way as §3.2. We encounter

a couple of difficulties. A first difference is that the singularity of D is stronger than that of S, so the
quadrature requires more care.

14The value e
∫
Γ βeq(y) log |x−y| ds(y), which is independent of x, is called “logarithmic capacity of Γ”, while βeq is the

“equilibrium density”. In 2D electrostatic, the electric charge on an isolated conductor Ω− distributes on the boundary Γ
proportionally to βeq, in such a way that the electrostatic potential S0βeq is constant on Γ and takes value S0βeq in Ω+.



April 8, 2019 45 DRAFT!

A second difference is that this BIE is posed in H
1
2 (Γ) instead of H−

1
2 (Γ). The functions of H

1
2 (Γ)

are in general not necessarily continuous, but if they are piecewise-polynomial then they must also be con-
tinuous.15 This implies that the BEM discrete space VN cannot be made of piecewise-constant functions.
The simplest choice is to take VN as the space of piecewise-linear functions on a mesh.

Is the BIE (59) well-posed? I.e. is the operator 1
2 +D invertible? It is possible to prove that the this

operator is Fredholm. To study injectivity, once again we have to look at some interior problem.

Exercise 3.25. Show the following.
• If w is a Neumann–Laplace eigenfunction in Ω− for k, then its trace ψ = γ−w satisfies 1

2ψ +Dψ = 0.

Hint: use Green’s representation.

• If k2 is not a Neumann eigenvalue in Ω−, then 1
2 +D is injective.

Hint: take u = Dψ for ψ ∈ ker( 1
2 +D). Use the well-posedness of the EDP and both jump relations.

• Deduce that the BIE (59) is injective if and only if k2 is not a Neumann eigenfunction.

From this exercise it follows that the BIE (59) is well-posed except for a discrete set of frequencies.

Remark 3.26 (What is ψ?). If ψ is solution of (59), then u− = (Dψ)|Ω− is Helmholtz solution in Ω− with
Neumann trace ∂−n u− = ∂+

n u. Differently from §3.5.1, this is not immediately related to the incoming field
uInc. However, if k2 is not a Neumann eigenvalue, u− is well-defined as a solution of an interior Neumann
problem. From the jump relation (56), ψ = [[γDψ]] = γ+u − γ−u− = gD − γ−u−. The solution of the
BIE (59) is the difference between the datum gD and the trace of the solution of an auxiliary interior Neumann
problem, whose boundary datum is a trace of u itself.

Remark 3.27. Using ∂
∂zH

(1)
0 (z) = −H(1)

1 (z), we can write more explicit formulas for the double-layer and the
adjoint double-layer operators:

(Dψ)(x) =
ik

4

∫
Γ

H
(1)
1 (k|x− y|) (x− y) · n(y)

|x− y|
ψ(y) ds(y),

(D′ψ)(x) =
ik

4

∫
Γ

H
(1)
1 (k|x− y|) (y − x) · n(x)

|x− y|
ψ(y) ds(y).

From this formulas, we see that if Γ is a polygon and E is one of its edges, the points y ∈ E do not
contribute to the computation of (Dψ)(x) for x ∈ E, because (x− y) · n(y) = 0. So H(1)

1 is evaluated only
for |x − y| > dist(x, ∂E), i.e. away from the singularity. The singularity in the integrand has to be treated
carefully when x is very close to a corner, while it is harmless otherwise. If Γ is smooth then (x−y)·n(y)

|x−y| → 0

for y→ x, partially compensating the strong singularity of H(1)
1 .

3.7.2 Direct BIE

We have constructed two BIEs (38) and (59) by searching for EDP solutions in the form u = Sψ and
u = Dψ, respectively. Green’s representation formula (47) allows to represent any radiating solution u in
Ω+ as linear combination of both potentials applied to the traces of u itself:

u = −S∂+
n u+Dγ+u.

When u is solution of the EDP, one of the traces is given: γ+u = gD. So we can choose as unknown the
other one: ψ = ∂+

n u. How to obtain a BIE from this?
Taking the Dirichlet and the Neumann traces γ+ and ∂+

n of Green’s representation and using the trace
formulas (55), we obtain

Sψ =
(
D − 1

2

)
gD in H

1
2 (Γ), (60)

(1

2
+D′

)
ψ = HgD in H−

1
2 (Γ). (61)

15Exercise: compute the Fourier series of χ(t) =

{
1 0 < t < π,

0 π < t < 2π.
Show that χ ∈ Hs(S1) if and only if s < 1

2
.

Can you find a v ∈ H
1
2 (S1) \ C0(S1)?
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We reiterate that here the unknown stands for the Neumann datum and the underlying representation
formula is that coming from Green’s formula:

ψ = ∂+
n u ∈ H− 1

2 (Γ), u = −Sψ +DgD in Ω+.

Some terminology. BIEs such as (60)–(61) whose unknown is the missing Cauchy datum are called
direct BIEs; BIEs such as (38) and (59) where the unknown is not directly linked to the EDP are called
indirect. BIEs (38) and (60) are called BIEs of the first kind, as the unknown ψ only appears as
argument of a BIO, while (59) and (61) are called of the second kind as the unknown ψ also appears
outside the integral operator (typically a linear BIE αψ+ Tψ = f for a BIO T and data f is called of the
first kind if α = 0 and of the the second kind if α is a non-zero coefficient).

The first-kind direct BIE (60) has at the left-hand side the same operator S as the indirect BIE (38)
we know well. The right-hand side instead is slightly more complicated, as it involves the double-layer
operator. So (60) is well-posed exactly when (38) is, i.e. away from Dirichlet eigenvalues. The matrix
AC/G of a BEM implementation for this formulation is identical to the matrix for the same method
applied to (38). The right-hand side vector FC/G is slightly more complicated to code and more expensive
to compute as it requires the implementation of the double-layer operator.

The second-kind direct BIE (61) has at the left-hand side the adjoint of the operator present in the
indirect BIE (59). Theorem 1.28 of [CK1] implies that ( 1

2 + D′) is injective if and only if ( 1
2 + D)

is injective (this requires the Fredholm property of the operators). So (61) is well-posed away from
Neumann eigenvalues, exactly as (59). The implementation of a BEM discretisation of (61) also requires
an approximation of the hypersingular operator H for the right-hand side.

3.7.3 Indirect combined field integral equation: Brakhage–Werner equation

We have seen four different BIEs for the same EDP, and none of them is invertible for all positive values
of k, which is quite disappointing. However all is not lost: the formulations considered were deduced
from some special representations of u in terms of layer potentials, we need to choose some other such
representation.

We now choose, arbitrarily, to search for some u in the form

u = (D − iηS)ψ, ψ ∈ H 1
2 (Γ) (62)

where η > 0 is a parameter. Taking the Dirichlet trace, this is solution of the EDP if ψ is solution of(1

2
+D − iηS

)
ψ = gD in H

1
2 (Γ). (63)

The operator A := ( 1
2 +D − iηS) : H

1
2 (Γ)→ H

1
2 (Γ) is Fredholm. Is it injective?

Let Aψ = 0 for some ψ ∈ H 1
2 (Γ). Define u as in (62). Then u|Ω+ is solution of the EDP with gD = 0,

so u = 0 in Ω+. The jump relations (56) give

−γ−u = [[γu]] = [[Dψ]] = ψ, −∂−n u = [[∂nu]] = [[−iη∂nSψ]] = iηψ ⇒ ∂−n u− iηu = 0.

So u|Ω− is solution of a homogeneous impedance BVP (25) in Ω− with ϑ = η
k . From the well-posedness

of the impedance BVP (§2.3 and Corollary 3.8) u = 0 and from the jump relation again ψ = −γ−u = 0.
We conclude that the operator A is injective.

The BIE (63) is well-posed for all Γ, k > 0, η > 0 and gD ∈ H
1
2 (Γ).

We have finally found a BIE that is invertible for all wavenumbers! The BIE (63) is often called
Brakhage–Werner equation (even if it was introduce independently in three papers by Brakhage and
Werner, by Leis and by Panič, all in 1965).

Exercise 3.28. Let ψ be the solution of the Brakhage–Werner BIE (63) and u = (D − iηS)ψ in Ω+ ∪ Ω−.
Use the trace formulas (55) to show that ∂−n u− iηγ−u = ∂+

n u− iηγ+u (careful with the signs!).
Deduce, using the jump relations, that the solution ψ of the BIE is the jump between the Dirichlet traces

of the EDP solution u|Ω+
and the solution u|Ω− of an impedance BVP in Ω− with data ∂+

n u − iηγ+u and
impedance parameter ϑ = η

k .
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3.7.4 Direct combined field integral equation: Burton–Miller equation

Can we find a direct method that is well-posed for all values of k? We know that ψ = ∂+
n u solves both

direct equations (60)–(61). We take a linear combination of the two equations:(1

2
+D′ − iηS

)
ψ =

[
H − iη

(
D − 1

2

)]
gD in H−

1
2 (Γ). (64)

Again, here η > 0 is a parameter. This is called Burton–Miller or (direct) combined field integral
equation (CFIE). This is a second-kind direct equation, so, as in §3.7.2, the density and the representation
formula are

ψ = ∂+
n u ∈ H− 1

2 (Γ) and u = −S∂+
n u+Dγ+u = −Sψ +DgD in Ω+.

The operator A′ := ( 1
2 +D′ − iηS) : H−

1
2 (Γ)→ H−

1
2 (Γ) at the left-hand side differs from the operator A

of the Brakhage–Werner equation only in that D is substituted by D′.
To study the injectivity of A′, let A′ψ = 0 and u = −Sψ. Then ∂−n u− iηγ−u = −A′ψ = 0, so u = 0 in

Ω− by the well-posedness of the homogeneous interior impedance BVP. By the jump formula γ+u = γ−u,
u|Ω+

is solution of the homogeneous EDP, so it also vanish, and ψ = −[[∂nSψ]] = [[u]] = 0.
Similarly to the previous section, A′ is also Fredholm, thus the BIE (64) is well-posed .

Remark 3.29. How to choose the parameter η > 0 in (63) or (64)? From the expression of A and A′, we can
guess that η has the dimension of the inverse of a length: η multiplies the operator S which acts as the inverse
of a derivation (S : H−

1
2 (Γ)→ H

1
2 (Γ)) and is added to the identity. So a plausible choice is η ∼ k. It turns

out that η = k is also a good choice to reduce the condition number of a BEM discretisation of either (63) or
(64) for large values of k.

Remark 3.30 (Variational formulations of II kind BIEs). In the first-kind equations (38) and (60) the operator
to be inverted is S, which maps H−

1
2 (Γ) (the space where we look for the unknown) to its dual H

1
2 (Γ). So

testing the BIEs against elements of the same space is simple: the sesquilinear form AS(ψ, ξ) = 〈Sψ, ξ〉Γ is
well-defined for ψ, ξ ∈ H− 1

2 (Γ) and involves the extension 〈·, ·〉Γ of the L2(Γ) scalar product. This is why in
the implementation of the Galerkin-BEM matrix AG we are allowed to use integrals over Γ (recall that we also
chose basis functions in L2(Γ)).

For the second-kind integral equations we have to be more careful. E.g., in (64), the operator A′ maps
H−

1
2 (Γ) to itself. So, we cannot write 〈A′ψ, ξ〉Γ for ψ, ξ ∈ H− 1

2 (Γ) because it is not defined, but should use
the sesquilinear form (A′ψ, ξ)

H−
1
2 (Γ)

, where (·, ·)
H−

1
2 (Γ)

is the scalar product in H−
1
2 (Γ). Implementing a

BEM discretisation of this variational problem is hard, as it requires to evaluate the non-local H−
1
2 (Γ) scalar

product.16

On the other hand, if the EDP datum gD is at least in H1(Γ), which is the case for smooth incoming
waves, then the right-hand side [H − iη(D − 1

2 )]gD ∈ L2(Γ) so we can use the variational formulation

(A′ψ, ξ)L2(Γ) =

∫
Γ

(1

2
+D′ − iηS

)
ψ ξ ds =

∫
Γ

[
H − iη

(
D − 1

2

)]
gDξ ds ∀ξ ∈ L2(Γ).

This is well-posed because A′ is Fredholm also as a mapping A′ : L2(Γ)→ L2(Γ). The Galerkin-BEM is then
implemented with the same techniques of §3.2.

An alternative would be to use a Petrov–Galerkin approach: take test functions in a space different from
the trial space. For example one can seek ψ ∈ H− 1

2 (Γ) such that 〈A′ψ, ξ〉Γ = 〈[H − iη(D − 1
2 )]gD, ξ〉Γ for

all ξ ∈ H
1
2 (Γ). The Galerkin-BEM discretisation of this problem can use piecewise-constant trial functions

ψN and continuous piecewise-linear test functions ξN . The two discrete spaces have to be defined on different
compatible “dual” meshes.

Remark 3.31 (Advantages of direct formulation). The BEM approximation of Burton–Miller equation (64)
is slightly more complicated and expensive than Brakhage–Werner (63), as the right-hand side involves two
BIOs. Similarly, the direct equations (60)&(61) require a more complicated right-hand side and representation
formula than (38)&(59). What is the advantage of a direct formulation against an indirect one?

16On a circular boundary Γ = S1, this would be easier as the scalar product is computed from the circular harmonics
expansion: (

∑
`∈Z v̂`e

i`θ,
∑
`∈Z ŵ`e

i`θ)
H
− 1

2 (S1)
= 2π

∑
`∈Z v̂`ŵ`(1 + `2)

1
2 (recall definition (17)). Still, unless the Fourier

coefficients of all the functions involved are already known, this is more complicated than the simple integral appearing in
the 〈·, ·〉Γ duality.
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In a direct formulation, if we have some information on the properties of the EDP solution u we can include
it in the design of the approximating space VN to improve its accuracy and efficiency. For instance, in some
situations, PDE theory and high-frequency asymptotics permit to estimate the location and the strength of the
singularities of ψ = ∂+

n u
Scat, its oscillations, the different behaviour in the shadow and the illuminated parts

of Γ; see, e.g., Figure 1217. This knowledge allows to construct discrete spaces VN that ensure high accuracy
with small numbers of DOFs.

In an indirect method, the BIE solution ψ depends also on the trace of some eigenvalue problem (see
Rem 3.26 and Ex. 3.28), so its efficient approximation would require also the knowledge of the corresponding
eigenfunction, which is not directly related to the physical scattering problem and might contain expensive-to-
approximate “unphysical” singularities.

Moreover, often the quantity of interest is not uScat or uTot in Ω+, but something dependent on ∂+
n u

Scat,
such as the far-field pattern u∞ (31). This is easily and accurately computed with a direct method or with
(38), but not with (59) and (63).

BIE representation density unknown direct/ kind fails for
formula ψ = ψ in indirect

(38) Sψ = gD u = Sψ −∂+
n u

Tot H−
1
2 (Γ) indirect I Dir. eig.

(59) ( 1
2 +D)ψ = gD u = Dψ Rem.3.26 H

1
2 (Γ) indirect II Neum. eig.

(60) Sψ = (D − 1
2 )gD u = DgD − Sψ ∂+

n u H−
1
2 (Γ) direct I Dir. eig.

(61) ( 1
2 +D′)ψ = HgD u = DgD − Sψ ∂+

n u H−
1
2 (Γ) direct II Neum. eig.

(63) ( 1
2 +D − iηS)ψ = gD u = (D − iηS)ψ Ex. 3.28 H

1
2 (Γ) indirect II never!

(64) ( 1
2 +D′−iηS)ψ

=[H−iη(D− 1
2 )]gD

u = DgD − Sψ ∂+
n u H−

1
2 (Γ) direct II never!

Table 1: Six BIEs for the EDP (29).
They are all described in [CK1]: (38) (3.44), (59) (3.26), (60) (3.83), (61) (3.81), (63) (3.51), (64) (3.84).

Remark 3.32. In these notes we have considered exterior Dirichlet BVPs for the 2D Helmholtz equation.
However BIEs and BEM have a much broader range of applicability. They can be used to model, analyse and
approximate Helmholtz BVPs posed on bounded domains, on domains with unbounded boundaries, with other
boundary conditions (Neumann, impedance, mixed), transmission problems (i.e. multiple Helmholtz equations
with different wavenumbers on different domains, coupled by Dirichlet and Neumann conditions),. . . .

BIEs can be used for much more general linear PDEs (of all kinds: elliptic, parabolic and hyperbolic),
including systems of PDEs such as those of elasticity and electromagnetism (recall §1.1.3–1.1.4). The main
requirement for implementing a BEM is that the fundamental solution of the problem is known, either in exact
or approximate form.

A BEM can be coupled with a FEM (or another volume-based method) for approximating problems with
different physical models in different subdomains. Typically, FEMs are used in small regions of high geometric
complexity, variable coefficients or nonlinearities, and BEMs are used to deal with unbounded regions where
coefficients are constant.

Another important numerical method for the discretisation of BIEs is Nyström method, which can converge
extremely fast for smooth scatterers; see [CK2, §3.5] for the application to 2D Brakhage–Werner equation or
[Sayas15, pp. 33 and 36] for the Laplace case.

Plenty of information can be found in the references in the bibliography and in the books mentioned in
Remark 3.17.

17Figure 12 shows the density ψ for the indirect BIE (38). However we have seen in §3.5.1 that the solution of this BIE has
the physical interpretation ψ = −∂+

n u
Tot, while this is not true for the solutions of the other indirect BIEs (59) and (63).
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A Useful calculus formulas and notation

BR(x) := {y ∈ Rn : |y − x| < R}, BR := BR(0),

eiz = cos z + i sin z, cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
,

v ×w := (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1), u× (v ×w) = v(u ·w)−w(u · v),

∇u :=
( ∂u
∂x1

, . . . ,
∂u

∂xn

)
,

div v := ∇ · v :=
∂v1

∂x1
+ · · ·+ ∂vn

∂xn
,

∆u := ∇2u := div(∇u) =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

if n=2
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
,

curl v := ∇× v :=
( ∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
,

curl∇u = 0, div curl v = 0,

curl curl v = ∇(∇ · v)−∆v

=
(

∂2v2

∂x1∂x2
+ ∂2v3

∂x1∂x3
− ∂2v1

∂x2
2
− ∂2v1

∂x2
3
, ∂2v1

∂x1∂x2
+ ∂2v3

∂x2∂x3
− ∂2v2

∂x2
1
− ∂2v2

∂x2
3
, ∂2v1

∂x1∂x3
+ ∂2v2

∂x2∂x3
− ∂2v3

∂x2
1
− ∂2v3

∂x2
2

)
.
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