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Abstract

Computer simulation of the propagation and interaction of linear waves is a
core task in computational science and engineering. It is fundamentally im-
portant in a wide range of areas such as antenna design, atmospheric particle
scattering, noise prediction, radar and sonar modelling, seismic and ultra-
sound imaging. The finite element method represents one of the most common
discretization techniques for Helmholtz and Maxwell’s equations in bounded
domains, which model time-harmonic acoustic and electromagnetic wave scat-
tering, respectively. At medium and high frequencies, resolution requirements
and the so-called pollution effect entail an excessive computational effort and
prevent standard finite element schemes from an effective use. The wave-based
methods offer a possible way to deal with this problem: the trial and test
functions are built with special solutions of the underlying PDE inside each
element, thus the information about the frequency is directly incorporated in
the discrete spaces.

This dissertation is concerned with a family of those methods: the so-
called Trefftz-discontinuous Galerkin (TDG) methods. These include the well-
known ultraweak variational formulation (UWVF) invented by O. Cessenat
and B. Després in the 1990’s.

We derive a general formulation of the TDG method for Helmholtz and
Maxwell impedance boundary value problems posed in bounded polygonal
or polyhedral domains. We show the well-posedness of the scheme and its
quasi-optimality in a mesh-dependent energy norm; a similar result in a mesh-
independent norm is obtained by using a duality argument. This leads to con-
vergence estimates for plane and circular/spherical wave finite element spaces;
the dependence of the bounds on the wavenumber is always made explicit.
Some numerical experiments demonstrate the effectiveness of the method in
the case of the Helmholtz equation.

Several mathematical tools are needed for the analysis of the TDG method.
In particular, we prove new best approximation estimates for the considered
discrete spaces with the use of Vekua’s theory for elliptic equations and ap-
proximation results for harmonic polynomials. The duality argument used in
the convergence analysis of the scheme in the case of the Maxwell equations
requires new wavenumber-explicit stability and regularity results for the cor-
responding boundary value problem: these are proved with the use of a novel
vector Rellich-type identity.
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Riassunto

La simulazione al computer della propagazione e dell’interazione di onde lineari
è un compito fondamentale nelle scienze computazionali e nell’ingegneria. Essa
è di primaria importanza in una grande varietà di aree, quali la progettazione
di antenne, lo scattering da parte di particelle atmosferiche, la modellizzazione
di radar e sonar, la produzione di immagini sismiche e da ultrasuoni. I metodi
agli elementi finiti sono una delle tecniche di discretizzazione più comuni per
le equazioni di Helmholtz e di Maxwell poste in domini limitati, le quali mo-
dellizzano lo scattering di onde acustiche ed elettromagnetiche in regime time-
harmonic. A medie ed alte frequenze, la risoluzione della frequenza spaziale
e il cosiddetto “pollution effect” richiedono uno sforzo computazionale ecces-
sivo ed impediscono un utilizzo efficace dei metodi agli elementi finiti più
comuni. I metodi “wave-based” offrono un modo per trattare questo proble-
ma: all’interno di ogni elemento le funzioni di base sono particolari soluzioni
della PDE considerata, di conseguenza la frequenza è incorporata direttamente
nello spazio discreto.

Questa tesi tratta una famiglia di questi schemi: i cosiddetti metodi “Trefftz-
discontinuous Galerkin” (TDG), i quali includono la nota “ultraweak varia-
tional formulation” (UWVF) introdotta da O. Cessenat e B. Després.

Qui deriviamo una formulazione generale del metodo TDG per le equazioni
di Helmholtz e di Maxwell con condizioni al bordo di tipo impedenza posti in
domini limitati poligonali o poliedrici. Mostriamo che lo schema è ben posto e
ha convergenza quasi-ottimale in una norma dell’energia; un analogo risultato
in una norma indipendente dalla mesh è ottenuto con un argomento di dualità.
Questo porta a stime di convergenza per spazi di approssimazione costituiti da
onde piane e circolari/sferiche; la dipendenza delle stime dalla frequenza è sem-
pre indicata esplicitamente. Alcuni esperimenti numerici mostrano l’efficacia
dello schema nel caso dell’equazione di Helmholtz.

Diversi strumenti matematici sono necessari per l’analisi del metodo TDG.
In particolare, usando la teoria di Vekua per equazioni ellittiche e alcuni risul-
tati di approssimazione per polinomi armonici, dimostriamo nuove stime di
miglior approssimazione per gli spazi discreti considerati. La tecnica di dua-
lità usata nell’analisi della convergenza dello schema nel caso delle equazioni
di Maxwell richiede nuove stime di stabilità e regolarità per il corrispondente
problema al contorno con esplicita dipendenza dalla frequenza; dimostreremo
tali stime usando una nuova identità vettoriale di tipo Rellich.
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List of Notation

We denote balls and spheres in R
N by

Br(x0) := {x ∈ R
N , |x− x0| < r} , Br := Br(0) ,

S
N−1 := ∂B1 = {x ∈ R

N , |x| = 1} ⊂ R
N .

We call multi-indices the vectors of natural numbers α = (α1, . . . , αN ) ∈
N
N , where N = {0, 1, 2, 3, . . .} includes the zero. We define their length |α|,

we use them to describe multivariate polynomials, differential operators and
we establish a partial order denoted by “≤”:

|α| : =
N∑

j=1

αj ,

xα : = xα1
1 · · · xαNN x ∈ R

N ,

Dα : =
∂|α|

∂xα1
1 · · · ∂xαNN

,

α ≤ β if αj ≤ βj ∀ j ∈ {1, . . . , N} .

(0.1)

If Ω is an open Lipschitz domain in R
N (or an N -dimensional manifold), we

denote by W k,p(Ω)d, with d ∈ N, k ∈ R, 1 ≤ p ≤ ∞, the Sobolev spaces with
(integer or fractional) regularity index k, summability index p, and values
in C

d. We omit the index d if it is equal to one, i.e., for spaces of scalar
functions. We set Hk(Ω)d := W k,2(Ω)d and define H1

0 (Ω) as the closure in
H1(Ω) of C∞

0 (Ω). The corresponding Sobolev seminorms and norms for k ∈ N

are defined as:

|u|W k,p(Ω) :=

( ∑

α∈NN ,|α|=k

∫

Ω
|Dαu(x)|p dx

) 1
p

,

‖u‖W k,p(Ω) :=

( k∑

j=1

|u|p
W j,p(Ω)

) 1
p

=

( ∑

α∈NN ,|α|≤k

∫

Ω
|Dαu(x)|p dx

) 1
p

,

|u|k,Ω := |u|W k,2(Ω) ,

‖u‖k,Ω := ‖u‖W k,2(Ω) ,

|u|W k,∞(Ω) := sup
α∈NN ,|α|=k

ess sup
x∈Ω

|Dαu(x)|,

‖u‖W k,∞(Ω) := sup
j=0,...,k

|u|W j,∞(Ω) .
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List of Notation

The ω-weighted Sobolev norms are defined as

‖u‖k,ω,Ω :=

( k∑

j=0

ω2(k−j) |u|2j,Ω
)1

2

∀ u ∈ Hk(Ω) , ∀ ω > 0 .

(0.2)
For Ω ⊂ R

3, we introduce the following Hilbert spaces of vector fields, see
also [94, Ch. 1]:

L2
T (∂Ω) :=

{
v ∈ L2(∂Ω)3 : v · n = 0

}
,

H(curl; Ω) :=
{
v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3

}
,

H0(curl; Ω) :=
{
v ∈ H(curl; Ω) : n× v = 0 on ∂Ω

}
,

Himp(curl; Ω) :=
{
v ∈ H(curl; Ω) : n× v ∈ L2

T (∂Ω)
}
,

H(curl curl; Ω) :=
{
v ∈ H(curl; Ω) : ∇×∇× v ∈ L2(Ω)3

}
,

H(div; Ω) :=
{
v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)

}
,

H(div0; Ω) :=
{
v ∈ L2(Ω)3 : ∇ · v = 0 in Ω

}
,

Hk(curl; Ω) :=
{
v ∈ Hk(Ω)3 : ∇× v ∈ Hk(Ω)3

}
,

Hk(div; Ω) :=
{
v ∈ Hk(Ω)3 : ∇ · v ∈ Hk(Ω)

}
,

(0.3)

where n is the exterior unit normal vector field to ∂Ω. Each space is endowed
with the corresponding graph norm.

If F : ∂Ω → C
3 is a vector field defined on the boundary of a Lipschitz

domain Ω ⊂ R
3, we denote its normal and tangential components by

FN := (F · n) n and FT := (n× F)× n , (0.4)

respectively. As a consequence, F can be written as F = FN + FT .
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1. Introduction: wave methods for the
approximation of time-harmonic
problems

Understanding and predicting the propagation and scattering of acoustic, elec-
tromagnetic and elastic waves is a fundamental requirement in numerous en-
gineering and scientific fields. However, the numerical simulation of these
phenomena remains a serious challenge, particularly for problems at high fre-
quencies where the solutions to be computed are highly oscillatory. An im-
portant and active current area of research in numerical analysis and scientific
computing is the design of new approximation methods better able to repre-
sent these highly oscillatory solutions, leading to new algorithms which offer
the potential for hugely reduced computational times. A key associated ac-
tivity is the development of supporting mathematical foundations, including a
rigorous numerical analysis explaining and justifying the improved behaviour
of the new approximation methods and algorithms.

The present dissertation aims at describing a special finite element method,
termed Trefftz–discontinuous Galerkin (TDG) method, for the time-harmonic
Helmholtz and Maxwell’s equations, and at analyzing in a rigorous fashion its
stability and convergence properties.

We begin this preparatory chapter by briefly describing the boundary value
problems that will be considered in the following parts of this thesis. In
Section 1.2, we introduce wave-based finite element methods and describe the
most relevant schemes that belong to this class. Then, we outline the structure
of the dissertation, and finally we sketch several intriguing open problems that
will arise in the following chapters.

1.1. Time-harmonic problems

In this section we introduce the most common partial differential equations
(PDEs) that describes time-harmonic wave propagation. We consider bound-
ary value problems (BVPs) with impedance boundary conditions (IBC) in
bounded domains of R

N . Extensive descriptions and motivations of these
PDEs are given, for example, in the books [59,125,152,160].

1



1. Introduction: wave methods for time-harmonic problems

1.1.1. The Helmholtz equation

The propagation of acoustic waves with small amplitude in homogeneous iso-
tropic media can be described by the wave equation:

1

c2
∂2U(x, t)

∂t2
= ∆U(x, t) .

The unknown scalar field U(x, t) is a velocity potential depending on the
position vector x and on the time variable t; c is the speed of sound and ∆ is
the usual Laplace operator in the space variable x ∈ R

3. The velocity field v

and the pressure p can be derived from U as

v(x, t) =
1

ρ0
∇U(x, t) , p(x, t) = −∂U(x, t)

∂t
,

where ρ0 is the medium density in the static case.
The time-harmonic assumption lies in the choice of a sinusoidal dependence

of U on the time variable:

U(x, t) = Re
{
u(x) e−i c ω t

}
,

where ω > 0 is the wavenumber and cω is the frequency.1 With this as-
sumption, the complex valued function u satisfies the homogeneous Helmholtz
equation (sometimes called reduced wave equation):

∆u+ ω2u = 0 .

Of course, the Helmholtz equation can be considered in any space dimensions
N ≥ 1. It is often convenient to write it as system of first order equations:

iωσ −∇u = 0 ,

iω u−∇ · σ = 0 .

In order to model non-homogeneous and absorbing materials, the wavenumber
ω (and thus the local wavelength λ = 2π/ω) can be a function of x or can
take complex values.

When a boundary value problem is studied, the Helmholtz equation is con-
sidered in a domain Ω and it is supplemented by boundary conditions. If the
value of u is prescribed on ∂Ω, we talk about Dirichlet or sound-soft boundary
condition; if the value of the normal derivative ∂u/∂n (n being the outgoing
normal unit vector on ∂Ω) is given, we call it Neumann or sound-hard bound-
ary condition. A linear combination of Dirichlet and Neumann data is called
Robin boundary condition; in particular when the value of

∂u

∂n
+ i ϑ ω u

is fixed on ∂Ω for some real non-zero (possibly non-constant) parameter ϑ, we
call it impedance boundary condition.

1Notice that many authors use the letter κ to denote the wavenumber and ω to represent
the frequency.

2



1.1. Time-harmonic problems

The non-homogeneous impedance boundary value problem



−∆u− ω2u = f in Ω ,
∂u

∂n
+ i ϑ ω u = g on ∂Ω ,

(1.1)

where Ω is an open bounded Lipschitz subset of R
N , f ∈ L2(Ω), and g ∈

L2(∂Ω), can be written in the following variational form: find u ∈ H1(Ω) such
that∫

Ω

(
∇u · ∇v − ω2 u v

)
dV +

∫

∂Ω
iϑωu v dS =

∫

Ω
f v dV +

∫

∂Ω
g v dS (1.2)

holds for every v ∈ H1(Ω).

1.1.2. The Maxwell equations

The Maxwell equations describe the propagation of electromagnetic waves
through some media. The non-homogeneous time-harmonic Maxwell equa-
tions can be written as{

−iωǫ E−∇×H = −(iω)−1 J ,

−iωµ H+∇×E = 0 ,
(1.3)

where the unknown electric field E and magnetic field H, and the datum J

are vector fields in three real variables that take values in C
3. The material

parameters ǫ (electric permittivity) and µ (magnetic permeability) model the
material through which the wave propagates: they can be constants, or posi-
tive bounded scalar functions of the position, or positive definite matrix-valued
functions. Equations (1.3) can be condensed in a second order PDE:

∇× (µ−1∇×E)− ω2ǫ E = J .

The typical boundary conditions used for Maxwell’s problems make use of
the tangential traces of E and H. The impedance boundary condition can be
written as

H× n− ϑ (n×E)× n = (iω)−1 g , (1.4)

or, equivalently,

(µ−1∇×E)× n− i ω ϑ (n×E)× n = g .

Notice that the tangential part of the electric field is summed to the rotated
tangential part of the magnetic field.

The variational form of the boundary value problem given by equation (1.3)
in an open bounded Lipschitz domain Ω ⊂ R

3, supplemented with the bound-
ary conditions (1.4) on ∂Ω, may be written as: find E ∈ Himp(curl; Ω) = {v ∈
H(curl; Ω) : vT ∈ L2

T (∂Ω)} such that
∫

Ω

[
(µ−1∇×E) · (∇× ξ)− ω2(ǫE) · ξ

]
dV − iω

∫

∂Ω
ϑET · ξT dS

=

∫

Ω
J · ξ dV +

∫

∂Ω
g · ξT dS

holds true for every ξ that belongs to the same space.

3



1. Introduction: wave methods for time-harmonic problems

1.1.3. Other time-harmonic equations

The elastic wave equation (Navier equation) in the time-harmonic form reads

(λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) + ω2ρu = 0 ,

or equivalently
(λ+ µ)∇(∇ · u) + µ∆u+ ω2ρu = 0 ,

where λ, µ are the Lamé constants, and ρ is the density of the medium. A
Robin boundary condition (cf. [123]) is

T(n)(u) + i ϑ ω u = g

on ∂Ω, where the traction operator is defined as

T(n)(u) := 2µ
∂u

∂n
+ λn (∇ · u) + µn× (∇× u) .

For µ = 0 (and λ = ρ = 1) the elastic wave equation reduces to the
displacement-based Helmholtz equation (cf. [84]):

∇(∇ · u) + ω2u = 0 ,

whose Robin boundary condition reads

∇ · u+ i ϑ ω u · n = g .

A general family of time-harmonic linear first order hyperbolic equations is
given in [85,86]:

−iωu+

N∑

j=1

∂

∂xj
(A(j) u) = 0

where A(j), j = 1, . . . , N , are square m×m real matrices (possibly depending
on the position x), and the unknown u is a vector field inN real variables which
takes values in C

m. For instance, the Helmholtz equation can be expressed in
this form by fixingm = N+1, u = (σ1, . . . , σN , u) = (∇u/(iω), u) and defining
A(j) as the (N+1)×(N+1) symmetric matrix with only two non-zero entries,
with values 1, which lie in the positions (j,N + 1) and (N + 1, j).

1.1.4. Standard discretizations of time-harmonic boundary value
problems

The PDEs described in the previous sections play a central role in many fun-
damental scientific and technological areas. The most widely used tool for the
discretization of the corresponding boundary value problems and for the nu-
merical approximation of their solution is perhaps the finite element method
(FEM). The papers [190] and [34] give a review of different numerical methods
for high frequency time-harmonic problems.

Every solution of the time-harmonic equations displayed before oscillates
with a spatial frequency ω that is set by the PDE itself. The standard FEM

4



1.2. Wave-based discretizations

uses piecewise polynomial space to represent these solutions, thus the number
of degrees of freedom needed to obtain a given accuracy in certain domain,
is larger for higher values of ω. In the h-version of a FEM, the convergence
is achieved by reducing the meshsize h, i.e., the maximal diameter of its el-
ements; on the contrary, the local polynomial degree is kept constant. The
FEM discretization error is usually controlled by the best approximation er-
ror, through a quasi-optimality estimate. For an exact solution that oscillates
with frequency ω in an element of size h, the approximation properties of a
polynomial space depend on the product ωh, thus at a first glance it may seem
to be possible that a constant value of this product implies a control on the
FEM error.

Unfortunately this is not the case. This fact is due to the accumulation of
phase error, called numerical dispersion or pollution effect, that affects any lo-
cal discretization, cf. [17]. This phenomenon manifests itself in the theoretical
analysis of the different schemes as a dependence of the quasi-optimality con-
stant on the wavenumber. In concrete terms, this means that the h-version of
any finite element method at medium and high frequencies delivers a reason-
able error only with extremely fine meshes. Thus these methods are compu-
tationally too expensive to implement in many practical cases. On the other
hand, spectral finite element schemes sacrifice the locality of the approxima-
tion but, in exchange, are immune to numerical dispersion, cf. [4, 5].

Another common approach to the numerical solution of oscillatory prob-
lems is the boundary element method (BEM), based on the discretization of
boundary integral equations (BIE). In particular, the combined field integral
equation (CFIE) is widely used and recent work [32, 50, 53, 134] has made
substantial progress in understanding the behaviour at high frequency of nu-
merical solution methods. Very high frequency problem are often treated with
asymptotic methods based on the geometric optic approximation; this large
class of methods includes the ray-tracing and the front propagation techniques
(cf. [74, 91, 176]). Finally, we mention that possible alternatives to the FEM
are finite differences schemes (FD) and time-domain methods (cf. [34]).

1.2. Wave-based discretizations

To cope with the fundamental difficulties offered by the discretization of time-
harmonic equations, many different finite element methods have been pro-
posed, all sharing the common strategy of incorporating information about the
equations (namely, the wavenumber) inside the trial space. This is achieved
by choosing basis functions defined either from plane waves (functions x 7→
exp(iωx · d), with propagation direction d), or from circular, spherical, and
angular waves, fundamental solutions or more exotic solutions of the under-
lying PDEs. As for polynomial methods, only the spectral version (i.e., when
the number of basis functions per element is increased) of these schemes is free
from numerical dispersion.

Examples of methods based on plane waves are the partition of unity finite
element method (PUM or PUFEM) of I. Babuška and J.M. Melenk [16], the
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1. Introduction: wave methods for time-harmonic problems

discontinuous enrichment method (DEM) [6, 82, 189], the variational theory
of complex rays (VTCR) [172], and the ultra weak variational formulation
(UWVF) by O. Cessenat and B. Després [47]. This latter method has seen
rapid algorithmic development and extensions, see [117,119,121,122,124], and
even commercial software has been based on it. Since it can be reformulated as
a discontinuous Galerkin (DG) method, the UWVF allows a rigorous theoret-
ical convergence analysis [42,85,96,108]. Other schemes employ different basis
functions: circular waves (also called Fourier–Bessel functions) [154,186], fun-
damental solutions [22], angular functions adapted to the domain [23], “wave-
band functions” [172,188], divergence-free vector spherical waves [18].

The methods mentioned above have been mostly used for the discretiza-
tion of the Helmholtz equation; for the Maxwell case far fewer schemes are
available, see [18, 48, 107, 121, 191]. Linear elasticity problems were addressed
in [123, 130, 138–140]; the DG/UWVF discretization of displacement-based
Helmholtz equation was treated in [84] and the corresponding one for lin-
ear hyperbolic equations and the linearized Euler equation in [85,86]; different
acoustic problems with discontinuous coefficients or flowing media were treated
in [12,88,133].

We can distinguish between two main categories of wave-based methods.
The Trefftz methods are the ones that use basis functions that are locally
(inside each mesh element) solution of the underlying PDE; the main exam-
ples of this category are the UWVF, DEM/DGM, VTCR and many least
squares methods. These schemes differ from each other by the technique used
to “glue” together the trial functions on the interfaces between the elements.
The DG framework provides a very general and powerful tool both for formu-
lating many of these methods and for carrying out their analysis. The second
category uses “modulated basis”, i.e., local solutions of the PDE multiplied
by non-oscillatory functions, usually low-degree polynomials; here the most
famous example is given by the PUM. This second class of methods is more
suitable for non-homogeneous problems (with source terms in the domain) and
for smoothly varying coefficients, i.e., non-homogeneous material parameters.

The Trefftz methods with plane wave basis and polygonal/polyhedral el-
ements allow easy analytic computation of the integrals necessary for their
implementation (see Section 2.1.2 of [95] for the integration in closed form
of the product of plane waves in polygons). On the contrary, different basis
functions and curved elements require special quadrature rules for oscillating
integrands.

In the medium and high-frequency regime, wave-based methods achieve
higher accuracy than analogous polynomial schemes, when a comparable num-
ber of degrees of freedom is used. The considerations about the numerical dis-
persion and numerical evidence suggest to obtain accuracy by increasing the
dimension of the local approximating space (p-version) instead of by refining
the mesh (h-version).

However, for large p or small h, the typical basis functions used in these
methods become more and more linearly dependent, leading to the resulting
linear system being severely ill-conditioned. This is the main obstacle that
prevents wave-based methods from enjoying a wider use in applications. A
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1.2. Wave-based discretizations

common statement regarding the ill-conditioning of wave-based methods is
that it is a local phenomenon due to the “lack of orthogonality” of the wave-
based bases; indeed the different ways of gluing together the elements do not
heavily affect the condition number (see for example [86, Sect. 6.2] and [124]).
This fundamental problem has begun to be partially addressed; for example,
special rules for the dependence of the local number of degrees of freedom on
the wavenumber and the local mesh size in order to improve the conditioning
of the UWVF system matrix are discussed in [121, 124], nevertheless much
more work needs to be done.

In the following few sections we introduce in more detail the main fami-
lies of wave-based schemes: UWVF, DEM/DGM, VTCR, PUM/PUFEM and
least squares. Of course, several other similar approaches exists: for instance
the wave based method (WBM) of [168], the weak-element method of [97,174],
the mapped wave envelope finite and infinite elements of [49], the flexible local
approximation method (FLAME, a finite difference method for electromag-
netism) of [191], the plane wave H(curl; Ω) conforming method of [136] and
subsequent papers. Some comparisons of the numerical performances of the
different schemes can be found in [12, 86, 87, 117], and a review of different
Trefftz formulations in [168]. A summary of the theoretical results concerning
the stability and approximation properties of different wave-based methods
(PUM, least squares methods and UWVF/DG) is available in [75, Sect. 4–6].

Here we discuss only the case of the Helmholtz equation, since it is the
prototype for all the other time-harmonic problems and it has received a much
larger attention in the literature. The reformulation of the UWVF as a Trefftz-
DG method is not considered here because it will be the topic of Chapters 4
and 7.

1.2.1. The ultra weak variational formulation (UWVF)

The ultra weak variational formulation for the Helmholtz equation has been
introduced by O. Cessenat and B. Després in [46–48], and further developed
and extended in several subsequent papers by different authors. We write its
formulation following the introduction given in [48], in the special case of the
impedance boundary condition with ϑ = 1 (i.e., Q = (1 − ϑ)/(1 + ϑ) = 0 in
their notation) and f = 0 (i.e., without volume sources).

Let Th be a finite element partition of a polyhedral Lipschitz domain Ω ⊂
R
N , N = 2, 3, of mesh width h (i.e, h = maxK∈Th hK , with hK := diam(K));

we denote by nK the outgoing unit vector on ∂K and by ∂nK = ∂u/∂nK the
corresponding normal derivative of u.

Let u ∈ H1(Ω) be a solution of the impedance BVP (1.1) with f = 0 and
ϑ = 1, such that ∂nK (u|K) ∈ L2(∂K) for everyK ∈ Th. We define the (adjoint)
impedance trace x ∈ V :=

∏
K∈Th L

2(∂K) as x|∂K := (−∂nK + iω)u|K .
The UWVF of problem (1.1) reads: find x ∈ V such that

∑

K∈Th

∫

∂K
x|∂K y|∂K dS −

∑

K,K ′∈Th

∫

∂K∩∂K ′

x|∂K ′ FK(y|∂K) dS

7



1. Introduction: wave methods for time-harmonic problems

=
∑

K∈Th

∫

∂K∩∂Ω
g FK(y|∂K) dS (1.5)

for every y ∈ V , where the operator FK : L2(∂K) → L2(∂K) maps yK into
the trace

F (yK) := (∂nK + iω)eK

of the solution eK of the local BVP
{
−∆eK − ω2eK = 0 in K ,

(−∂nK + iω)eK = yK on ∂K .

The expression (1.5) is a variational formulation for the skeleton unknown x;
after the equation is solved with respect to x, the solution u|K can be recovered
in the interior of each element by solving a local (in K) impedance BVP with
trace x|∂K .

The equation (1.5) is discretized by choosing a suitable finite dimensional
subspace Vh of V . However, the implementation of FK(y|∂K) requires the
solution of a local BVP, therefore Cessenat and Després proposed the use of a
Trefftz discrete space, in particular a space spanned by plane waves. The trial
space is thus defined as

Vh :=
{
xh ∈ V : (xh)|∂K ∈ span

{
(−∂nK + iω)eiωx·dℓ |K

}
∀ K ∈ Th

}
,

for p unit propagation directions {dℓ}ℓ=1,...,p ⊂ S
N−1.

Theorem 2.1 of [47] states that the discrete problem obtained by substituting
V with Vh (or any other Trefftz space) in (1.5) is always solvable, independently
of the meshsize h. In the same paper it is proven that the solution impedance
trace xh of the discrete problem converges to x (the impedance trace of the
continuous problem) with algebraic rates of convergence with respect to the
meshsize h; the same is true for the convergence of the discrete solution uh to u
(see [47, Corollary 3.8]). In both cases (i.e., for x−xh and u−uh), the error is
controlled only in the L2-norm on the boundary ∂Ω. The rate of convergence
linearly depends (in two space dimensions) on the dimension p of the local trial
space, namely, on the number of plane wave propagation directions employed
in each element. However, the theoretical order of convergence is one unit lower
than that experimentally observed, as can be noticed from the comparison of
Table 3.3 and Corollary 3.9 in [47]; this fact is due to the best approximation
estimate of [47, Theorem 3.7]. In Section 4 of [42], the results of Cessenat and
Després have been used together with the duality technique of [154] to prove
algebraic orders of convergence for the volume norm of the error ‖u− uh‖L2(Ω).

The UWVF is perhaps the wave-based method which has received the
largest attention in the last years. As already mentioned, there exist gen-
eralizations to many different time-harmonic settings as the Maxwell (cf. [18,
48,121,122]), elasticity (cf. [123,138]), displacement-based Helmholtz (cf. [84])
and hyperbolic (cf. [85, 86]) equations. In [183], it has been applied to equa-
tions of reaction-diffusion type (e.g., Helmholtz equation with purely imagi-
nary wavenumber), in this case the solutions and the basis functions have a
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1.2. Wave-based discretizations

completely different nature with respect to the problems considered so far:
they are not oscillating but contain steep boundary or internal layers.

Other papers studied several relevant computational aspects of the UWVF:
the preconditioning and the choice of a linear solver in [124], the use of the
perfectly matched layer (PML) in [119], the case of anisotropic media in [122],
the comparison with other wave-based schemes (PUFEM and least squares)
in [86, 87, 117], the application to complicated ultrasound problems in [120].
In [153], the UWVF is used to couple Trefftz and polynomial trial spaces on
different elements, this is a very promising direction to follow in order to apply
the method to realistic problems.

An effective strategy to generalize the UWVF is to recast it as a dis-
continuous Galerkin (DG) method, this has been done in different ways;
cf. [42, 84, 85, 96]. This approach makes the derivation of the method sim-
pler, allows to improve the scheme by choosing in a smart way some relevant
discretization parameters (within the so-called numerical fluxes) and to study
the convergence in a rigorous fashion with the help of the DG machinery al-
ready developed for polynomial schemes. The DG reformulation of the UWVF
for the Helmholtz and the Maxwell cases and its convergence analysis will be
the topic of Chapters 4 and 7 of this dissertation.

1.2.2. The discontinuous enrichment and the discontinuous
Galerkin methods (DEM and DGM)

The discontinuous enrichment method was firstly introduced by C. Farhat,
I. Harari and L. Franca in [79]. The basic idea is to enrich the polynomial
FEM space with plane wave functions and impose weakly the interelement
continuity via Lagrange multipliers. The degrees of freedom related to the
enrichment field can be eliminated by static condensation in order to reduce
the computational cost of the scheme.

In the subsequent paper [81] (see also [80]) the polynomial part of the trial
space was dropped, thus the remaining basis is constituted by plane waves
only. In this version, the DEM was renamed discontinuous Galerkin method
(DGM).2

Higher order extensions of the DGM and more complicated numerical ex-
periments are taken into account in [82]; finally [189] extends the scheme to
three dimensional hexahedral elements. The mentioned papers compare the
different versions of the DEM/DGM with standard polynomial methods of the
same order, and show that the number of degrees of freedom per wavelength
needed to obtain a certain accuracy is greatly reduced by the use of the former
schemes. A stability and convergence analysis for the lower order elements is
carried out in [6]; for the higher order elements, to our knowledge, it is not
yet available.

2 Despite the fact that the DGM is both a DG and a Trefftz method, this scheme is quite
different from the Trefftz-DG (denoted TDG) discussed in Chapter 4: indeed the interface
continuity is treated with Lagrange multipliers by the former scheme and as a local DG
in the spirit of [45] by the latter. See [86] for a comparison of the two DG formulations.
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1. Introduction: wave methods for time-harmonic problems

The extension of the DGM/DEM to elasticity problems has been considered
in [139,207] (Navier equation) and in [140] (Kirchhoff plates).

Here we briefly describe the formulation of the DGM following Section 2
of [81], in the simplified case of a cavity without a scatterer (i.e., in their
notation, Ω = B, O = ∅, α = β = 0, k = ω). We consider the BVP (1.1) with
ϑ = −1 (to be consistent with [81]) in a bounded domain Ω ⊂ R

2 partitioned
in a finite element mesh Th. We define: the function spaces

V :=
∏

K∈Th
H1(K) , W :=

∏

K,K ′∈Th
H−1/2(∂K ∩ ∂K ′) ,

the bilinear form a : V × V → C

a(w, v) :=
∑

K∈Th

∫

K
(∇w · ∇v − ω2u v) dV −

∫

∂Ω
iω w v dS ,

the bilinear form b : W ×V → C

b(µ,w) :=
∑

K,K ′∈Th

∫

∂K∩∂K ′

µ (w|K ′ − w|K) dS ,

and the linear form r : V → C

r(v) :=

∫

∂Ω
g v dS .

Then problem (1.1) corresponds to the following variational formulation: find
(u, λ) ∈ V ×W such that

{
a(u, v) + b(λ, v) = r(v) ∀ v ∈ V ,

b(µ, u) = 0 ∀ µ ∈ W .

This equation is then discretized by restricting it to finite dimensional spaces
Ṽ ⊂ V and W̃ ⊂ W. In the DEM, Ṽ is the direct sum of a polynomial
and a plane wave space, in the DGM only the plane wave part is retained.
The Lagrange multiplier space W̃ is composed by constant (on every edge)
functions for the lowest order element and by oscillatory functions (plane wave
traces) for the higher order methods. The degrees of freedom related to Ṽ are
then eliminated by static condensation.

1.2.3. The variational theory of complex rays (VTCR)

The evolution of the VTCR followed the direction opposite to the UWVF and
the DEM: it was firstly developed by P. Ladevéze and coworkers for prob-
lems arising in computational mechanics and only later it was extended to the
acoustic/Helmholtz case. The first appearance of the VTCR is in [129], where
the vibrational response of a weakly damped elastic structure at medium fre-
quencies is modeled with a novel variational formulation (see also the more
detailed presentation given in [130]). In [175] this approach is extended to
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1.2. Wave-based discretizations

three-dimensional plate assemblies, in [171] to shells of relatively small curva-
ture (Koiter’s linear theory), and in [131] different techniques to solve simul-
taneously the same equation for different frequencies are illustrated.

Here, following [172] (see also [181]), we show the formulation of the VTCR
when applied to the Helmholtz equation. In order to simplify the presentation
we use the same notation introduced in the previous sections for what concerns
the domain partition. We consider a domain Ω ⊂ R

2 whose boundary is
decomposed in two parts denoted ΓD and ΓN and we consider the problem
with mixed (Dirichlet and Neumann) boundary conditions:





∆u+ ω2u = 0 in Ω ,

u = gD on ΓD ,
i

ω

∂u

∂n
= gN on ΓN .

The VTCR formulation (cf. [172, eq. (3)]) reads: find a Trefftz function u such
that

∫

ΓD

(u− gD)
i

ω

∂v

∂n
dS +

∫

ΓN

v

(
i

ω

∂u

∂n
− gN

)
dS

+
1

2

∑

K,K ′∈Th

∫

∂K∩∂K ′

(u|K − u|K ′)
i

ω

(
∂v|K
∂nK

−
∂v|K ′

∂nK ′

)

+ (v|K + v|K ′)
i

ω

(
∂u|K
∂nK

+
∂u|K ′

∂nK ′

)
dS = 0

for every v in a proper Trefftz test space.
The corresponding discretized problem is obtained by choosing a space of

plane wave and/or “wave band” functions, i.e., Herglotz functions with piece-
wise constant kernel (cf. Section 2.4.1):

u[a,b](x) :=

∫ b

a
eiω(x1 cos θ+x2 sin θ) dθ 0 ≤ a < b ≤ 2π .

The linear system obtained with this method is not symmetric.

1.2.4. The partition of unity method (PUM or PUFEM)

The partition of unity finite element method is the main example of non-
Trefftz wave-based method. Its introduction is due to the work of I. Babuška
and J.M. Melenk in the series of papers [16, 142, 144, 146, 147]. Other work
concerning the application of the PUM (and its variants) to Helmholtz and
related acoustic problems are [12,88,132,165,187,188].

The main feature of the PUM is a special construction of the trial and test
spaces. If {Ωj} is an open cover of the domain Ω, {ϕj} is a Lipschitz partition
of unity subordinate to {Ωj}, and {Vj}, Vj ⊂ H1(Ωj), are a local discrete
spaces, then the PUM space is defined as V := {

∑
j ϕjvj, vj ∈ Vj}. This choice

implies that the construction of a finite element mesh is not necessary for this
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1. Introduction: wave methods for time-harmonic problems

scheme: this is an advantage for many problems (e.g., when frequent remeshing
is needed) but it might make numerical quadrature more challenging.

Unlike the methods described so far, the PUM is a conforming method
and is based on the standard variational formulation of the underlying BVP,
for instance, equation (1.2) for the Helmholtz BVP with impedance boundary
conditions (cf. [188]). The PUM space V inherits the approximation properties
of the local spaces {Vj}, and the formulation can provide the quasi-optimality
of the scheme; the issues of the approximability of the solutions and of the
continuity and regularity of the elements are dealt with separately by the Vj ’s
and the ϕj ’s, respectively. Because of these reasons, the convergence analysis
of the PUM is very well developed, see for instance [16].

The choice of the local spaces has a great importance. They are usually con-
structed with solutions of the underlying homogeneous PDE. In the Helmholtz
case plane and circular/spherical waves (in [142]) and wave bands (in [188]) are
used. The PUM framework and local best approximation for these functions
guarantee (high order) h and p convergence of the scheme.

The comparison of the performances of the PUM and Trefftz methods,
in particular concerning the conditioning of the problem, does not show a
clear superiority of any of the two families; see the contrasting results of [81,
Sect. 6.3] and [117]. The choice of a polynomial partition of unit (e.g., hat/pyr-
amid functions) highlights the main difference between PUM and DEM: in the
former polynomials and plane waves (or analogous functions) are multiplied
with each other, in the latter they are summed. When a polynomial space is
added to the PUM one, the method is referred to as generalized finite element
method (GFEM) as in [187] and [12, Sect. 2.2.3].

1.2.5. Least squares methods

Several numerical schemes use Trefftz functions within a least squares frame-
work. All these methods share, on one side, a great simplicity of implementa-
tion and, on the other, a very serious ill-conditioning of the linear system that
has to be solved.

The prototype of these methods was described in [186] by M. Stojek. A
two dimensional domain is partitioned using a mesh and a Trefftz space is
defined on it using circular waves, multipoles (Fourier-Hankel functions), and
basis functions adapted to parts of the domain containing circular holes or
corners. The (weighted) sum of the interface jumps of the field and its normal
derivative and the discrepancy with respect to the boundary conditions are
minimized with a least squares procedure. The choice of the relative weights
of the different terms within the least squares functional is perhaps the main
issue in this setting.

The paper [154] studies the convergence of a similar method defined on a
smooth domain. There the jumps of the complete gradient (opposed to the
normal derivative only) are penalized. A special duality technique is used
to prove that the volume L2 error of the solution is controlled by the value
of the least squares functional (cf. [154, Theorem 3.1]). From this, orders of
convergence in h and p for plane and circular waves follow.
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An important method in this family is the method of fundamental solutions
(MFS); [78] gives a general introduction to these schemes for elliptic equations
and [22] provides a detailed discussion of its theoretical and numerical aspects
for the Helmholtz equation in interior and exterior domains. The solution
of a BVP inside an analytic domain Ω ⊂ R

2 is approximated by a linear
combination of fundamental solutions:

up(x) =

p∑

ℓ=1

αℓH
(1)
0 (ω|x− yℓ|) ,

where H
(1)
0 is a Hankel function of the first kind and order zero and the

singularities yℓ are located on a special smooth curve outside Ω. The choice
of this curve is one of the main issues of the scheme and requires the use
of complex analysis techniques. The discrete solution is obtained as a least
squares minimization on the boundary conditions. We may interpret the MFS
as a discretization of a single layer potential representation, indeed it shares
several features with BEM.

The paper [23] presents a scheme that merges properties of those of [186]
and [22]. The problem of the scattering by a polygon is discretized by using
corner and fundamental solutions (instead of the multipoles used in [186])
in a very small number of subdomains, thus giving exponential convergence
rates. The relation between the accuracy of the computed solution and the
conditioning of the least squares system employed is analyzed in detail in [23,
Sect. 7]. A drawback of this scheme is that its use is restricted to sound soft or
sound hard problems posed on polygons: extensions to impedance boundary
conditions and curved or three-dimensional scatterers are not covered.

1.3. General outline of the dissertation

In the present dissertation we study a family of Trefftz-discontinuous Galerkin
(TDG) methods for the Helmholtz and the Maxwell equations. Their formula-
tions and the corresponding convergence analysis are presented in Chapters 4
and 7. In order to prove convergence bounds, new approximation estimates for
plane and circular/spherical waves need to be proved: this is not an easy task
and Chapters 2, 3 and 6 are devoted to this purpose. Moreover, in the Max-
well case, new stability and regularity results are necessary; we prove them in
Chapter 5.

Part I: The Helmholtz equation

Chapter 2 We introduce the two Vekua operators for the Helmholtz equation,
denoted V1 and V2. We show that they are inverse to each other and they map
harmonic functions defined in a star-shaped, bounded domain D ⊂ R

N into
solutions of the homogeneous Helmholtz equation in the same domain, and
vice versa. We prove that they are continuous in Sobolev norms; in particular
we study the dependence of the continuity bounds on the wavenumber of the
underlying Helmholtz equation and on the diameter of D. Finally, we define
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1. Introduction: wave methods for time-harmonic problems

the generalized harmonic polynomials as the image under V1 of the harmonic
polynomials: it turns out that they are circular and spherical waves.

Chapter 3 In this chapter we prove approximation estimates for Helmholtz–
Trefftz spaces. We begin by proving error bounds for the approximation of
harmonic functions by harmonic polynomials: the h-estimates are simple con-
sequences of the Bramble–Hilbert theorem, while the p-estimates require more
work. With the use of the Vekua operators these bounds are translated into
similar ones for the approximation of Helmholtz solutions by generalized har-
monic polynomials. Then, these special functions are approximated by plane
waves by truncating and inverting the Jacobi–Anger expansion. This gives in
turn the approximation of general homogeneous Helmholtz solutions by plane
waves. All these estimates are proved in Sobolev norms and the dependence
of the bounding constant on the wavenumber is always made explicit.

Chapter 4 We introduce a family of TDG methods for the discretization
of homogeneous Helmholtz BVPs with impedance boundary condition. The
standard UWVF is included as a special case. We prove the quasi-optimality of
the method in a mesh-dependent norm and in L2-norm via a duality argument.
The results of the previous chapter provide error bounds with algebraic rates
in h and p for spaces of plane and circular/spherical waves. Finally, we show
some simple numerical results in order to validate the method.

Part II: The Maxwell equations

Chapter 5 We consider a (non-homogeneous, time-harmonic) Maxwell im-
pedance boundary value problem, posed in a bounded star-shaped Lipschitz
polyhedron. With the use of a new vector Rellich-type identity, we prove
wavenumber-independent stability bounds for the H(curl; Ω)-norm of the so-
lution. Then we show a regularity result in H1/2+s(curl; Ω), for some 0 < s <
1/2, for the same problem.

Chapter 6 Here we consider the approximation of general Maxwell fields by
divergence-free vector plane and spherical waves. Some estimates are quite
easy to prove by approximating the curl of the field as a vector Helmholtz
solution and then applying the curl operator. Unfortunately this bounds are
not sharp: by resorting to Vekua theory we can find better h-estimates for
vector spherical waves. This procedure requires some work with vector spher-
ical harmonics. In Section 6.4 we show how this approach can be extended to
the elastic wave equation.

Chapter 7 We introduce a family of TDG methods for the homogeneous
version of the Maxwell BVP previously considered. Following the lines of
the scalar case, we derive the formulation of the method and prove its quasi-
optimality for a mesh-skeleton energy norm. The duality argument requires
the regularity result proved in Chapter 5 and delivers a bound in a (mesh
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independent) norm that is slightly weaker than L2(Ω). Orders of convergence
are proved for plane and spherical wave trial spaces.

Appendices In the Appendix A we report some well-known vector calculus
identities and in the Appendix B we define and briefly describe several spe-
cial functions. In particular we deal with factorial, double factorial, gamma
function, Bessel functions (and corresponding spherical and hyperspherical
variations), Legendre polynomials and functions, scalar and vector spherical
harmonics.

Most of the presented results are also available in the following papers and
reports: [151] for Chapter 2; [150] for Chapter 3; [108] for Chapter 4; [109]
for Chapter 5; [107] for Section 6.2.1 and Chapter 7; [149] for Section 6.4.
However, in this thesis we have added many additional comments, some results
are more general or slightly sharper and some proofs have been improved. In
particular, the proof of the stability results in Section 5.4 is quite different
and much less involved than the corresponding one in [109], Corollary 5.5.2
corrects a mistake that was present in the proof of Lemma 4.1 of [109], and
the presentation of the TDG method for the Helmholtz equation in Chapter 4
is more general than that of [108].

1.4. Open problems and future work

There are a lot of possible extensions, generalizations, improvements, and
“sharpenings” of most of the results and the methods of the present disserta-
tion which are, in our opinion, worth to be investigated. Here we list the most
relevant ones.

Plane wave directions adaptivity. Most of the available plane wave-based
methods use basis functions with a large number of propagation directions that
are chosen in an arbitrary way: usually they are (approximately) equispaced.
It is clear, however, that in many concrete problems a few directions only
might be enough to approximate accurately the solution. For example, in a
scattering problem only the directions propagating away from the scatterer(s)
contribute to the radiating field, while the ones propagating in the opposite
direction are irrelevant. The presence of too many basis functions increases
critically the size and the condition number of the linear system to be solved,
so it is vitally important to be able to select the relevant directions.

The challenge consists in finding the significant directions efficiently; this
might be done with a “refine and coarsen” adaptive algorithm based on local
(thus parallelizable) non-linear optimization procedure. This can be a major
advance for plane wave methods. Indeed, many papers in the field, see for
instance [84, 119, 121, 122, 189], highlight the self-adaptive choice of the plane
wave propagation directions as one of the important needs of these methods.
The analysis of these adaptive schemes is a completely open issue. Their
robustness, condition and sensitivity also require extensive study and the un-
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1. Introduction: wave methods for time-harmonic problems

derstanding of these aspects is fundamental for the method’s efficient imple-
mentation. A few possible approaches to plane wave directions adaptivity and
several problems arising from it are described in [33].

Non-constant coefficients. The methods we consider in this thesis involve
PDEs with piecewise constant material parameters (local wavenumber ω, re-
fractive index n, density ρ, electric permittivity ǫ, magnetic permeability µ).
In many practical applications those coefficients vary smoothly inside the do-
main, and the discretization of these problems requires modifications of the
methods. In particular, for general coefficients, Trefftz methods are no longer
feasible. The UWVF, in its original form of [47], requires constant parameters;
however, it might be possible to generalize its reformulation as a DG method
to non-constant coefficients. This would change many of its features: the plane
wave basis functions have to be multiplied by polynomials (or other functions)
so they do not remain Trefftz functions and new volume terms appear in the
formulation. In addition special numerical quadrature for highly oscillatory
integrands have to be employed. The DG formulation of the method, the
analysis of its well-posedness and a priori error estimates, the approximation
estimates for modulated (plane, circular of spherical) waves are open prob-
lems in this field. A possible further extension may be to consider anisotropic
parameters.

A related problem is given by non-homogeneous PDEs, i.e., equations with a
non-zero source term in the domain. Low order h-convergence for the PWDG
method has been studied in [96], while p-convergence and high orders in h are
not possible via Trefftz methods. It appears that the use of modulated waves
will be advantageous in this case.

Chapter 2.

• In Theorem 2.3.1, the dependence on the wavenumber of the continu-
ity constants of the operator V2 is explicit only in the two and three-
dimensional cases. In order to extend this to higher N , the only steps in
the proof that need modifications are the interior estimates for Helmholtz
solutions proved in Lemma 2.3.12; see also Remark 2.3.14. An improve-
ment of this stage could also establish the (ω-explicit) continuity of V2
in the L2-norm for N = 2 and 3.

• The original Vekua theory of [194] holds for any linear elliptic equa-
tion with analytic coefficients in two real variables. The Helmholtz case
is a special one because it allows a fully explicit definition of the two
operators, and extensions to any dimension. Nevertheless, it could be
extremely interesting to see which of the results presented here carry
over to more general PDEs, e.g., Helmholtz with varying wavenumber
or elliptic equations in divergence form (i.e., ∇ · (A∇u) + ω2u = 0).

• In [54], the Vekua operators for exterior unbounded domains were de-
fined. The study of their continuity is completely open.
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1.4. Open problems and future work

• In order to deal with BVPs whose solutions are singular, it might be
important to study the continuity of the Vekua operators (and the ap-
proximation results) in Sobolev norms with non-integer differentiability
indices (see Remark 2.3.15). A related generalization concerns the study
of the continuity of the operators defined on “wedge domains” with re-
spect to Sobolev norms weighted with powers of the distance from the
origin. This can help in the study of the approximation of corner singu-
larities.

Chapter 3.

• One of the main steps in the approximation theory developed here is
the approximation of general harmonic functions by harmonic polyno-
mials. While the two-dimensional case is completely settled thanks to
a careful use of complex analysis techniques (cf. [142, 144]), the three-
dimensional case returns orders of convergence that depend in unknown
way on the shape of the considered finite element. This gap in the
theory is reflected by the presence of the parameter λD (defined in The-
orem 3.2.12) in all the convergence estimates for the wave-based FEM.
This dependence propagates to the approximation by plane waves and
the convergence bounds of the TDG method. A precise lower estimate
for this parameter (at least for simple domains, e.g., tetrahedra, cubes
or convex polyhedra) is fundamental in order to obtain sharp approx-
imation results. In Remark 3.2.13 we discuss three possible ways of
tackling this issue: the approximation theory for elliptic operators de-
veloped by T. Bagby, L. Bos and N. Levenberg in [19–21], the Lh-theory
of V. Zahariuta [179, 206] and the boundary integral representations of
the harmonic functions.

• The stable bases for plane wave spaces introduced in Section 3.4.1 might
be a useful tool in order to develop a more stable FEM code. On the
other hand, it is not clear how to implement them effectively.

• Lemma 3.4.8 could be extended to higher dimensions by using the N -
dimensional addition formula and Jacobi–Anger expansion.

Chapter 4.

• The duality argument of Lemma 4.3.7 requires a quasi-uniform (and
shape-regular) mesh; it might be interesting to weaken this assumption
in the context of an hp-method, see Remark 4.4.12. The convexity as-
sumption on the domain could be relaxed as well; see Remark 4.3.9.

• The error bound in H1-norm obtained in Section 4.5 is not fully satis-
factory, since it makes use of a projection on a polynomial space.

• If in the Helmholtz equation (1.1) the wavenumber ω is purely imagi-
nary, a simple reaction-diffusion model is obtained. This is an elliptic
PDE with completely different properties, but Trefftz methods are viable
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1. Introduction: wave methods for time-harmonic problems

and effective for it, as demonstrated in [183]; in particular the Trefftz–
DG method provides great flexibility that allows its application to many
different settings. An example is the resolution of skin layers in eddy
current problems, a topic of great interest for applications (e.g., the sim-
ulations of power transformers). Many questions concerning this topic
are completely open and provide interesting challenges, for example: the
a-priori theoretical study of different methods, the approximation prop-
erties (the approach developed in Chapter 3 applies with minor changes
to the simplest reaction-diffusion equation only, see Remark 3.5.9), and
the efficient implementation of the method. Other interesting aspects are
the use of adaptivity, the construction of domain-adapted basis functions
(“corner functions”) in the spirit of the MFS of [23], the treatment of
“bad” meshes and domains with special features like cracks and discon-
tinuous coefficients.

Chapter 5. A key step in the analysis of the considered FE methods is the
proof of stability and regularity estimates for the solutions of the corresponding
(adjoint) boundary value problem. Furthermore, to be useful, these bounds
must show explicitly the dependence on the wavenumber. For the Helmholtz
equation all the results are based on Rellich or Morawetz-type identities (some
special pointwise equalities related to the variational form of the problem);
see for instance [52, 53, 66, 104, 142]. In the Maxwell case, the only available
results are the ones in Chapter 5 for star-shaped domains and in [101] for
unbounded dielectric materials. In the recent work [182], the additional power
of Morawetz-type identities has been realised and it has been used to prove
the coercivity of a new boundary integral operator (BIO) called the “star-
combined operator” for acoustic scattering.

This technique might be combined with the novel vector Rellich-type iden-
tity developed in Section 5.3 to obtain a coercive BIO that can be discretized
to solve Maxwell scattering problems with star-shaped scatterers. This prob-
lem is closely related to many other interesting open questions concerning the
scattering of electromagnetic waves: for instance, the stability of the BVP for
bounded domains containing an inclusion or a scatterer (like the one proved
in [104] for the acoustic case) and the continuity of the Dirichlet-to-Neumann
map. A new stability result for electromagnetic BIOs will certainly be regarded
as a major achievement in the analysis of boundary element methods.

The vector Rellich-type identity of Section 5.3 might be generalized to the
following settings (see Remark 5.5.9 for more details):

• non star-shaped domains (see Remark 5.3.5);

• domains containing inclusions (see Remark 5.4.8);

• unbounded scatterers as rough surfaces;

• inhomogeneous and complex material parameters ǫ and µ;

• boundary integral operators;
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1.4. Open problems and future work

• linear elasticity problems;

• Rellich-type identities for differential forms.

Chapter 6.

• Remark 6.3.5 explains a possible approach to extend the sharp h-esti-
mates for Maxwell spherical waves to the analogous plane waves. The
key tool is a special vector Jacobi–Anger expansion. However it is not
entirely clear how to prove a precise error bound.

• Sharp p-estimates for Maxwell plane or spherical waves seem to be very
hard to obtain; see Remarks 6.2.2 and 6.3.3.

• Approximation estimates for elastic spherical waves could be considered
in the context of the Navier equation; see Section 6.4.

• The behaviour of the approximation bound in Theorem 6.4.3 deserves
to be further investigated in the case of almost incompressible materials
(λ very large).
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Part I.

The Helmholtz equation
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2. Vekua’s theory for the Helmholtz
operator

2.1. Introduction and motivation

Vekua’s theory1 is a tool for linking properties of harmonic functions (solutions
of the Laplace equation ∆u = 0) to solutions of general second-order elliptic
PDEs Lu = 0: the so-called Vekua operators (inverses of each other) map
harmonic functions to solutions of Lu = 0 and vice versa. It is described
extensively in the book [194], a concise presentation is provided by [102].

The original formulation targets elliptic PDEs with analytic coefficients in
two space dimensions. Some generalizations to higher space dimensions have
been attempted, see [56–58, 93, 112, 113] and the references therein, but the
Vekua operators in these general cases are not completely explicit. Moreover,
a function and its image under the mapping are often defined in different
domains, for instance, solutions of equations in three real space dimensions are
mapped to analytic functions in two complex variables (cf. [57, Theorem 2.2]).
A very interesting extension of Vekua’s theory, introduced in [54], is concerned
with the definition of operators for exterior (unbounded) domains.

Here, the PDE we are interested in is the homogeneous Helmholtz equation
Lu := ∆u + ω2u = 0 with constant wavenumber ω. In this particular case,
simple explicit integral operators have been defined in the original work of
Vekua for any space dimension N ≥ 2 (see [192,193], [194, p. 59], and Fig. 2.1),
but no proofs of their properties are provided and, to the best of our knowledge,
these results have been used later only in very few cases [54,126].

S. Bergman, in [27] and in some related papers, developed several integral
operators that represent solutions of elliptic PDEs in terms of analytic func-
tions. As described in [178], Bergman’s operators are equivalent to Vekua’s.
The former are easier to use in order to construct special solutions of general
elliptic equations, since they are defined starting from the equation coefficients;
the latter allow a better theoretical analysis. However, Vekua’s operators are
completely explicit in the Helmholtz case, so his approach seems to be the
most appropriate for this equation.

Vekua’s theory has been used in numerical analysis to prove best approxi-
mation estimates for special function spaces in the two Ph.D. theses [31,142].
Since we are interested in bounds in Sobolev norms, we will follow the ap-
proach of Chapter IV of [142] to prove the continuity of Vekua’s operators in
those norms.

We proceed as follows: in Section 2.2, we will start by defining the Vekua
operators for the Helmholtz equation with N ≥ 2 and prove their basic prop-

1Named after Ilja Vekua (1907-1977), Soviet-Georgian mathematician.
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2. Vekua’s theory for the Helmholtz operator

Figure 2.1.: Two paragraphs of Vekua’s book [194] addressing the theory for
the Helmholtz equation.

erties, namely, that they are inverse to each other and map harmonic functions
to solutions of the homogeneous Helmholtz equation and vice versa (see The-
orem 2.2.5). Next, in Section 2.3, we establish their continuity properties in
(weighted) Sobolev norms, like in [142], but with continuity constants explicit
in the domain shape parameter, in the Sobolev regularity exponent and in
the product of the wavenumber times the diameter of the domain (see Theo-
rem 2.3.1). The main difficulty in proving these continuity estimates consists in
establishing precise interior estimates. Finally, in Section 2.4, we introduce the
generalized harmonic polynomials, which are the images through the Vekua
operator of the harmonic polynomials, and derive their explicit expression.
They correspond to circular and spherical waves in two and three dimensions,
respectively. The results developed here will be the main ingredients in the
proof of best approximation estimates by circular, spherical and plane waves
developed in Chapter 3.

All these proofs are self-contained. Theorem 2.2.5 was already stated in
[194], without proof; many ideas come from the work of J.M. Melenk (see
[142,144]). Almost all the results of this chapter are described in [151].

2.2. N-dimensional Vekua’s theory for the Helmholtz
operator

Throughout this chapter we will make the following assumption on the con-
sidered domain.

Assumption 2.2.1. The domain D ⊂ R
N , N ≥ 2, is an open bounded set

such that

• ∂D is Lipschitz,

• D is star-shaped with respect to the origin,
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2.2. N -dimensional Vekua’s theory for the Helmholtz operator

• there exists ρ ∈ (0, 1/2] such that Bρh ⊆ D, where h := diamD.

Not all these assumptions are necessary in order to establish the results of
this section (see Remark 2.2.7 below).

Remark 2.2.2. If D is a domain as in Assumption 2.2.1, then

Bρh ⊆ D ⊆ B(1−ρ)h .

The maximum 1/2 for the parameter ρ is achieved when the domain is a
sphere: D = Bh

2
.

We can compute the value of ρ for some special simple domains centered in
the origin. In two dimensions, if D is a square ρ = 1/2

√
2, if it is an equilateral

triangle ρ = 1/2
√
3, if it is a regular polygon with 2n vertices ρ = cos(π/2n)/2.

In three dimensions, if D is a cube ρ = 1/2
√
3, if it is a regular tetrahedron

ρ = 1/2
√
6. In any dimension N , if D is a N -dimensional interval product

D =

N∏

j=1

(−aj , aj) aj > 0 then ρ =
minj aj

2
√∑

j a
2
j

.

Figure 2.2.: A domain D that satisfies Assumption 2.2.1.

h

rh

0

Definition 2.2.3. Given a positive number ω, we define two continuous func-
tions M1,M2 : D × [0, 1) → R as follows

M1(x, t) := −ω|x|
2

√
t
N−2

√
1− t

J1(ω|x|
√
1− t) ,

M2(x, t) := − iω|x|
2

√
t
N−3

√
1− t

J1(iω|x|
√
t(1− t)) ,

(2.1)

where J1 is the 1-st order Bessel function of the first kind, see Appendix B.2.

Using the expression (B.11), we can write

M1(x, t) = −tN2 −1
∑

k≥0

(−1)k
(
ω|x|
2

)2k+2
(1− t)k

k! (k + 1)!
,
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2. Vekua’s theory for the Helmholtz operator

M2(x, t) =
∑

k≥0

(
ω|x|
2

)2k+2
(1− t)k tk+

N
2
−1

k! (k + 1)!
.

Note thatM1 andM2 are radially symmetric in x and belong to C∞(D×(0, 1]).
If N is even, both series converge everywhere, so M1 and M2 have a C∞-
extension to R

N × R.

Definition 2.2.4. We define the Vekua operator V1 : C(D) → C(D) and
the inverse Vekua operator V2 : C(D) → C(D) for the Helmholtz equation
according to

Vj [φ](x) = φ(x) +

∫ 1

0
Mj(x, t)φ(tx) dt ∀ x ∈ D , j = 1, 2 , (2.2)

where C(D) is the space of the complex-valued continuous functions on D.
V1[φ] is called the Vekua transform of φ.

Notice that t 7→Mj(x, t)φ(tx), j = 1, 2, belong to L1([0, 1]) for every x ∈ D;
consequently, V1 and V2 are well defined. The operators V1 and V2 can also be
defined with the same formulas from the space of essentially bounded functions
L∞(D) to itself, or from Lp(D) to itself when p > (2N−2)/(N−2) and N > 2.

This can be verified using Mξ(x, t) = O(t
N
2
−1)t→0 for ξ = 1, 2.

In the following theorem, we summarize general results about the Vekua
operators, while their continuity will be proved in Theorem 2.3.1 below.

Theorem 2.2.5. Let D be a domain as in Assumption 2.2.1; the Vekua op-
erators satisfy:

(i) V2 is the inverse of V1:

V1
[
V2[φ]

]
= V2

[
V1[φ]

]
= φ ∀ φ ∈ C(D) . (2.3)

(ii) If φ is harmonic in D, i.e., solution of the Laplace equation ∆φ = 0,
then

∆V1[φ] + ω2V1[φ] = 0 in D .

(iii) If u is a solution of the homogeneous Helmholtz equation with wavenum-
ber ω > 0 in D, i.e., ∆u+ ω2u = 0, then

∆V2[u] = 0 in D .

Theorem 2.2.5 states that the operators V1 and V2 are inverse to each other
and map harmonic functions to solutions of the homogeneous Helmholtz equa-
tion and vice versa.

The results of this theorem were stated in [194, Chapter 1, § 13.2-3]. In two
space dimensions, the operator V1 followed from the general Vekua theory for
elliptic PDEs; this implies that V1 is a bijection between the space of complex
harmonic function and the space of solutions of the homogeneous Helmholtz
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2.2. N -dimensional Vekua’s theory for the Helmholtz operator

equation.2 The fact that the inverse of V1 can be written as the operator V2
(part (i) of Theorem 2.2.5) was stated in [193], and the proof was skipped as an
“easy calculation”, after reducing the problem to a one-dimensional Volterra
integral equation. Here, we give a completely self-contained and general proof
of Theorem 2.2.5 merely using elementary calculus.

As in Theorem 2.2.5, in this chapter we will usually denote the solutions of
the homogeneous Helmholtz equation with the letter u, and harmonic func-
tions, as well as generic functions defined on D, with the letter φ.

Remark 2.2.6. Theorem 2.2.5 holds with the same proof also for every ω ∈ C,
i.e., for the Helmholtz equation in lossy materials.

Remark 2.2.7. Theorem 2.2.5 holds also for an unbounded or irregular domain:
the only necessary hypotheses are that D has to be open and star-shaped with
respect to the origin. Indeed the proof only relies on the local properties of
the functions on the segment [0,x]. For the same reason, singularities of φ
and u on the boundary of D do not affect the results of the theorem.

Theorem 2.2.5 can be proved by using elementary mathematical analysis
results. We proceed by proving the parts (i) and (ii)-(iii) separately.

Proof of Theorem 2.2.5, part (i). We define a function

g : [0,∞)× [0,∞) → R ,

g(r, t) :=
ω
√
r t

2
√
r − t

J1(ω
√
r
√
r − t) .

Note that if r < t the argument of the Bessel function J1 is imaginary on the
standard branch cut but the function g is always real-valued.

Using the change of variable s = t|x|, for every φ ∈ C(D) and for every
x ∈ D, we can compute

V1[φ](x) = φ(x) +

∫ |x|

0
M1

(
x,

s

|x|
)
φ
(
s
x

|x|
) 1

|x| ds

= φ(x)−
∫ |x|

0

ω|x|
2

√
s

|x|
N−2

√
|x|√

|x| − s

1

|x| J1
(
ω
√

|x|
√

|x| − s
)
φ
(
s
x

|x|
)
ds

= φ(x)−
∫ |x|

0

s
N−4

2

|x|N−2
2

g(|x|, s) φ
(
s
x

|x|
)
ds ,

V2[φ](x) = φ(x) +

∫ |x|

0
M2

(
x,

s

|x|
)
φ
(
s
x

|x|
) 1

|x| ds

= φ(x)−
∫ |x|

0

iω|x|
2

√
s

|x|
N−3

√
|x|√

|x| − s

1

|x| J1
(
iω

√
s
√

|x| − s
)
φ
(
s
x

|x|
)
ds

= φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2
2

g(s, |x|) φ
(
s
x

|x|
)
ds

2The proof in higher space dimensions might be contained in the Georgian language article
[192] that is hard to obtain.
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because s ≤ |x| and we have fixed the sign
√
s− |x| = i

√
|x| − s. Note that

in the expressions for the two operators the arguments of the functions g are
swapped. Now we apply the first operator after the second one, switch the
order of the integration in the resulting double integral and get

V1
[
V2[φ]

]
(x) =

[
φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2
2

g(s, |x|) φ
(
s
x

|x|
)
ds

]

−
∫ |x|

0

s
N−4

2

|x|N−2
2

g(|x|, s)
[
φ
(
s
x

|x|
)
+

∫ s

0

z
N−4

2

s
N−2

2

g(z, s)φ
(
z
x

|x|
)
dz

]
ds

= φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2
2

(
g(s, |x|) − g(|x|, s)

)
φ
(
s
x

|x|
)
ds

−
∫ |x|

0

z
N−4

2

|x|N−2
2

φ
(
z
x

|x|
) ∫ |x|

z

1

s
g(z, s) g(|x|, s) ds dz .

The exchange of the order of integration is possible because φ is continuous
and, in the domain of integration, |s−1z−1g(|x|, s)g(z, s)| ≤ ω4

16 s |x| eω|x|
thanks to (B.14), so Fubini’s theorem can be applied.

Notice that V1
[
V2[φ]

]
= V2

[
V1[φ]

]
, so we only have to show that V2 is a right

inverse of V1. In order to prove that V1
[
V2[φ]

]
= φ it is enough to show that

g(t, r)− g(r, t) =

∫ r

t

g(t, s) g(r, s)

s
ds ∀ r ≥ t ≥ 0 , (2.4)

so that all the integrals in the previous expression vanish, and we are done.
Using (B.11), we expand g in power series (recall that, for k ≥ 0 integer,
Γ(k + 1) = k!):

g(r, t) =
ω2 r t

4

∑

l≥0

(−1)l ω2l rl (r − t)l

22l l! (l + 1)!
, (2.5)

from which we get

g(t, r)− g(r, t) =
ω2 r t

4

∑

l≥0

(−1)l ω2l (r − t)l
(
(−t)l − rl

)

22l l! (l + 1)!
. (2.6)

We compute the following integral using the change of variables z = s−t
r−t and

the expression of the beta integral (B.6)
∫ r

t
s(r − s)j(t− s)k ds = (−1)k(r − t)j+k+1

∫ 1

0
(1− z)jzk

(
zr + (1− z)t

)
dz

= (−1)k(r − t)j+k+1 j! k!

(j + k + 2)!

(
r(k + 1) + t(j + 1)

)
.

(2.7)

Thus, expanding the product of g(t, s) g(r, s) in a double power series, inte-
grating term by term and using the previous identity give
∫ r

t

g(t, s) g(r, s)

s
ds
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(2.5)
=

ω2 r t

4

∑

j,k≥0

(−1)j+k ω2(j+k+1) rj tk

22(j+k+1) j! (j + 1)! k! (k + 1)!

∫ r

t

s2(r − s)j(t− s)k

s
ds

(2.7)
=

ω2 r t

4

∑

j,k≥0

(−1)j ω2(j+k+1) rj tk (r − t)j+k+1

22(j+k+1) (j + 1)! (k + 1)! (j + k + 2)!

(
r(k + 1) + t(j + 1)

)

(l=j+k+1)
=

ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)!

1

l!

l−1∑

j=0

l!
(−1)j rj tl−j−1

(j + 1)! (l − j)!

(
r(l−j) + t(j+1)

)

=
ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)! l!

l−1∑

j=0

[
−
(

l

j + 1

)
(−r)j+1 tl−j−1 +

(
l

j

)
(−r)j tl−j

]

=
ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)! l!

[
−(t− r)l + tl + (t− r)l − (−r)l

]

(2.6)
= g(t, r) − g(r, t) ,

thanks to the binomial theorem and (2.6), where the term corresponding to
l = 0 is zero. This proves (2.4), and the proof is complete.

Proof of Theorem 2.2.5, parts (ii)-(iii). If φ is a harmonic function, then φ ∈
C∞(D), thanks to the regularity theorem for harmonic functions (see, e.g.,
[77, Theorem 3, Section 6.3.1] or [92, Corollary 8.11]). We prove that (∆ +
ω2)V1[φ](x) = 0. In order to do that, we establish some useful identities.

We set r := |x| and compute

∂

∂|x|M1(x, t) = ω
√
1− t

∂

∂(ωr
√
1− t)

[
−

√
t
N−2

2(1 − t)
ωr

√
1− t J1(ωr

√
1− t)

]

(B.16)
= −ω

2r
√
t
N−2

2
J0(ωr

√
1− t),

∆M1(x, t) =
N − 1

r

∂

∂|x|M1(x, t) +
∂2

∂|x|2M1(x, t)

=− ω2
√
t
N−2

2

(
N J0(ωr

√
1− t)− ωr

√
1− t J1(ωr

√
1− t)

)
,

(2.8)
where the Laplacian acts on the x variable.

Since M1 depends on x only through r, we can compute

∆
(
M1(x, t)φ(tx)

)

= ∆M1(x, t) φ(tx) + 2∇M1(x, t) · ∇φ(tx) +M1(x, t)∆φ(tx)

= ∆M1(x, t) φ(tx) + 2
∂

∂|x|M1(x, t)
x

r
· t∇φ

∣∣∣
tx

+ 0

= ∆M1(x, t) φ(tx) + 2
t

r

∂

∂|x|M1(x, t)
∂

∂t
φ(tx) ,

because ∂
∂tφ(tx) = x · ∇φ

∣∣∣
tx
.

29



2. Vekua’s theory for the Helmholtz operator

Finally, we define an auxiliary function f1 : [0, h]× [0, 1] → R by

f1(r, t) :=
√
t
N
J0(ωr

√
1− t) .

This function verifies

∂

∂t
f1(r, t) =

N
√
t
N−2

2
J0(ωr

√
1− t) +

√
t
N
ωr

2
√
1− t

J1(ωr
√
1− t) ,

f1(r, 0) = 0 , f1(r, 1) = 1 .

At this point, we can use all these identities to prove that V1[φ] is a solution
of the homogeneous Helmholtz equation:

(∆ + ω2)V1[φ](x)

= ∆φ(x) + ω2φ(x) +

∫ 1

0
∆
(
M1(x, t)φ(tx)

)
dt+

∫ 1

0
ω2M1(x, t)φ(tx) dt

= ω2φ(x) − ω2

∫ 1

0

√
t
N
J0(ωr

√
1− t)

∂

∂t
φ(tx) dt

− ω2

∫ 1

0

(
N
√
t
N−2

2
J0(ωr

√
1− t)− ωr

√
t
N−2

2

1− t√
1− t

J1(ωr
√
1− t)

+
ωr

√
t
N−2

2
√
1− t

J1(ωr
√
1− t)

)
φ(tx) dt

= ω2φ(x) − ω2

∫ 1

0

(
f1(r, t)

∂

∂t
φ(tx) +

∂

∂t
f1(r, t)φ(tx)

)
dt

= ω2

(
φ(x) −

[
f1(r, t)φ(tx)

]t=1

t=0

)
= 0 .

We have used the values assumed by φ only in the segment [0,x] that lies
inside D, because D is star-shaped with respect to 0. Thus, the values of the
function φ and of its derivative are well defined and the fundamental theorem
of calculus applies, thanks to the regularity theorem for harmonic functions.

Now, let u be a solution of the homogeneous Helmholtz equation. Since
interior regularity results also hold for solutions of the homogeneous Helmholtz
equation, we infer u ∈ C∞(D). In order to prove that ∆V2[u] = 0, we proceed
as before and compute

∂

∂|x|M2(x, t) =
ω2r

√
t
N−2

2
J0(iωr

√
t(1− t)),

∆M2(x, t) =
ω2

√
t
N−2

2

(
N J0(iωr

√
t(1− t))

− iωr
√
t(1− t) J1

(
iωr
√
t(1− t)

))
,

∆(M2(x, t)u(tx)) = ∆M2(x, t)u(tx) + 2
t

r

∂

∂r
M2(x, t)

∂

∂t
u(tx)

− ω2t2M2(x, t)u(tx) ,
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2.3. Continuity of the Vekua operators

and we define the function

f2(r, t) :=
√
t
N
J0(iωr

√
t(1− t)) ,

which verifies

∂

∂t
f2(r, t) =

N
√
t
N−2

2
J0(iωr

√
t(1− t))−

√
t
N
iωr(1− 2t)

2
√
t(1− t)

J1(iωr
√
t(1− t)) ,

f2(r, 0) = 0 , f2(r, 1) = 1 .

We conclude by computing the Laplacian of V2[u]:

∆V2[u](x) = ∆u(x) +

∫ 1

0
∆
(
M2(x, t)u(tx)

)
dt

= −ω2u(x) + ω2

∫ 1

0

√
t
N
J0(iωr

√
t(1− t))

∂

∂t
u(tx) dt

+ ω2

∫ 1

0

√
t
N−2

2

(
N J0(iωr

√
t(1− t))

−iωr
√
t
1− t√
1− t

J1(iωr
√
t(1− t)) +

iωrt
√
t√

1− t
J1(iωr

√
t(1− t))

)
u(tx) dt

= −ω2u(x) + ω2

∫ 1

0

(
f2(r, t)

∂

∂t
u(tx) +

∂

∂t
f2(r, t)u(tx)

)
dt = 0 .

Remark 2.2.8. With a slight modification in the proof, it is possible to show
that V1 transforms the solutions of the homogeneous Helmholtz equation

∆φ+ ω2
0φ = 0

into solutions of
∆φ+ (ω2

0 + ω2)φ = 0

for every ω and ω0 ∈ C, and V2 does the converse.

2.3. Continuity of the Vekua operators

We denote the space of harmonic functions and the space of solutions of the
homogeneous Helmholtz equation with Sobolev regularity j, respectively, by

Hj(D) : =
{
φ ∈ Hj(D) : ∆φ = 0

}
∀ j ∈ N ,

Hj
ω(D) : =

{
u ∈ Hj(D) : ∆u+ ω2u = 0

}
∀ j ∈ N , ω ∈ C .

In the following theorem, we establish the continuity of V1 and V2 in Sobolev
norms with continuity constants as explicit as possible.

Theorem 2.3.1. Let D be a domain as in the Assumption 2.2.1; the Vekua
operators

V1 : Hj(D) → Hj
ω(D) , V2 : Hj

ω(D) → Hj(D) ,
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2. Vekua’s theory for the Helmholtz operator

with Hj(D) and Hj
ω(D) both endowed with the norm ‖·‖j,ω,D defined in (0.2),

are continuous. More precisely, for all space dimensions N ≥ 2, for all φ and
u in Hj(D), j ≥ 0, solutions to Laplace and Helmholtz equations, respectively,
the following continuity estimates hold:

‖V1[φ]‖j,ω,D ≤ C1(N) ρ
1−N

2 (1 + j)
3
2
N+ 1

2 ej
(
1 + (ωh)2

)
‖φ‖j,ω,D , (2.9)

‖V2[u]‖j,ω,D ≤ C2(N,ωh, ρ) (1 + j)
3
2
N− 1

2 ej ‖u‖j,ω,D , (2.10)

where the constant C1 > 0 depends only on the space dimension N , and C2 > 0
also depends on the product ωh and the shape parameter ρ. Moreover, we can
establish the following continuity estimates for V2 with constants depending
only on N :

‖V2[u]‖0,D ≤ CN ρ
1−N

2

(
1 + (ωh)4

)
e

1
2
(1−ρ)ωh

(
‖u‖0,D + h |u|1,D

)
(2.11)

if N = 2, . . . , 5, u ∈ H1(D) ,

‖V2[u]‖j,ω,D ≤ CN ρ
1−N

2 (1 + j)2N−1 ej
(
1 + (ωh)4

)
e

3
4
(1−ρ)ωh ‖u‖j,ω,D

(2.12)

if N = 2, 3, j ≥ 1, u ∈ Hj(D) ,

and the following continuity estimates in L∞-norm:

‖V1[φ]‖L∞(D) ≤
(
1 +

(
(1− ρ)ωh

)2

4

)
‖φ‖L∞(D) (2.13)

‖V2[u]‖L∞(D) ≤
(
1 +

(
(1− ρ)ωh

)2

4
e

1
2
(1−ρ)ωh

)
‖u‖L∞(D) (2.14)

if N ≥ 2, φ, u ∈ L∞(D) .

The last two bounds (2.13) and (2.14) hold true for every u, φ ∈ C(D), even
if they are not solutions of the corresponding PDEs.

Theorem 2.3.1 states that the operators V1 and V2 preserve the Sobolev reg-
ularity when applied to harmonic functions and solutions of the homogeneous
Helmholtz equation (see Theorem 2.2.5). For such functions, these operators
are continuous from Hj(D) to itself with continuity constants that depend
on the wavenumber ω only through the product ωh. In two and three space
dimensions, we can make explicit the dependence of the bounds on ωh. The
only exception is the L2-continuity of V2 (see (2.11)), where a weighted H1-
norm appears on the right-hand side; this is due to the poor explicit interior
estimates available for the solutions of the homogeneous Helmholtz equation.

All the continuity constants are explicit with respect to the order of the
Sobolev norm and depend on D only through its shape parameter ρ and its
diameter h, the latter only appearing within the product ωh.
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2.3. Continuity of the Vekua operators

In the literature, there exist many proofs of the continuity of V1 and V2
in L∞-norm (in two space dimensions); see, for example, [31, 73]. To our
knowledge, the only continuity result in Sobolev norms is the one given in [142,
Section 4.2]: this holds for general PDEs and for norms with non-integer
indices, but is restricted to the two-dimensional case, and the constants in the
bounds are not explicit in the various parameters.

Since the proof of Theorem 2.3.1 is quite lengthy and requires several prelim-
inary results, we give here a short outline. In Lemma 2.3.2, a direct attempt
to compute the Sobolev norms of Vξ[φ] shows that two types of intermediate
estimates are required. The first ones consist in bounds of the kernel functions
M1 and M2 in W j,∞-norms; these are proved in Lemma 2.3.3. The second
ones are interior estimates for harmonic functions and for Helmholtz solutions:
the former are well-known and recalled in Lemma 2.3.9, while the latter are
proved in Lemma 2.3.12. Since we want explicit dependence of the bound-
ing constants on the wavenumber, this step turns out to be the hardest one.
Finally, we combine all these ingredients and prove Theorem 2.3.1.

From here on, if β is a multi-index in N
N , we will denote by Dβ the corre-

sponding differential operator with respect to the space variable x ∈ R
N ; see

(0.1).

Lemma 2.3.2. For ξ = 1, 2, j ≥ 0 and φ ∈ Hj(D), we have

|Vξ[φ]|2j,D ≤ 2 |φ|2j,D + 2(j + 1)3N−2e2j
j∑

k=0

sup
t∈[0,1]

|Mξ(·, t)|2W j−k,∞(D) ·

∑

|β|=k

∫ 1

0

∫

D

∣∣∣Dβφ(tx)
∣∣∣
2
dxdt . (2.15)

Proof. From Definition 2.2.4, we have

∣∣Vξ[φ]
∣∣2
j,D

≤ 2 |φ|2j,D + 2
∑

|α|=j

∫

D

∣∣∣∣
∫ 1

0
Dα (Mξ(x, t)φ(tx)) dt

∣∣∣∣
2

dx

≤ 2 |φ|2j,D + 2
∑

|α|=j

∫

D

∫ 1

0

∣∣∣∣∣∣

∑

β≤α

(
α

β

)
Dα−βMξ(x, t)D

βφ(tx)

∣∣∣∣∣∣

2

dt dx

≤ 2 |φ|2j,D + 2

∫

D

∫ 1

0

∣∣∣∣∣

j∑

k=0

∑

|β|=k

∣∣∣Dβφ(tx)
∣∣∣
∑

|α|=j
α≥β

(
α

β

) ∣∣∣Dα−βMξ(x, t)
∣∣∣
∣∣∣∣∣

2

dt dx ,

where in the second inequality we have applied the Jensen inequality and the
product (Leibniz) rule for multi-indices (see [2, Sect. 1.1]); here, the binomial
coefficient for multi-indices is

(
α
β

)
=
∏N
i=1

(
αi
βi

)
. We multiply by the number

(N+k−1
N−1

)
of the multi-indices β of length k in N

N , in order to move the square
inside the sum, and we obtain

∣∣Vξ[φ]
∣∣2
j,D

≤ 2 |φ|2j,D + 2

∫

D

∫ 1

0
(j + 1)

j∑

k=0

(N+k−1
N−1

)
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2. Vekua’s theory for the Helmholtz operator

·
∑

|β|=k

∣∣∣Dβφ(tx)
∣∣∣
2
∣∣∣∣∣
∑

|α|=j
α≥β

(
α

β

) ∣∣∣Dα−βMξ(x, t)
∣∣∣
∣∣∣∣∣

2

dt dx

≤ 2 |φ|2j,D + 2(j + 1)
(N+j−1
N−1

) j∑

k=0

∑

|β|=k

∫

D

∫ 1

0

∣∣∣Dβφ(tx)
∣∣∣
2
dt dx

· sup
t∈[0,1]

|Mξ(·, t)|2W j−k,∞(D) sup
|β|=k

[
∑

|α|=j
α≥β

(
α

β

)]2
;

the last factor can be bounded as

sup
|β|=k

∑

|α|=j
α≥β

N∏

i=1

(
αi

βi

)
≤ sup

|β|=k

∑

|α|=j
α≥β

N∏

i=1

α
βi
i

βi!
≤
∑

|α|=j
e
∑N
i=1αi

≤ ej · #{α ∈ N
N , |α| = j}

= ej
(N+j−1
N−1

)

(B.10)

≤ ej (1 + j)N−1 ,

from which the assertion follows.

Now we need to bound the terms present in (2.15). The next lemma provides
estimates for M1 and M2 in W j,∞(D)-norm, uniformly in t. The proof relies
on some properties of Bessel functions.

Lemma 2.3.3. The functions M1 and M2 satisfy the following bounds:

‖M1‖L∞(D×[0,1]) ≤
(
(1− ρ) ω h

)2

4
, (2.16)

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) ≤
(1− ρ) ω2 h

2
, (2.17)

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤
ωj

2
(j + (1− ρ) ω h) ∀ j ≥ 2, (2.18)

‖M2‖L∞(D×[0,1]) ≤
(
(1− ρ) ω h

)2

4
e

1
2
(1−ρ)ωh , (2.19)

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D) ≤
(1− ρ) ω2 h

2
e

1
2
(1−ρ)ωh, (2.20)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤
ωj

2j−1

(
j +

(1− ρ) ω h

2

)
e

3
4
(1−ρ)ωh ∀ j ≥ 2 .

(2.21)

Proof. Thanks to Remark 2.2.2, we have that supx∈D |x| ≤ (1 − ρ) h. Now,
the L∞-inequalities (2.16) and (2.19) follow directly from (B.14).
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2.3. Continuity of the Vekua operators

Since M1 and M2 depend on x only through |x|, we obtain the W 1,∞-
bounds (2.17) and (2.20):

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) = sup
t∈[0,1], x∈D

∣∣∣∣
∂

∂|x|M1(x, t)

∣∣∣∣

(B.16)

≤ sup
t∈[0,1],

|x|∈[0,(1−ρ)h]

∣∣∣∣∣
ω2|x|

√
t
N−2

2
J0(ω|x|

√
1− t)

∣∣∣∣∣
(B.13)

≤ (1 − ρ) ω2 h

2
,

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D)

(B.16)

≤ sup
t∈[0,1],

|x|∈[0,(1−ρ)h]

∣∣∣∣∣
ω2|x|

√
t
N−2

2
J0(iω|x|

√
t(1− t))

∣∣∣∣∣

(B.14)

≤ (1− ρ) ω2 h

2
e

1
2
(1−ρ)ωh .

In order to prove (2.18) and (2.21), we define the auxiliary complex-valued
function f(s) := s J1(s). It is easy to verify by induction that its derivative
of order k is

∂k

∂sk
f(s) = k

∂k−1

∂sk−1
J1(s) + s

∂k

∂sk
J1(s) .

We can bound this derivative using (B.17) and the binomial theorem:

∣∣∣∣
∂k

∂sk
f(s)

∣∣∣∣ =
∣∣∣k 1

2k−1

k−1∑

m=0

(−1)m
(
k − 1

m

)
J2m−k+2(s)+

s
1

2k

k∑

m=0

(−1)m
(
k

m

)
J2m−k+1(s)

∣∣∣ ≤ (k + |s|) max
l=1−k,...,1+k

|Jl(s)| . (2.22)

The functions M1 and M2 are related to f by

M1(x, t) = −
√
t
N−2

2(1− t)
f(ω|x|

√
1− t) ,

M2(x, t) = −
√
t
N−4

2(1− t)
f(iω|x|

√
t(1− t)) ,

so we can bound their derivatives of order j ≥ 2:

sup
t∈[0,1]

|M1|W j,∞(D) ≤ sup
t∈[0,1], x∈D

∣∣∣∣
∂j

∂|x|jM1(x, t)

∣∣∣∣

≤ sup
t∈[0,1], x∈D

∣∣∣∣∣

√
t
N−2

2(1− t)

(
ω
√
1− t

)j ∂j

∂(ω|x|
√
1− t)j

f(ω|x|
√
1− t)

∣∣∣∣∣
(2.22), (B.13)

≤ ωj

2
(j + (1− ρ)ωh),

sup
t∈[0,1]

|M2|W j,∞(D)

≤ sup
t∈[0,1], x∈D

∣∣∣∣∣

√
t
N−4

2(1− t)

(
iω
√
t(1− t)

)j ∂j

∂(iω|x|
√
t(1− t))j

f(iω|x|
√
t(1− t))

∣∣∣∣∣
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(2.22), (B.14)

≤ ωj

2j−1

(
j +

(1− ρ)ωh

2

)
e

3
4
(1−ρ)ωh .

Remark 2.3.4. With less detail the bounds of Lemma 2.3.3 for every j ≥ 0 can
be summarized as:

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤ ωj
(
j + (ωh)2

)
, (2.23)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤ ωj (1 + ωh) e
3
4
(1−ρ)ωh . (2.24)

We ignore the algebraic dependence on ρ because it will be absorbed in a
generic bounding constant. In a shape regular domain, a precise lower bound
for ρ ∈ (0, 12 ] can be used to reduce the exponential dependence on ωh.

Remark 2.3.5. If the wavenumber ω = ωR+iωI is complex, the following more
general estimates hold:

‖M1‖L∞(D×[0,1]) ≤
(
(1− ρ)|ω|h

)2

4
e(1−ρ)|ωI |h ,

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) ≤
(1− ρ)|ω|2 h

2
e(1−ρ)|ωI |h ,

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤
|ω|j
2

(
j + (1− ρ)|ω|h

)
e

3
2
(1−ρ)|ω|h ∀ j ≥ 2 ,

‖M2‖L∞(D×[0,1]) ≤
(
(1− ρ)|ω|h

)2

4
e

1
2
(1−ρ)|ωR|h ,

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D) ≤
(1− ρ)|ω|2h

2
e

1
2
(1−ρ)|ωR|h ,

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤
|ω|j
2j−1

(
j +

(1− ρ)|ω|h
2

)
e

3
4
(1−ρ)|ω|h ∀ j ≥ 2 ,

which can be obtained by performing some small changes in the proof of
Lemma 2.3.3.

Remark 2.3.6. By using the bounds in Remark 2.3.5, we can extend Theo-
rem 2.3.1 to every ω ∈ C, similarly to Theorem 2.2.5 (see Remark 2.2.6).
Indeed, the case ω = 0 is trivial, since V1 and V2 reduce to the identity, while
in general, Theorem 2.3.1 holds by substituting ω with |ω| in the estimates
and in the definition of the weighted norm (0.2), multiplying the right-hand

side of (2.9) by e
3
2
|ω|h and that of (2.13) by e(1−ρ)| Imω|h.

Lemma 2.3.7. Let φ ∈ Hk(D), β ∈ N
N be a multi-index of length |β| = k

and Dβ be the corresponding differential operator in the variable x. Then
∫ 1

0

∫

D

∣∣∣Dβφ(tx)
∣∣∣
2
dxdt (2.25)

≤





1

2k −N + 1

∥∥∥Dβφ
∥∥∥
2

0,D
if 2k −N ≥ 0 ,

K
∥∥∥Dβφ

∥∥∥
2

0,D
+
(ρ
2

)2k+1 |D|
2k + 1

∥∥∥Dβφ
∥∥∥
2

L∞(B ρh
2
)

if 2k −N < 0 ,
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where K = log 2
ρ if (2k −N) = −1 and K = (2/ρ)N−1 if (2k −N) < −1, |D|

denotes the measure of D and ρ is given in Assumption 2.2.1.

Proof. In the first case, we can simply compute the integral with respect to t
with the change of variables y = tx:

∫ 1

0

∫

D

∣∣∣Dβφ(tx)
∣∣∣
2
dxdt =

∫ 1

0

∫

tD
t2|β|

∣∣∣Dβφ(y)
∣∣∣
2 dy

tN
dt

≤ 1

2k −N + 1

∥∥∥Dβφ
∥∥∥
2

0,D
;

the set tD is included in D because D is star-shaped with respect to 0.
In the case 2k −N < 0, the integral in t is not bounded so we need to split

it in two parts, treating the second one as before:

∫ 1

0

∫

D

∣∣∣Dβφ(tx)
∣∣∣
2
dxdt

=

∫ ρ
2

0

∫

D

∣∣∣Dβφ(tx)
∣∣∣
2
dxdt+

∫ 1

ρ
2

∫

D

∣∣∣Dβφ(tx)
∣∣∣
2
dxdt

≤
∫ ρ

2

0
t2|β| dt|D|

∥∥∥Dβφ
∥∥∥
2

L∞(B ρh
2
)
+

∫ 1

ρ
2

t2k−N
∥∥∥Dβφ

∥∥∥
2

0,tD
dt

=
1

2k + 1

(ρ
2

)2k+1
|D|
∥∥∥Dβφ

∥∥∥
2

L∞(B ρh
2
)
+

∫ 1

ρ
2

t2k−N
∥∥∥Dβφ

∥∥∥
2

0,tD
dt ,

and the assertion comes from the expression

1∫

ρ
2

t2k−N dt =





log
2

ρ
if 2k −N = −1 ,

1−
(ρ
2

)2k−N+1

2k −N + 1
≤
(
2

ρ

)N−1

if 2k −N < −1 .

Remark 2.3.8. We can summarize the bounds of Lemma 2.3.7 for every value
of the multi-index length k with the estimate

∫ 1

0

∫

D

∣∣∣Dβφ(tx)
∣∣∣
2
dxdt

≤
(
2

ρ

)N−1 ∥∥∥Dβφ
∥∥∥
2

0,D
+
(ρ
2

)2k+1 |D|
2k + 1

∥∥∥Dβφ
∥∥∥
2

L∞(B ρh
2
)
.

(2.26)

From Lemma 2.3.7, it is clear that, in order to prove the continuity of V1 and
V2 in the L2-norm and in high-order Sobolev norms, we need interior estimates
that bound the L∞-norm of φ and its derivatives in a small ball contained in
D with its L2-norm and Hj-norms in D. It is easy to find such estimates for
harmonic functions, thanks to the mean value theorem (see, e.g., Theorem 2.1
of [92]).

Notice that it is not possible to avoid the use of interior estimates for the
continuity in Hj(D) when j ≥ N

2 , as the assertion of Lemma 2.3.7 might
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2. Vekua’s theory for the Helmholtz operator

suggest: indeed, Lemma 2.3.2 requires to estimate
∫ 1
0

∫
D

∣∣Dβφ(tx)
∣∣2 dxdt for

all the multi-index lengths |β| = k ≤ j, so we inevitably confront the cases
2k −N = −1 and 2k −N < −1.

Lemma 2.3.9 (Interior estimates for harmonic functions). Let φ be a har-
monic function in BR(x), R > 0. Then

|φ(x)|2 ≤ 1

RN |B1|
‖φ‖20,BR(x) , (2.27)

where |B1| = π
N
2

Γ(N
2
+1)

is the volume of the unit ball in R
N (see (B.8)). If

φ ∈ Hk(D) and β ∈ N
N , |β| ≤ k, then

∥∥∥Dβφ
∥∥∥
2

L∞(B ρh
2
)
≤ 1

|B1|

(
2

ρh

)N ∥∥∥Dβφ
∥∥∥
2

0,D
, (2.28)

Proof. By the mean value property of harmonic functions (see Theorem 2.1
of [92]) and the Jensen inequality, we get the first estimate:

|φ(x)|2 =
∣∣∣∣∣

1

|BR(x)|

∫

BR(x)
φ(y) dy

∣∣∣∣∣

2

≤ 1

|BR|

∫

BR(x)
|φ(y)|2 dy =

1

RN |B1|
‖φ‖20,BR(x) .

The second bound follows by applying the first one to the derivatives of φ,
which are harmonic in the ball B ρh

2
(x) ⊂ Bρh ⊂ D.

Remark 2.3.10. The interior estimates for harmonic functions are related to
Cauchy’s estimates for their derivatives. Theorem 2.10 in [92] states that,
given two domains Ω1 ⊂ Ω2 ⊂ R

N such that d(Ω1, ∂Ω2) = d, if φ is harmonic
in Ω2, then for every multi-index α it holds

‖Dαφ‖L∞(Ω1)
≤
(
N |α|
d

)|α|
‖φ‖L∞(Ω2)

. (2.29)

In order to find analogous estimates for the Sobolev norms, we can combine
(2.29) and (2.27) using the intermediate domain {x ∈ R

N : d(x,Ω1) <
d
2}

and obtain
‖Dαφ‖0,Ω1

≤ CN,α|Ω1|N/2 d−|α|−N/2 ‖φ‖20,Ω2
,

but the order of the power of d is not satisfactory. In order to improve it,
we represent the derivatives of a harmonic function ψ in B1 ⊂ R

N using the
Poisson kernel P (y, z) = (1− |y|2)/|y − z|N :

Dαψ(y) =

∫

SN−1

ψ(z) Dα1 P (y, z) dS(z) y ∈ B1, ∀ α ∈ N
N ,
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2.3. Continuity of the Vekua operators

where the derivatives of P are taken with respect to the first variable (see (1.15)
and (1.22) in [14]). By rewriting this formula in y = 0 and then translating
in a point x, if ψ is harmonic in B1(x), we have

Dαψ(x) =

∫

SN−1

ψ(x+ z) Dα1 P (0, z) dS(z) ∀ α ∈ N
N .

Given two domains Ω̂1 ⊂ Ω̂2 such that d(Ω̂1, ∂Ω̂2) = 1, if φ̂ is harmonic in Ω̂2,
it holds

∥∥∥Dαφ̂
∥∥∥
0,Ω̂1

=

∫

Ω̂1

|Dαφ̂(x)|2 dx =

∫

Ω̂1

∣∣∣∣
∫

SN−1

φ̂(x+ z) Dα1 P (0, z) dS(z)

∣∣∣∣
2

dx

y=x+z

≤ |SN−1|
∫

SN−1

(∫

Ω̂2

|φ̂(y)|2 dy

)
|Dα1 P (0, z)|2 dS(z) ≤ CN,α

∥∥∥φ̂
∥∥∥
0,Ω̂2

,

where we have used the Jensen inequality and the Fubini theorem. By sum-
ming over all the multi-indices of the same length and scaling the domains
such that Ω1 ⊂ Ω2 ⊂ R

N and d(Ω1, ∂Ω2) = d, we finally obtain

|φ|j+k,Ω1
≤ CN,j,k d

−k |φ|j,Ω2
, j, k ∈ N . (2.30)

We can use the bicontinuity of the Vekua operator to prove an analogous result
for the solutions of the Helmholtz equations; see Lemma 3.5.1.

The main tool used to prove the interior estimates for harmonic functions
is the mean value theorem. For the solutions of the homogeneous Helmholtz
equation, we have an analogous mean value formula [64, page 289] but it does
not provide good estimates.

Another way to prove interior estimates for the solutions of the homogeneous
Helmholtz equation is to use the Green formula for the Laplacian in a ball, but
this gives estimates that either involve the H1-norm of u on the right-hand
side of the bound or give bad orders in the domain diameter R.

A third way is to use the technique presented in Lemma 4.2.7 of [142] for
the two-dimensional case. This method can be generalized only to three space
dimensions, and does not provide estimates with only the L2-norm of u on the
right-hand side. On the other hand, it is possible to make the dependence of
the bounding constants on ωR explicit. We will prove these interior estimates
in Lemma 2.3.12.

A more general way is to use Theorem 8.17 of [92]. This holds in every
space dimension with the desired norms and the desired order in R. The
only shortcoming of this result is that the bounding constant still depends on
the product ωR but this dependence is not explicit. We report this result in
Theorem 2.3.11.

Summarizing: we are able to prove interior estimates for homogeneous
Helmholtz solutions with sharp order in R in two fashions. Theorem 2.3.11
works in any space dimension and with only the L2-norm on the right-hand
side. Lemma 2.3.12 works only in low space dimensions and with different
norms but the constant in front of the estimates is explicit in ωR. Both tech-
niques, however, allow to prove the final best approximation results we are
looking for with the same order and in the same norms.

39



2. Vekua’s theory for the Helmholtz operator

Theorem 2.3.11. (Interior estimates for Helmholtz solutions, version 1).3

For every N ≥ 2, let u ∈ H1(BR(x0)) be a solution of the homogeneous
Helmholtz equation. Then there exists a constant C > 0 depending only on the
product ωR and the dimension N , such that

‖u‖L∞(BR
2
(x0))

≤ C(ωR,N) R−N
2 ‖u‖0,BR(x0)

. (2.31)

Lemma 2.3.12. (Interior estimates for Helmholtz solutions, version 2). Let
the function u ∈ H1(BR(x0)) be a solution of the inhomogeneous Helmholtz
equation

−∆u− ω2u = f ,

with f ∈ H1(BR(x0)). Then there exists a constant C > 0 depending only on
the space dimension N such that

‖u‖L∞(BR
2
(x0))

≤ C R−1
((

1 + ω2R2
)
‖u‖0,BR(x0)

+R ‖∇u‖0,BR(x0)
(2.32)

+R2 ‖f‖0,BR(x0)

)
for N = 2,

‖u‖L∞(BR
2
(x0))

≤ C R−N
2

(
(1 + ω2R2) (‖u‖0,BR(x0) +R ‖∇u‖0,BR(x0))

(2.33)

+R2 ‖f‖0,BR(x0) +R3 ‖∇f‖0,BR(x0)
)

for N = 3, 4, 5,

‖∇u‖L∞(BR
2
(x0))

≤ C R−N
2

(
ω2R ‖u‖0,BR(x0)

+ (1 + ω2R2) ‖∇u‖0,BR(x0)

(2.34)

+R ‖f‖0,BR(x0)
+R2 ‖∇f‖0,BR(x0)

)
for N = 2, 3.

Remark 2.3.13. In the homogeneous case, i.e., f = 0, Lemma 2.3.12 reads as
follows. Let u ∈ H1(BR(x0)) be a solution of the homogeneous Helmholtz
equation. Then there exists a constant C > 0 depending only on the space
dimension N such that for

N = 2, 3, 4, 5 :

‖u‖L∞(BR
2
(x0))

≤ C R−N
2 (1 + ω2R2) (‖u‖0,BR(x0)

+R ‖∇u‖0,BR(x0)
) ,

(2.35)

N = 2, 3 :

‖∇u‖L∞(BR
2
(x0))

≤ C R−N
2

(
ω2R ‖u‖0,BR(x0)

+ (1 + ω2R2) ‖∇u‖0,BR(x0)

)
.

(2.36)

Proof of Lemma 2.3.12. It is enough to bound |u(x0)| and |∇u(x0)|, because
for all x ∈ BR

2
(x0) we can repeat the proof using BR

2
(x) instead of BR(x0)

with the same constants. We can also fix x0 = 0.

3This is exactly Theorem 8.17 of [92]; with that notation, for the homogeneous Helmholtz
equation we have k(R) = 0, λ = 1, Λ =

√
N , ν = ω and p = 2 (q is not relevant for the

homogeneous problem); see also page 178 of [92].
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Let ϕ : R+ → [0, 1] be a smooth cut-off function such that

ϕ(r) =

{
1 |r| ≤ 1

4 ,

0 |r| ≥ 3
4 ,

and ϕR : RN → [0, 1], ϕR(x) := ϕ
( |x|
R

)
. Then

∇ϕR(x) = ϕ′
( |x|
R

)
x

R|x| , ∆ϕR(x) =
1

R2
ϕ′′
( |x|
R

)
+
N − 1

R|x| ϕ
′
( |x|
R

)
.

We define the average of u and two auxiliary functions on BR:

u :=
1

|BR|

∫

BR

u(y) dy ,

g(x) := u(x) ϕR(x) , g(x) := (u(x) − u) ϕR(x) ;

their Laplacians are:

f̃(x) : = f̃1(x) + f̃2(x) + f̃3(x) := −∆g(x)

= −
[
1

R2
ϕ′′( |x|

R

)
+
N − 1

R|x| ϕ
′( |x|
R

)]
u(x)− 2ϕ′( |x|

R

) x

R|x| · ∇u(x)

+ ϕ
( |x|
R

)
(ω2u(x) + f(x)) ,

f(x) : = f1(x) + f2(x) + f3(x) := −∆g(x)

= −
[
1

R2
ϕ′′( |x|

R

)
+
N − 1

R|x| ϕ
′( |x|
R

)]
(u(x)− u)− 2ϕ′( |x|

R

) x

R|x| · ∇u(x)

+ ϕ
( |x|
R

)
(ω2u(x) + f(x)) .

The fundamental solution formula for Poisson equation states that, if a is
solution of −∆a = b in R

N , then

a(x) =

∫

RN

Φ(x− y) b(y) dy, with Φ(x) =





− 1

2π
log |x| N = 2,

|x|2−N
N(N − 2)|B1|

N ≥ 3 .

(2.37)
The identity (2.37) holds for all b ∈ L2(BR), thanks to Theorem 9.9 of [92].
We notice that

|∇Φ(x)| =
∣∣∣∣−

1

N |B1|
x

|x|N
∣∣∣∣ =

1

N |B1|
|x|1−N ∀ N ≥ 2 .

We start by bounding |u(0)| for N = 2. In this case, it is easy to see that,
for all R > 0, we have

∫

BR

(
log |x| − logR

)2
dx =

π

2
R2 . (2.38)
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We note that from the divergence theorem
∫

BR

f̃(y) dy = −
∫

BR

∆g(y) dy = −
∫

∂BR

∇g(s) · nds = 0 ,

because g ≡ 0 in R
2 \B 3

4
R and, since f̃ = 0 outside B 3

4
R then f̃ has zero mean

value in the whole R
2.

We apply (2.37) with a = g and b = f̃ ; using the Cauchy–Schwarz inequality,
the identity (2.38) and the fact that f̃ has zero mean value in R

2, we obtain:

|u(0)| = |g(0)| =
∣∣∣∣−

1

2π

∫

R2

(
log |y| − logR

)
f̃(y) dy

∣∣∣∣ ≤
1

2π

√
π

2
R ‖f̃‖0,B 3

4R

≤ CN,ϕR

(
1

R2
‖u‖0,BR +

1

R
‖∇u‖0,BR + ω2 ‖u‖0,BR + ‖f‖0,BR

)
,

where the constant CN,ϕ depends only on N and ϕ; in the last step we have

used the definition of f̃ and the fact that ϕ′( |x|R ) = 0 in BR
4
. The estimate

(2.32) easily follows.

Proving all the other bounds (on |u(0)| for N > 2 and on |∇u(0)| for N ≥ 2)
is more involved. We fix p, p′ > 1 such that 1

p+
1
p′ = 1. For α > 0, we calculate

‖|y|α‖Lp′ (BR) =
(∫

SN−1

∫ R

0
rαp

′
rN−1 dr dS

) 1
p′

=

( |SN−1|
αp′ +N

) 1
p′

R
α+N

p′ = CN,p′,αR
α+N−N

p ,

(2.39)

that holds if αp′+N 6= 0, that is equivalent to (α+N)p 6= N , for every N ≥ 2.
We compute also

‖Φ‖Lp(B 3
4R

\B 1
4R

) = CN,p

(
|SN−1|

∫ 3
4
R

1
4
R
r(2−N)p rN−1 dr

) 1
p

= CN,p |SN−1|
1
p

((
3

4
R

)(2−N)p+N

−
(
1

4
R

)(2−N)p+N
) 1

p

= CN,p R
2−N+N

p , (2.40)

for every p 6= N
N−2 , N ≥ 3, and the analogous

‖∇Φ‖Lp(B 3
4R

\B 1
4R

) = CN,p

(
|SN−1|

∫ 3
4
R

1
4
R
r(1−N)p rN−1 dr

) 1
p

= CN,p R
1−N+N

p ,

(2.41)

that holds for every p 6= N
N−1 , N ≥ 2.

For all ψ ∈ H1
0 (BR), using scaling arguments, the continuity of the Sobolev

embeddings H1
0 (B1) →֒ Lp(B1) which hold provided that 2 ≤ p ≤ 2N

N−2 , if
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N ≥ 3, and 2 ≤ p < ∞, if N = 2 (see [2, Theorem 5.4,I,A-B]), and the
Poincaré inequality, we obtain

‖ψ‖Lp(BR) = R
N
p ‖ψ̂‖Lp(B1) ≤ CN,p R

N
p ‖ψ̂‖1,B1

≤ CN,p R
N
p ‖∇ψ̂‖0,B1 ≤ CN,p R

N
p
+1−N

2 ‖∇ψ‖0,BR .
(2.42)

Now we can estimate u in the case N ≥ 3. From the Hölder inequality for
the pair of spaces Lp

′
, Lp, p > 2 (thus, p′ < 2), and the fact that f̃1 ≡ f̃2 ≡ 0

in B 1
4
R (see the definition of f̃), we can write

|u(0)| = |g(0)| =
∣∣∣∣
∫

RN

Φ(x)f̃(x) dx

∣∣∣∣

≤ ‖Φ‖Lp(B 3
4R

\B 1
4R

) ‖f̃1 + f̃2‖Lp′ (B 3
4R

\B 1
4R

) + ‖Φ‖Lp′(BR) ‖f̃3‖Lp(BR) .

Using (2.40) to bound the Lp-norm of Φ, the continuity of the embedding of
Lp

′
(B 3

4
R \ B 1

4
R) into L2(B 3

4
R \ B 1

4
R) (recall that 1 < p′ < 2) with constant

|B 3
4
R \B 1

4
R|

1
p′
− 1

2 for the norm of f̃1 + f̃2, the definition (2.37) of Φ and (2.39)

with α = 2 − N , which requires p > N
2 , to bound the Lp

′
-norm of Φ, and

finally (2.42), which requires 2 ≤ p ≤ 2N
N−2 , to bound the norm of f̃3 (recall

that f̃3 ∈ H1
0 (BR)), we have

|u(0)| ≤ CN,pR
2−N+N

p |B 3
4
R|

1
p′
− 1

2

∥∥∥f̃1 + f̃2

∥∥∥
0,B 3

4R
\B 1

4R

+ CN,pR
2−N

p R
N
p
+1−N

2

∥∥∥∇f̃3
∥∥∥
0,BR

.

Finally, using the definitions of the f̃i’s, |∇ϕR| ≤ 1
RCϕ and 1

p + 1
p′ = 1 we

obtain

|u(0)| ≤ CN,p,ϕR
2−N+N

p R
N
p′
−N

2

(
1

R2
‖u‖0,BR +

1

R
‖∇u‖0,BR

)

+ CN,p,ϕR
3−N

2

(
ω2 ‖∇u‖0,BR + ‖∇f‖0,BR +

1

R
ω2 ‖u‖0,BR +

1

R
‖f‖0,BR

)

≤ CN,p,ϕ R
−N

2

(
(1 + ω2R2) ‖u‖0,BR +R (1 + ω2R2) ‖∇u‖0,BR

+R2 ‖f‖0,BR +R3 ‖∇f‖0,BR
)
.

The previous argument for bounding |u(0)| requires that there exists p such
that N

2 < p ≤ 2N
N−2 , which is possible only if N < 6; this is the reason of the

upper bound on the space dimension in the statement.

In order to conclude this proof, we have to estimate |∇u(0)|. We use the
same technique as before, after differentiating the relation (2.37) with a = g
and b = f . For every N ≥ 2, thanks to (2.41), the embedding of Lp

′
(B 3

4
R \

B 1
4
R) into L2(B 3

4
R \ B 1

4
R), (2.39) with α = 1 − N and (2.42), that require
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N < p ≤ 2N
N−2 , we have

|∇u(0)| = |∇g(0)| =
∣∣∣∣
∫

RN

∇Φ(x)f(x) dx

∣∣∣∣
≤ ‖∇Φ‖Lp(B 3

4R
\B 1

4R
) ‖f1 + f2‖Lp′ (B 3

4R
\B 1

4R
)

+ ‖∇Φ‖Lp′ (BR) ‖f3‖Lp(BR)
≤ CN,pR

1−N+N
p |B 3

4
R|

1
p′
− 1

2 ‖f1 + f2‖0,B 3
4R

\B 1
4R

+ CN,pR
1−N

p R
N
p
+1−N

2 ‖∇f̃3‖0,BR .

By using the Poincaré–Wirtinger inequality, whose constant scales with R, to
bound ‖u− u‖0,BR , we obtain

|∇u(0)| ≤ CN,p,ϕ R
−1−N

2

(
R−2 ‖u− u‖0,BR +R−1 ‖∇u‖0,BR

)

+ CN,p,ϕ R
2−N

2

(
R−1

∥∥ω2u+ f
∥∥
0,BR

+
∥∥∇(ω2u+ f)

∥∥
0,BR

)

≤ CN,p,ϕ R
−N

2

(
ω2R ‖u‖0,BR + (1 + ω2R2) ‖∇u‖0,BR

+R ‖f‖0,BR +R2 ‖∇f‖0,BR
)
,

The requirement that there exists p such that N < p ≤ 2N
N−2 can be satisfied

only if N < 4.

Remark 2.3.14. Lemma 2.3.12 is the only result in this chapter which we are
not able to generalize to every space dimensions N ≥ 2. This is because in
its proof we make use of a pair of conjugate exponents p and p′ such that the
fundamental solution Φ of the Laplace equation (together with its gradient)
belongs to Lp

′
(BR) and, at the same time, H1(BR) is continuously embedded

in Lp(BR). This requirement yields the upper bounds on the space dimension
we have required in the statement of Lemma 2.3.12.

Combining the results of the previous lemmas, we can now prove Theo-
rem 2.3.1.

Proof of Theorem 2.3.1. We start by proving the continuity bound (2.9) for
V1. For every j ∈ N, N ≥ 2, φ ∈ Hj(D), inserting (2.23) and (2.26) into (2.15)
with ξ = 1, we have

|V1[φ]|j,D ≤
[
2 |φ|2j,D + 2(1 + j)3N−2e2j

j∑

k=0

ω2(j−k)(j − k + (ωh)2
)2

·
((

2

ρ

)N−1

|φ|2k,D +
(ρ
2

)2k+1 |D|
2k + 1

∑

|β|=k

∥∥∥Dβφ
∥∥∥
2

L∞(B ρh
2
)

)] 1
2

.

Then, using the interior estimates (2.28), we get

|V1[φ]|j,D ≤ CN (1 + j)
3
2
N−1+1 ej

(
1 + (ωh)2

)
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·
[

j∑

k=0

ω2(j−k)
(
ρ1−N + ρ2k+1 |D|

(ρh)N

)
|φ|2k,D

] 1
2

≤ CN ρ
1−N

2 (1 + j)
3
2
N ej

(
1 + (ωh)2

)
‖φ‖j,ω,D ,

by the definition of weighted Sobolev norms (0.2), and because |D| ≤ hN and
ρ < 1. The constant CN depends only on the dimension N of the space.
Passing from the seminorms to the complete Sobolev norms gives an extra
coefficient (1 + j)1/2 and the bound (2.9) follows.

In order to prove the continuity bound (2.10) for V2, we proceed similarly.
For every j ∈ N, N ≥ 2, u ∈ Hj

ω(D), inserting (2.24) and (2.26) into (2.15)
with ξ = 2, we have

|V2[u]|j,D ≤
[
2 |u|2j,D + 2(1 + j)3N−2e2j

j∑

k=0

ω2(j−k)(1 + ωh)2e
3
2
(1−ρ)ωh

·
((

2

ρ

)N−1

|u|2k,D +
(ρ
2

)2k+1 |D|
2k + 1

∑

|β|=k

∥∥∥Dβu
∥∥∥
2

L∞(B ρh
2
)

)] 1
2

(2.31)

≤ C(N,ωh, ωρh) (1 + j)
3
2
N−1 ej

·
[

j∑

k=0

ω2(j−k)
(
ρ1−N + ρ2k+1 |D|

(ρh)N

)
|u|2k,D

] 1
2

≤ C(N,ωh, ρ) (1 + j)
3
2
N−1 ej ‖u‖j,ω,D .

Again, passing from the seminorms to the complete Sobolev norms gives an
extra coefficient (1 + j)1/2 and the bound (2.10) follows.

Now we proceed by proving the bounds (2.11), (2.12) and (2.14) for V2 with
constants depending only on N .

For the continuity bound (2.11) for the V2 operator from H1(D) to L2(D),
we repeat the same reasoning as above. If u ∈ H1

ω(D), N = 2, . . . , 5, using the
definition of V2, (2.19), (2.26) and (2.35), we have

‖V2[u]‖0,D ≤
[
2 ‖u‖20,D + 2 ‖M2‖2L∞(D×[0,1])

∫ 1

0

∫

D
|u(tx)|2 dxdt

]1
2

≤
[
2 ‖u‖20,D + 2

(
(ωh)2

4
e

1
2
(1−ρ)ωh

)2 [(
2

ρ

)N−1

‖u‖20,D

+
ρ

2
|D|
(
CN (ρh)

−N
2
(
1 + (ωρh)2

)(
‖u‖0,D + ρh ‖∇u‖0,D

))2]] 1
2

≤CN ρ
1−N

2
(
1 + (ωh)4

)
e

1
2
(1−ρ)ωh( ‖u‖0,D + ρh ‖∇u‖0,D

)
,

which immediately gives (2.11).
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Let us now prove (2.12). To this end, given a multi-index β ∈ N
N , we need

to bound
∥∥Dβu

∥∥
L∞(B ρh

2
)
. If |β| = 0, for N = 2, 3, 4, 5, we simply use (2.35)

and get

∥∥∥Dβu
∥∥∥
L∞(B ρh

2
)
= ‖u‖L∞(B ρh

2
) (2.43)

≤ CN (ρh)
−N

2 (1 + ω2ρ2h2)
(
‖u‖0,D + ρh ‖∇u‖0,D

)
.

If |β| = j ≥ 1, we note that there exists another multi-index α ∈ N
N of length

|α| = j − 1, such that for N = 2, 3 and u ∈ Hj
ω(D) it holds

∥∥∥Dβu
∥∥∥
L∞(B ρh

2
)
≤ ‖∇Dαu‖L∞(B ρh

2
) (2.44)

≤ CN (ρh)
−N

2

(
ω2ρh ‖Dαu‖0,D +

(
1 + (ωρh)2

)
‖∇Dαu‖0,D

)
,

thanks to (2.36). Notice that the restriction to N = 2, 3 in this proof is due
to the use of (2.36). Again, inserting (2.24) and (2.26) into (2.15) with ξ = 2
gives

|V2[u]|j,D ≤ CN

[
|u|2j,D + (1 + j)3N−2 e2j

j∑

k=0

ω2(j−k)(1 + ωh)2e
3
2
(1−ρ)ωh

·
(
ρ1−N |u|2k,D + ρ2k+1|D|

∑

|β|=k

∥∥∥Dβu
∥∥∥
2

L∞(B ρh
2
)

)] 1
2

≤ CN (1 + j)
3
2
N−1 ej (1 + ωh) e

3
4
(1−ρ)ωh

·
[

j∑

k=0

ω2(j−k)
(
ρ1−N |u|2k,D + ρ2k+1|D|

∑

|β|=k

∥∥∥Dβu
∥∥∥
2

L∞(B ρh
2
)

)] 1
2

,

and thus, as a consequence of (2.43) and (2.44), we obtain

|V2[u]|j,D ≤ CN (1 + j)
3
2
N−1 ej (1 + ωh) e

3
4
(1−ρ)ωh

·
[
ω2jρ1−N

(
‖u‖20,D +

|D|
hN

(1 + ω2ρ2h2)2
(
‖u‖0,D + ρh ‖∇u‖0,D

)2)

+

j∑

k=1

ω2(j−k)ρ1−N
(
|u|2k,D + ρ2k

(N+k−1
N−1

) |D|
hN

·
(
ω2ρh |u|k−1,D + (1 + ω2ρ2h2) |u|k,D

)2)
] 1

2

≤ CN (1 + j)
3
2
N−1 ρ

1−N
2 ej (1 + ωh) e

3
4
(1−ρ)ωh

·
[
ω2j(1 + ω2h2)2

(
‖u‖0,D + h ‖∇u‖0,D

)2
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+

j∑

k=1

ω2(j−k)(1 + k)N−1
(
ω2h |u|k−1,D + (1 + ω2h2) |u|k,D

)2
] 1

2

≤ CN (1 + j)2N− 3
2 ρ

1−N
2 ej (1 + ωh) e

3
4
(1−ρ)ωh

·
[
(
1 + (ωh)2

)2
ω2j ‖u‖20,D +

(
(ωh)2 + (ωh)6

)
ω2(j−1) |u|21,D

+ (ωh)2
j∑

k=1

ω2(j−k+1) |u|2k−1,D +
(
1 + (ωh)2

)2 j∑

k=1

ω2(j−k) |u|2k,D

] 1
2

≤ CN (1 + j)2N− 3
2 ρ

1−N
2 ej

(
1 + (ωh)4

)
e

3
4
(1−ρ)ωh ‖u‖j,ω,D ,

where the binomial coefficient comes from the number of the multi-indices β
of length |β| = k and is bounded by (B.10). As before, passing from the
seminorms to the complete Sobolev norms gives an extra coefficient (1+ j)1/2

and the bound (2.12) follows.
Finally, we prove the continuity of V1 and V2 in the L∞-norm stated in

Equations (2.13), (2.14). Thanks to the definition of V1 and V2 and the bounds
(2.16) and (2.19), we have

‖V1[φ]‖L∞(D) ≤
(
1 + ‖M1‖L∞(D×[0,1])

)
‖φ‖L∞(D)

≤
(
1 +

(
(1− ρ)ωh

)2

4

)
‖φ‖L∞(D) ,

‖V2[u]‖L∞(D) ≤
(
1 +

(
(1− ρ)ωh

)2

4
e

1
2
(1−ρ)ωh

)
‖u‖L∞(D) ,

that holds for every φ, u ∈ L∞(D) and for every N ≥ 2. This proves (2.13)
and (2.14), the proof of Theorem 2.3.1 is complete.

Remark 2.3.15. In Section 4.2 of [142] the continuity of the two-dimensional
Vekua operators has been proved in Sobolev norms with (positive) non-integer
regularity exponent j. The same result would immediately follow here, with
constants explicitly depending on the problem parameters, if both the sequence
of spaces Hj(D) of harmonic functions and the sequence of spaces Hj

ω(D) of
harmonic functions constituted Sobolev scales. In [128, Theorem 1.4], this is
proved for Hj(D) (and for solutions of equations defined by general elliptic ho-
mogeneous operators) provided that the Sobolev spaces with non-integer reg-
ularity exponent are defined as restrictions of Bessel potential spaces Lps(RN )
(cf. [2, 7.59-7.66]). However, the analogous result for solutions of the Helm-
holtz equation seems not to be available.

2.4. Generalized harmonic polynomials

Our interest in Vekua’s theory is motivated by its use in the derivation of ap-
proximation estimates for the solutions of the homogeneous Helmholtz equa-
tion by finite dimensional spaces of particular functions: the generalized har-
monic polynomials.
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2. Vekua’s theory for the Helmholtz operator

Definition 2.4.1. A function u ∈ C(D) is called a generalized harmonic
polynomial of degree L if its inverse Vekua transform V2[u] is a harmonic
polynomial of degree L.

Thanks to the results of the previous sections, the generalized harmonic
polynomials are solutions of the homogeneous Helmholtz equation with wave-
number ω and belong to Hk(D) for every k ∈ N, so they are also in C∞(D).

Let u be a solution to the homogeneous Helmholtz equation in D, and let PL
be an approximation of the harmonic function V2[u] in the space of harmonic
polynomials of degree at most L in a suitable Sobolev norm, for which an esti-
mate of the approximation error is available. Then, using the continuity of V1
and V2 given by (2.9) and (2.12), respectively, one can derive an approxima-
tion estimate for u− V1[PL] (V1[PL] is a generalized harmonic polynomial) in
a suitable ω-weighted Sobolev norm (we will do this in Chapter 3). This also
implies that, if D is such that the harmonic polynomials are dense in Hk(D)
for some k, then the generalized harmonic polynomials are dense in Hk

ω(D),
see Remark 3.3.5.

In order to explicitly write the generalized harmonic polynomials, we prove
the following lemma.

Lemma 2.4.2. If φ ∈ C(D) is an l-homogeneous function with l ∈ R, l > −N
2 ,

i.e., there exists g ∈ L2(SN−1) such that

φ(x) = g
( x

|x|
)
|x|l ∀ x ∈ D ,

then its Vekua transform is

V1[φ](x) = Γ
(
l +

N

2

) ( 2

ω

)l+N
2
−1

g
( x

|x|
)
|x|1−N

2 Jl+N
2
−1(ω|x|) ∀ x ∈ D .

(2.45)

Proof. Using the beta integral (B.6), we can directly compute the Vekua trans-
form from the definition of V1:

V1[φ](x) = g
( x

|x|
)
|x|l +

∫ 1

0
g
( x

|x|
)
(|x|t)l M1(x, t) dt

= g
( x

|x|
)
|x|l

(
1 +

∫ 1

0
tlM1(x, t) dt

)

= g
( x

|x|
)
|x|l


1−

∫ 1

0
tl+

N
2
−1
∑

j≥0

(−1)j
(
ω|x|
2

)2j+2
(1− t)j

j! (j + 1)!
dt




= g
( x

|x|
)
|x|l


1−

∑

j≥0

(−1)j
(
ω|x|
2

)2j+2

j! (j + 1)!

Γ
(
l + N

2

)
Γ(j + 1)

Γ
(
l + N

2 + j + 1
)




k=j+1
= g

( x

|x|
)
|x|l


1 +

∑

k≥1

(−1)k
(
ω|x|
2

)2k

k! Γ
(
l + N

2 + k
) Γ

(
l +

N

2

)


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= g
( x

|x|
)
|x|l

∑

k≥0

(−1)k
(
ω|x|
2

)2k

k! Γ
(
l + N

2 + k
) Γ

(
l +

N

2

)

= Γ
(
l +

N

2

)
g
( x

|x|
)
|x|1−N

2

(
2

ω

)l+N
2
−1∑

k≥0

(−1)k
(
ω|x|
2

)2k+l+N
2
−1

k! Γ
(
l + N

2 + k
)

= Γ
(
l +

N

2

) ( 2

ω

)l+N
2
−1

g
( x

|x|
)
|x|1−N

2 Jl+N
2
−1(ω|x|) .

The condition l > −N
2 is necessary to ensure a finite value of the integral∫ 1

0 t
l+N

2
−1(1− t)j dt.

As a consequence, the general (non homogeneous) harmonic polynomial of
degree L and its Vekua transform can be written in terms of spherical har-
monics and hyperspherical Bessel functions (see the Appendices B.2 and B.4)
as

P (x) =
L∑

l=0

n(N,l)∑

m=1

al,m |x|l Y m
l

( x

|x|
)
, (2.46)

V1[P ](x) = |x|1−N
2

L∑

l=0

n(N,l)∑

m=1

al,m Γ
(
l+N

2

)( 2

ω

)l+N
2
−1

Y m
l

( x

|x|
)
Jl+N

2
−1(ω|x|)

=




2
N
2
−1∑L

l=0

∑n(N,l)
m=1 al,m Γ

(
l + N

2

) (
2
ω

)l
Y m
l

(
x
|x|
)
jNl (ω|x|) N even,

2
N−1

2√
π

∑L
l=0

∑n(N,l)
m=1 al,m Γ

(
l + N

2

) (
2
ω

)l
Y m
l

(
x
|x|
)
jNl (ω|x|) N odd.

(2.47)

If N = 2, identifying R
2 with the complex plane C and using the complex

variable z = reiψ, (2.45) gives directly

P (z) =

L∑

l=−L
al r

|l| eilψ, (2.48)

V1[P ](z) =

L∑

l=−L
al |l|!

(
2

ω

)|l|
eilψ J|l|(ωr) . (2.49)

If N = 3, we use the definition of spherical Bessel function (B.18) to get

P (x) =

L∑

l=0

l∑

m=−l
al,m |x|l Y m

l

( x

|x|
)
, (2.50)

V1[P ](x) =
2√
π

L∑

l=0

l∑

m=−l
al,m Γ

(
l +

3

2

) ( 2

ω

)l
Y m
l

( x

|x|
)
jl(ω|x|) (2.51)

=

L∑

l=0

l∑

m=−l
al,m

(2l + 1)!

l!

(
1

2ω

)l
Y m
l

( x

|x|
)
jl(ω|x|) ,
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2. Vekua’s theory for the Helmholtz operator

where {Y m
l }m=−l,...,l are a basis of spherical harmonics of order l, and we

have used the property (B.5). This means that the generalized harmonic
polynomials in 2D and 3D are the well-known circular and spherical waves,
respectively; they are often called Fourier-Bessel functions.

The Jacobi–Anger expansion, together with formula (2.49), can be used to
compute the inverse Vekua transform of a two-dimensional plane wave with
propagation direction d = (cos θ, sin θ):

V2[e
iωx·d](reiψ)

(B.34)
= V2

[∑

l∈Z
ilJl(ωr) e

il(ψ−θ)
]

(2.49)
=

∑

l∈Z
il

1

|l|!

(
ωr

2

)|l|
eil(ψ−θ)

=
∑

l∈N

1

l!

(
iωr

2
ei(ψ−θ)

)l
+
∑

l∈N

1

l!

(−iωr
2

e−i(ψ−θ)
)l

− 1

= ei
ωr
2
ei(ψ−θ)

+ e−i
ωr
2
e−i(ψ−θ) − 1

= e−i
ωr
2
e−i(ψ−θ)(

ei
ωr
2
(ei(ψ−θ)+e−i(ψ−θ)) + 1

)
− 1

= e−i
ωr
2
e−i(ψ−θ)(

eiωr cos(ψ−θ) + 1
)
− 1 .

The corresponding result in three dimensions is not fully explicit:

V2[e
iωx·d](x)

(B.35)
= V2

[
4π
∑

l∈N
il jl(ω|x|)

l∑

m=−l
Y m
l

( x

|x|
)
Y m
l (d)

]

(2.51)
= 4π

∑

l∈N
il

l!

(2l + 1)!
(2ω|x|)l

l∑

m=−l
Y m
l

( x

|x|
)
Y m
l (d)

(B.32)
=

∑

l∈N

l!

(2l)!
(2 i ω |x|)l Pl

( x

|x| · d
)

x ∈ R
3 , d ∈ S

2 ,

where Pl is the Legendre polynomial of degree l (see Appendix B.3).

2.4.1. Generalized harmonic polynomials as Herglotz functions

In this section, we define an important family of solutions of the homogeneous
Helmholtz equation, the Herglotz functions (see [59, Def. 3.14]), and show that
the generalized harmonic polynomials belong to this class. This result can be
used to prove approximation properties of homogeneous Helmholtz solutions
by plane waves, as it has been done in [142, Prop. 8.4.14].

Definition 2.4.3. Given a function g ∈ L2(SN−1) we define the Herglotz
function wg with Herglotz kernel g and wavenumber ω as the function in
C∞(RN ) defined by

wg(x) :=

∫

SN−1

g(d) eiωx·d dS(d) x ∈ R
N . (2.52)
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2.4. Generalized harmonic polynomials

Figure 2.3.: The real and imaginary parts of the two-dimensional generalized
harmonic polynomials V1[z

l], l = 0, . . . , 3, ω = 10, in [−1, 1]2.
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2. Vekua’s theory for the Helmholtz operator

The Herglotz functions are entire solutions of the homogeneous Helmholtz
equation. For N = 2, if the kernel g is a piecewise constant function, they are
usually called “wave bands” (cf. [172,188]).

It is known that the Herglotz functions are dense in Hk
ω(D) with respect to

the Hk(D)-norm or the C∞(D) topology, whenever D is a Ck−1,1 domain; the
proof is given in Theorem 2 of [201]. As already mentioned, if D is such that
the harmonic polynomials are dense in Hk(D), then the generalized harmonic
polynomials, which are Herglotz functions, are dense in Hk

ω(D). This means
that, for k ≥ 2, we generalize the result of [201] to different assumptions on
the domain D; see Remark 3.3.5.

In Remark 6.2.4 we will define the vector version of the Herglotz functions,
and we will study their relation with Maxwell’s equations.

Lemma 2.4.4. Let P be a harmonic polynomial of degree L ∈ N in R
2 or RN ,

N ≥ 3, defined as in (2.48) or in (2.46), respectively. Then the corresponding
generalized harmonic polynomial V1[P ] is a Herglotz function wg with Herglotz
kernel

g(θ) =

L∑

l=−L
al

|l|!
2π

(
2

iω

)|l|
eilθ N = 2 ,

g(d) =

L∑

l=0

n(N,l)∑

m=1

al,m
Γ
(
l + N

2

)

2 π
N
2

(
2

iω

)l
Y m
l (d) N ≥ 3 ,

where {Y m
l }l∈N; 1≤m≤n(N,l) is any orthonormal basis of spherical harmonics

(see B.4).

Proof. We only have to use the Jacobi–Anger expansions combined with the
addition theorem for spherical harmonics, in two and N dimensions (see Equa-
tions (B.34), (B.36)) to verify that the Herglotz functions with the kernels
written above correspond to (2.49) and (2.47), respectively.

In two space dimensions with polar coordinates z = r eiψ we have

wg(z) =

∫ 2π

0

L∑

l=−L
al

|l|!
2π

(
2

iω

)|l|
eilθ eiωr(cos ψ,sinψ)·(cos θ,sin θ) dθ

=

L∑

l=−L
al

|l|!
2π

(
2

iω

)|l| ∫ 2π

0
eilθ eiωr cos(ψ−θ) dθ

(B.34)
=

L∑

l=−L
al

|l|!
2π

(
2

iω

)|l| ∫ 2π

0
eilθ

∑

l′∈Z
il

′
Jl′(ωr) e

il′(ψ−θ) dθ

=
L∑

l=−L

∑

l′∈Z
al

|l|!
2π

(
2

iω

)|l|
il

′
Jl′(ωr) e

ilψ

∫ 2π

0
ei(l−l

′)θ dθ

(B.12)
=

L∑

l=−L
al |l|!

(
2

ω

)|l|
J|l|(ωr) e

ilψ (2.49)
= V1[P ](z) ,
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2.4. Generalized harmonic polynomials

where in the second last step we have used the identity
∫ 2π
0 ei(l−l

′)θ dθ = 2π δl,l′ .
In the previous chain of equalities, we could exchange the order of summation
and integration because the serie in l′ converges uniformly and absolutely in
[0, 2π], thanks to (B.14).

In higher space dimensions N , we use the orthonormality of the spherical

harmonics
∫
SN−1 Y

m
l Y m′

l′ = δl,l′δm,m′ dS(d):

wg(x) =

∫

SN−1

L∑

l=0

n(N,l)∑

m=1

al,m
Γ
(
l + N

2

)

2π
N
2

(
2

iω

)l
Y m
l (d) eiωx·d dS(d)

(B.36)
=

∫

SN−1

L∑

l=0

n(N,l)∑

m=1

al,m
Γ
(
l + N

2

)

2π
N
2

(
2

iω

)l
Y m
l (d)

·
∑

l′≥0

n(N,l′)∑

m′=1

(N − 2)!! |SN−1| il′ jNl′ (ω|x|) Y m′

l′

( x

|x|
)
Yl′m′(d) dS(d)

(B.8)
=

(N − 2)!!

Γ
(
N
2

)
L∑

l=0

n(N,l)∑

m=1

al,m Γ
(
l +

N

2

) ( 2

ω

)l
Y m
l

( x

|x|
)
jNl (ω|x|)

(2.47), (B.7)
= V1[P ](x) .

Lemma 2.4.4 also gives an easy formula to compute the Vekua transform of
any Herglotz function wg, given the expansion of its kernel g in harmonics. In
two dimensions, for {al} ∈ ℓ2(Z), r > 0, ψ ∈ [0, 2π] and the usual identification
between R

2 and C,

V2

[ ∫ 2π

0
eiω cos(ψ−θ) ∑

l∈Z
al e

ilθ dθ

]
(reiψ)

= V2

[
2π
∑

l∈Z
al i

|l| J|l|(ωr) e
ilψ

]
(reiψ)

= 2π
∑

l∈Z
al

1

|l|!
( iωr

2

)|l|
eilψ .

Notice that eiωx·d = eiωr(cosψ cos θ+sinψ sin θ) = eiω cos(ψ−θ) for every point x =
(r cosψ, r sinψ) ∈ R

2 and direction d = (cos θ, sin θ) ∈ S
1.

In higher dimensions N ≥ 3, for every x ∈ R
N , {al,m} ∈ ℓ2({l ∈ N, 0 ≤

m ≤ n(N, l)}), we have the analogous formula

V2

[ ∫

SN−1

eiωx·d
∞∑

l=0

n(N,l)∑

m=1

al,m Y m
l (d) dd

]
(x)

= V2

[
2π

N
2

(ω|x|
2

)1−N
2

∞∑

l=0

n(N,l)∑

m=1

al,m il Jl+N
2
−1(ω|x|)Y m

l

( x

|x|
)]

(x)
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2. Vekua’s theory for the Helmholtz operator

= 2π
N
2

∞∑

l=0

n(N,l)∑

m=1

al,m
1

Γ
(
l + N

2

)
( iω|x|

2

)l
Y m
l

( x

|x|
)
. (2.53)

In three dimensions, the spherical harmonic Y m
l is the kernel of the Herglotz

function

wYml (x)
(2.53)
= 2π3/2

(ω|x|
2

)−1/2
il Jl+1/2(ω|x|) Y m

l

( x

|x|
)

(B.18)
= 4π il jl(ω|x|) Y m

l

( x

|x|
)
. (2.54)
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3. Approximation of homogeneous
Helmholtz solutions

3.1. Introduction

In this chapter we consider finite dimensional function spaces spanned by plane
wave functions with different directions dl ∈ S

N−1, l = 1, . . . , p:

PWω,p(R
N ) :=

{
u ∈ C∞(RN ) : u(x) =

p∑

l=1

αl e
iωx·dl , αl ∈ C

}
, p ∈ N .

Our aim is to derive approximation estimates of the form

inf
w∈PWω,p(RN )

‖u−w‖j,ω,D ≤ ε ‖u‖k,ω,D ∀ u ∈ Hk(D), ∆u+ ω2u = 0 in D ,

(3.1)

for 0 ≤ j < k, where D ⊂ R
N , N = 2, 3, is a bounded domain, and the

wavenumber weighted norms have been defined in (0.2). Of course, in (3.1)
we will establish the dependence of ε on the size and the geometry of D,
the wavenumber ω, the number p of directions dk of plane waves, and the
regularity indices j and k. Moreover, as illustrated by the norms employed in
the bound, our principal interest is in the case of limited smoothness of u.

To tackle (3.1) we take a detour via spaces of generalized harmonic polyno-
mials defined and described in Section 2.4. These functions owe their pivotal
role to the fact that they can be mapped to harmonic polynomials through
the Vekua operators and these are bijective and continuous in suitable Sobolev
spaces, as described in Chapter 2.

In Section 3.2.1 we prove h-version approximation estimates for harmonic
functions by harmonic polynomials in any space dimension, using a simple
Bramble–Hilbert argument. Sharp two dimensional p-estimates were proved
in [144], heavily relying on complex analysis techniques, we report them in
Section 3.2.2. For the p-estimates in higher space dimensions, relying on the
result of [19], in Section 3.2.3 we prove algebraic convergence, but with order of
convergence depending on the shape of the domain in an unknown way. Using
the continuity of Vekua operators, approximation estimates for homogeneous
Helmholtz solutions in the spaces of generalized harmonic polynomials can be
obtained from approximation estimates of harmonic functions by harmonic
polynomials, this is done in Section 3.3.

Now the task apparently reduces to estimating how well the generalized
harmonic polynomials can be approximated by plane waves:

inf
w∈PWω,p(RN )

‖u− w‖j,ω,D ≤ ‖u−Q‖j,ω,D + inf
w∈PWω,p(RN )

‖Q− w‖j,ω,D ,

(3.2)
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3. Approximation of homogeneous Helmholtz solutions

for some judiciously chosen generalized harmonic polynomial Q, which is
“close” to u. The chief target of Section 3.4 is to estimate the second term.
In order to do this, we prove algebraic orders of convergence in h and more
than exponential speed in p, the number of plane waves used in the approx-
imation. The argument is based on the truncation and the inversion of the
Jacobi–Anger expansion. In two space dimensions, any choice of propagation
directions for the plane waves used in the approximation is allowed, while in
three space dimensions, we ask for a mild requirement for the h-convergence
and a much stronger one for the p-convergence.

However, we eventually have to arrive at bounds in terms of u, which en-
tails scrutinizing the link between u and Q in (3.2): this link is provided by
Vekua’s theory. In Section 3.5, we will combine all the results obtained in the
previous sections and write the final best approximation estimates for homo-
geneous Helmholtz solutions by plane waves (see Theorems 3.5.2 and 3.5.3,
and Corollary 3.5.5).

Concerning the approximation by plane waves, the only results previously
known are due to O. Cessenat and B. Després [46,47] and to J.M. Melenk [142].
However, they suffer a few disadvantages: they hold only for two-dimensional
domains, the dependence on the wavenumber is not explicit, the orders are not
optimal and there are no estimates which give simultaneous convergence in the
meshsize h and in the local dimension p. The approximation by generalized
harmonic polynomials in two space dimensions has been studied in great detail
in [142, 144], the corresponding one in higher dimensions appears to be new.
All the main results of this chapter are summarized in [150].

The h-estimates can be proved in domains D that satisfy Assumption 2.2.1,
see Remarks 3.3.2 and 3.5.6. On the other hand, the p-estimates will require
the following stronger assumption.

Assumption 3.1.1. Let D ⊂ R
N , N ≥ 2, be a bounded open set such that

• ∂D is Lipschitz,

• there exists ρ ∈ (0, 1/2] such that Bρh ⊆ D, where h := diamD,

• there exists 0 < ρ0 ≤ ρ such that D is star-shaped with respect to every
point of the ball Bρ0h.

Assumption 2.2.1 allowed ρ0 to be equal to zero, i.e., in order to define the
Vekua operators and to prove their continuity, the domain was required to be
star-shaped only with respect to a point (the origin).

3.2. Approximation of harmonic functions

3.2.1. h-estimates

The standard h-estimates for polynomial spaces are based on the Bramble–
Hilbert theorem, introduced for the first time in [35]. We are interested in
constructing explicitly the approximating polynomial, so we use a different
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3.2. Approximation of harmonic functions

version of this result. The approximating polynomials are usually constructed
by using one of the following two different strategies: the first one consists in
averaging Taylor polynomials on subsets of the domain D, alone (like in [71])
or multiplied with smooth cut off functions (cf. [38, Lemma 4.3.8]); the second
one consists in summing homogenous polynomials constructed with backward
induction from averages of the derivatives of the function to be approximated
(like in [195] and [156, Theorem 3.6.10-11]). We will pursue both policies, the
outcomes are described in Theorems 3.2.2 and 3.2.3, respectively. Here the
important consideration is that, in all the considered cases, if the function to be
approximated is harmonic then the polynomial obtained with these procedures
will be harmonic as well.

We define the Taylor polynomial and its averaged counterpart according
to [71], using the notation of [38, Section 4.1]. Given a function φ ∈ Cm−1(D),
the multivariate Taylor polynomial of order m of φ, centered at y ∈ D, is

Tmy [φ](x) :=
∑

|α|<m

1

α!
Dαφ(y)(x − y)α . (3.3)

Definition 3.2.1. Given a domain D as in Assumption 3.1.1 and a function
φ ∈ Hm−1(D), the averaged Taylor polynomial of order m of φ is

Qmφ(x) : =
1

|Bρ0h|

∫

Bρ0h

Tmy [φ](x) dy

=
1

|Bρ0h|

∫

Bρ0h

∑

|α|<m

1

α!
Dαφ(y) (x− y)α dy .

(3.4)

Notice that both Tmy [φ] and Qmφ are polynomial of degree at most m− 1.
It is possible to define Qmφ for every φ ∈ L1(Bρ0h) (see [38, Prop. 4.1.12]).

For every multi-index β such that |β| ≤ m− 1,

DβTmy [φ](x) =
∑

|α|<m
α≥β

1

α!
Dαφ(y)

α!

(α− β)! (x− y)α−β

=
∑

|γ|<m−|β|

1

γ!
Dβ+γφ(y) (x− y)γ = T

m−|β|
y [Dβφ](x) ,

DβQmφ(x) =
1

|Bρ0h|

∫

Bρ0h

T
m−|β|
y [Dβφ](x) dy = Qm−|β|Dβφ(x) ;

(3.5)

see also [38, Proposition 4.1.17]. This fact, together with the linearity of
Qm, implies that if φ is harmonic then the polynomials Tmy [φ] and Qmφ are
harmonic for every m ∈ N:

∆Tmy [φ] =
N∑

i=1

∂2

∂x2i
Tmy [φ] =

N∑

i=1

Tm−2
y

[ ∂2
∂x2i

φ
]
= Tm−2

y [∆φ] = 0 ,

∆Qmφ =

N∑

i=1

∂2

∂x2i
Qmφ =

N∑

i=1

Qm−2 ∂
2

∂x2i
φ = Qm−2∆φ = 0 .

(3.6)

57



3. Approximation of homogeneous Helmholtz solutions

In Theorem 3.2.2 we report the final corollary of [71] in the case of harmonic
φ and p = q = 2. The proof relies on a bound of the Hardy–Littlewood
maximal function of the derivatives of φ. The bounding constant is fully
explicit and depends on the geometry of D only through its diameter h and
the parameter ρ0.

Theorem 3.2.2 (Bramble–Hilbert for harmonic functions, version 1). Let D
be a domain as in Assumption 3.1.1, m ∈ N, m ≥ 1, and φ ∈ Hm(D) be
a harmonic function. Then the averaged Taylor polynomial Qmφ of order m
(and degree m− 1) is harmonic and approximates φ with the estimates

|φ−Qmφ|j,D ≤ 2

(
N + j − 1

N − 1

)
(m− j)

( ∑

|β|=m−j
(β!)−2

) 1
2 hm−j

ρ
N/2
0

|φ|m,D (3.7)

for j = 0, . . . ,m− 1.

Using the bound on the binomial coefficient (B.10) and the multinomial
theorem that provides formula (B.9), we can write the estimate (3.7) in a
simpler form:

|φ−Qmφ|j,D ≤ 2 (1 + j)N−1 Nm−j

(m− j − 1)!

hm−j

ρ
N/2
0

|φ|m,D 0 ≤ j ≤ m− 1 .

(3.8)

Analogous bounds for Taylor polynomials averaged with cutoff functions are
given in [38, Lemma 4.3.8] and [106, Theorem 2.1.2].

Notice that even though the constant in the bound (3.7) decreases with m,
this is not a p-estimate: the convergence is not guaranteed if the degree of the
polynomial is raised. Indeed the norm on the right-hand side depends on m
and blows up for singular φ’s: Taylor polynomials are effective only “locally”,
i.e., for h-estimates.

Using the powerful result of [195] and the mean value theorem for harmonic
functions, it is possible to prove an analogous error estimate that (i) not
require the domain to be star-shaped with respect to the ball Bρ0h but only
with respect to the origin (it satisfies Assumption 2.2.1 instead of the stronger
3.1.1) and (ii) allows to use the standard Taylor polynomials instead of the
averaged ones. Property (ii) will be useful in Section 6.3 (in particular, to
prove Lemma 6.3.1). The bounding constant is completely explicit but a bit
more complicated than the one in (3.8).

This approach is closer to the original work of J.H. Bramble and S.R. Hilbert
(cf. [35], [156, Theorem 3.6.10-11]) since the polynomial is constructed with
backward induction from averages of the derivatives of φ on (subsets of) D.

Theorem 3.2.3 (Bramble–Hilbert for harmonic functions, version 2). Let φ
be a harmonic function that belongs to Hm(D), where the domain D satisfies
Assumption 2.2.1, and m ∈ N. Then, the Taylor polynomial Tm+1

0 [φ] of order
m + 1 (and degree m), centered at the origin, is harmonic and approximates
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3.2. Approximation of harmonic functions

φ with error

∣∣φ− Tm+1
0 [φ]

∣∣
j,D

≤ η
m+1−j

2

(
1 + j

2π
⌈m+1−j

N

⌉
)N−1

2

Nm−j+ 5
2 hm+1−j |φ|m+1,D ,

(3.9)

for every 0 ≤ j ≤ m, where

η =





2 + log
(
1−ρ
ρ

)
N = 2 ,

2
(
1−ρ
ρ

)N−2
N > 2 .

Proof. Borrowing the notation of [195], we define the parameter

κ := sup
y∈∂D

|y| / inf
y∈∂D

|y|

that satisfies 1 ≤ κ ≤ (1− ρ)/ρ, thanks to Assumption 2.2.1, and the function

K3(z) :=

{
log z − 1

2 +
1
2z

−2 N = 2 ,
2

N(N−2)z
N−2 − 1

N−2 +
1
N z

−2 N > 2 .

Sections 1 and 4 of [195] provide a polynomial of degree m, denoted with
Pm,Bφ, that approximates φ with the bound

|φ− Pm,Bφ|j,D

≤ max

{
4
( 4

π2
+

1

N(N + 2)

)
κN−2 −

(12
π2

+
4

N(N + 2)

)
κ−2, K3(κ)

}m+1−j
2

(
N + j − 1

j

) 1
2
(

(m+ 1− j)!
(
⌈m+1−j

N ⌉!
)N
) 1

2

hm+1−j |φ|m+1,D

(B.10),(B.2)

≤ η
m+1−j

2 (1 + j)
N−1

2

(
2π
⌈m+ 1− j

N

⌉) 1−N
2
Nm−j+ 5

2 hm+1−j |φ|m+1,D

where η is defined as in the theorem’s assertion. We used (16/π2 + 1/2) −
(12/π2 + 1/2)κ−2 < 2 + log κ (for the case N = 2, with κ > 1) and 16/π2 +
4/15 < 2 (for the case N > 2).

We only have to show that Pm,Bφ can be chosen as the Taylor polynomial
Tm+1
0 [φ].
We denote with B the ball Bρh ⊂ D and we use the notation πB , pk,B(·),

Pm,B from Section 2 of [195]. The mean value theorem for harmonic functions
gives

πBψ :=
1

|B|

∫

B
ψ(x) dx = ψ(0) (3.10)

for any harmonic function ψ. We show that the polynomials pk,B(φ) defined
in [195, Eq. (2.3), (2.4)] satisfy

pk,B(φ)(x) =
∑

k≤|α|≤m

1

α!
xαDαφ(0) . (3.11)
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3. Approximation of homogeneous Helmholtz solutions

We will proceed by (backward) induction from k = m to k = 0. The case
k = m holds thanks to [195, (2.3)] and (3.10).

Assume that (3.11) holds for k, then for every multi-index β ∈ N
N :

Dβpk,B(φ)(x) =
∑

k≤|α|≤m
α≥β

1

α!

α!

(α− β)!x
α−βDαφ(0)

γ=α−β
=

∑

k−|β|≤|γ|≤m−|β|

1

γ!
xγDγ+βφ(0)

which implies

∆pk,B(φ)(x) =
∑

k−2≤|γ|≤m−2

1

γ!
xγDγ∆φ(0) = 0 .

We show the induction assertion:

pk−1,B(φ)(x)

[195, (2.4)],
(3.10)
= pk,B(φ)(x) +

∑

|α|=k−1

1

α!
xα
(
Dαφ(0) −Dαpk,B(φ)(0)

)

= pk,B(φ)(x) +
∑

|α|=k−1

1

α!
xαDαφ(0) =

∑

k−1≤|α|≤m

1

α!
xαDαφ(0) ,

because pk,B(φ) is harmonic and (by induction assumption) is a polynomial
with only terms of degree greater or equal than k, so its (k − 1)th derivatives
vanish at the origin.

This immediately gives the identity:

Pm,Bφ(x) = p0,B(φ)(x) =
∑

0≤|α|≤m

1

α!
xαDαφ(0) = Tm+1

0 [φ](x) .

Notice that the bounding constant in (3.8) is decreasing with respect to
m − j, while the constant in Theorem 3.2.3 grows exponentially in m if the
condition h > N−1η−

1
2 is verified.

For general functions φ ∈ Hm(D), the Taylor polynomial is not well-defined
since it requires point evaluations of φ and its derivatives, therefore the aver-
aged one has to be used. In our case φ is harmonic, thus all its derivatives are
continuous in the interior of the domain and the use of Taylor polynomials is
legitimate.

A constructive Bramble–Hilbert theorem for domains that are not star-
shaped is given in Section 7 of [70]. Since we plan to use this estimates
together with Vekua’s operators, we are not interested in those more general
domains.

3.2.2. p-estimates in two space dimensions

In two dimensions sharp p-estimates are provided by Theorem 2.9 of [144]. Its
proof uses complex analysis techniques (see [142, Theorem 2.2.10]): R2 is iden-
tified with C and the harmonic function φ to be approximated is considered
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3.2. Approximation of harmonic functions

as the sum of the real parts of two holomorphic functions: φ = Reφ1+ iReφ2.
Then, φ1 and φ2 are interpolated by complex polynomials P1 and P2, respec-
tively, in the points that are the images of {e2πik/n}k=1,...,n under a conformal
map ϕ : C\B1 → C\D and the interpolation error is estimated with an integral
formula; the sum ReP1+iReP2 of these polynomials will be a complex-valued
harmonic polynomial that approximates φ. All the fundamental steps in the
proof (representation of harmonic functions with holomorphic ones, conformal
mappings, complex interpolation in B1, equivalence between complex and har-
monic polynomials) cannot be directly generalized to dimensions higher than
two.

Definition 3.2.4. We say that the domain D ⊂ R
2 ≡ C satisfies the exterior

cone condition with angle λDπ, λD ∈ (0, 1] if for every z ∈ C \D there is a
cone C ⊂ C \D with vertex in z and congruent to

C0(λDπ, r) = {x ∈ C | 0 < arg x < λDπ, |x| < r} .

It can be seen that if a domain D ⊂ R
2 satisfies Assumption 3.1.1, then it

satisfies also the exterior cone condition with parameter λ ≥ 2
π arcsin(

ρ0
1−ρ).

Any convex domain satisfies the exterior cone condition with angle π (i.e.,
λD = 1) while for a general smooth (C1) domain λD = 1 − ǫ, with ǫ > 0, is
required.

Theorem 3.2.5 (Theorem 2.9, [144]). Let D ∈ R
2 be a domain as in As-

sumption 3.1.1 that satisfies the exterior cone condition with angle λDπ and
φ ∈ Hk+1(D), k integer ≥ −1. Then for every L ≥ k there exists a harmonic
polynomial PL of degree L such that

|φ− PL|j,D ≤ C hk+1−j
(
log(L+ 2)

L+ 2

)λD(k+1−j)
|φ|k+1,D j = 0, . . . , k+1 ,

(3.12)
where the constant C depends only on k and the shape of D.

The term (L+ 2)−λD(k+1−j) gives the algebraic convergence of the approx-
imation when the degree of the polynomials is raised. These orders are sharp
as shown in the numerical examples provided in [144, Section 2.4]. The speed
of convergence can be improved when the singularities of φ are located on
convex corners of the domain (see [144, Corollary 2.13]).

For complete polynomial spaces, the term (log(L + 2))λD(k+1−j) can be
avoided in the best approximation spectral estimates, but it is not guaran-
teed that, given a harmonic function, this sharper estimate is attained by a
harmonic polynomial.

Remark 3.2.6. If the harmonic function φ is defined in a larger domain D′ ⊃ D
then the approximation error converges to zero with exponential order in L.
The speed of convergence depends on the so-called “conformal distance” be-
tween D and the boundary of D′; see for example [144, Corollary 2.7], [31,
Theorem 6.3.3], [196] for bounds in L∞- and W j,∞-norms and [143, Proposi-
tion 2.15] for a bound in Sobolev norms on analytic domains. We will see a
bound of this kind in Theorem 3.2.10.
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3. Approximation of homogeneous Helmholtz solutions

3.2.3. p-estimates in N space dimensions

In two space dimensions, there are several results concerning the approxima-
tion of harmonic functions by harmonic polynomials; for example, a large part
of the book [198] is devoted to this problem. Since all the proofs are based
on complex analysis techniques, only very few of them have been generalized
to higher space dimensions. The proof of the density of three-dimensional
harmonic polynomials dates back to the work of Bergman and Walsh (see
[28, 161, 197]) but the first estimates of the speed of convergence are much
more recent (see [8, 20]).

The technique used by J.M. Melenk in the proof of Theorem 3.2.5 is based
on a special deformation of the harmonic (holomorphic in two dimensions)
function to a function defined in a larger domain. Then, a classical result of
complex analysis gives exponential convergence in the original domain, since
it is compactly contained in the enlarged one; the dilation reduce the speed of
convergence to an algebraic order.

In order to exploit the same idea in higher space dimensions, we need a result
that gives exponential convergence in compact subdomains with a suitable
dependence on the size of the extended domain. This result is provided by [19]
and reported here in Theorem 3.2.10. This fact allows to prove Theorem 3.2.12
below, which generalizes Theorem 3.2.5 to higher space dimensions. For L
large enough, the obtained order of convergence in L is algebraic and equal
to λD(k+ 1− j). The main difference between the 2– and the N -dimensional
result is that the geometric constant λD for the latter (N ≥ 3) is not explicit,
even for convex domains. This fact prevents the hp-estimates from being fully
explicit.

In order to apply the compact subset convergence theorem, we need to
require that our domain D is the interior of the complement of a John domain.
We report the definition of John domain, according to [19].

Definition 3.2.7. A domain Ω ⊂ R
N is called a John domain if RN \ Ω is

nonempty and compact and there is a constant 0 < J ≤ 1 such that for every
y ∈ Ω there exists a locally rectifiable curve γ(s) ⊂ Ω, parameterized by the
arclength, with γ(0) = y and γ(∞) = ∞, such that d(γ(s),RN \Ω) ≥ sJ , for
every positive s.

In two dimensions, if Ω is a John domain with constant J , then the interior of
its complement D = R

2 \Ω, satisfies the exterior cone condition with constant
λD = 2/π arcsin J . The converse is not true, in general, but it depends on the
star-shapedness of D.

Remark 3.2.8. Let D ⊂ R
N be a domain as in Assumption 3.1.1; the exterior

R
N \D is a John domain with constant J ≥ ρ0/(1 − ρ): for every y /∈ D it

is possible to choose the curve γ of Definition 3.2.7 as the half line γ(s) =
(1 + s/|y|)y. In two dimensions, the cone

⋃
s≥0Bρ0s/(1−ρ)(γ(s)) lies outside

D, as shown in Figure 3.1.

Lemma 3.2.9. In any dimension N ≥ 2 an open bounded set D ⊂ R
N is

convex if and only if the interior of its complement RN \D is a John domain
with constant J = 1.
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3.2. Approximation of harmonic functions

Figure 3.1.: The exterior of D is a John domain with J ≥ ρ0/(1− ρ). Given a
point y = γ(0) inside the re-entrant corner, the curve γ(s) is the
dashed half line.
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Proof. If D is convex, we suppose without loss of generality that 0 ∈ D. For
every y /∈ D the curve γ(s) = (1+s/|y|)y satisfies Definition 3.2.7 with J = 1.

We prove the converse by contradiction: we assume D to be non-convex and
R
N \D to be a John domain with J = 1. Since D is non-convex there exist w1

and w2 ∈ D such that (w1 +w2)/2 /∈ D and since D is also open there exists
r ∈ (0, |w1−w2|/2) such that Br(w1)∪Br(w2) ⊂ D. We assume without loss
of generality that w1 = (0, . . . , 0, z) and w2 = −w1; z > r follows.

By definition of John domain, there exists a curve γ(s) in the arclength s
such that γ(0) = (w1 + w2)/2 = 0 and d

(
γ(s), Br(w1) ∪ Br(w2)

)
≥ s for

every real s > 0. We fix s∗ = z2/r − r and we have that γ(s∗) ∈ Bs∗ because
γ is parameterized by the arclength. We have:

s∗ ≤ d
(
γ(s∗), Br(w1) ∪Br(w2)

)
≤ sup

y∈Bs∗
d
(
y, Br(w1) ∪Br(w2)

)

= d
(
(s∗, 0, . . . , 0), Br(w1) ∪Br(w2)

)
= |(s∗, 0, . . . , 0) −w1| − r

=
√
s2∗ + z2 − r =

√
z4

r2
+ r2 − 2z2 + z2 − r

=

√
z4 + r2(r2 − z2)

r2
− r

r<z
<

z2

r
− r = s∗ ,

that is a contradiction because the last inequality is strict. This implies that
if J is equal to 1, then D must be convex.

The fundamental approximation result by harmonic polynomials in arbi-
trary dimensions is Theorem 1 of [19]. Assumption 3.1.1 and Remark 3.2.8
guarantee that the hypotheses of this theorem are verified.

Theorem 3.2.10 (Theorem 1, [19]). Let D ⊂ R
N satisfy Assumption 3.1.1.

Then there exist constants p > 0, b > 1, q > 0 and C > 0 depending only on
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3. Approximation of homogeneous Helmholtz solutions

D, such that, for every δ ∈ (0, 1), for every φ harmonic in

Dδ =
{
x ∈ R

N : d(x,D) < δh
}
= D +Bδh ,

and for every integer L > 0, there exists a harmonic polynomial P of degree
at most L such that

‖φ− P‖L∞(D) ≤ C (δh)−p b−L(δh)
q ‖φ‖L∞(Dδ) . (3.13)

We cannot expect that the function φ we want to approximate can be ex-
tended outside the domain D because a singularity can be present on the
boundary of D. In order to use Theorem 3.2.10, we need to introduce a
function T [φ] defined on a neighborhood of D such that: (i) T [φ] has the
same Sobolev regularity as φ; (ii) T [φ] is harmonic; (iii) T [φ] approximates
φ in the relevant Sobolev norms. In the next lemma we build a function
that satisfies these requirements using a technique analogous to the one used
in [144, Lemma 2.11]. The value of this function in a point x is the value
of the Taylor polynomial of φ (according to (3.3)) with center (1 − ǫ)x, i.e.,
Tl[φ](x) = T l+1

(1−ǫ)x[φ](x).

Lemma 3.2.11. Let D ⊂ R
N be a domain as in Assumption 3.1.1, φ ∈

Hk+1(D), k ∈ N, ǫ ∈ (0, 1/2). Denote by Dǫ ⊃ D the dilated domain

Dǫ :=
1

1− ǫ
D =

(
1 +

ǫ

1− ǫ

)
D ,

and by Tl[φ] the functions defined on Dǫ by

Tl[φ](x) :=





∑

|α|≤l

1

α!
Dαφ

(
(1− ǫ)x

)
(ǫx)α l = 0, . . . , k ,

0 l = −1 .

(3.14)

Then:

(i)
ρ0 h ǫ ≤ d(D, ∂Dǫ) ≤ 2 h ǫ ; (3.15)

(ii) there exist a constant CN,k independent of ǫ, D and φ such that

‖Tk[φ]‖0,Dǫ ≤ CN,k

k∑

l=0

(ǫh)l |φ|l,D ; (3.16)

(iii) for every multi-index β, |β| ≤ k + 1

Dβ Tk[φ] =

|β|∑

l=0

(|β|
l

)
ǫl (1− ǫ)|β|−l Tk−l[D

βφ] , (3.17)

which also implies that if φ is harmonic in D then Tk[φ] is harmonic in
Dǫ;
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3.2. Approximation of harmonic functions

(iv) if φ is harmonic in D, there exist a constant CN,k independent of ǫ, D
and φ such that

|φ− Tk[φ]|j,D ≤ CN,k ρ
−j
0 (ǫh)k+1−j |φ|k+1,D ∀ j = 0, . . . , k + 1 .

(3.18)

Proof. The bounds in (i) follow from

ρ0hǫ ≤
ρ0hǫ

1− ǫ
≤ d(D, ∂Dǫ) ≤ sup

x∈D
d
(
x,

1

1− ǫ
x
)

≤ h
( 1

1− ǫ
− 1
)
=

hǫ

1− ǫ
≤ 2hǫ ,

where the second inequality is proved in [142, Appendix A.3] (due to the
slightly different definitions of Dǫ, the “ǫ” of [142, Appendix A.3] corresponds
to our ǫ

1−ǫ).
The bound (3.16) in (ii) is straightforward:

‖Tk[φ]‖20,Dǫ ≤
∫

Dǫ

∑

|α|≤k

1

(α!)2

∣∣∣Dαφ
(
(1− ǫ)x

)∣∣∣
2
|ǫx|2|α| dx (#{α : |α| ≤ k})

y=(1−ǫ)x
≤

∫

D

∑

|α|≤k

1

(α!)2

∣∣∣Dαφ (y)
∣∣∣
2 ∣∣∣ ǫh

1− ǫ

∣∣∣
2|α| dy

(1− ǫ)N
(#{α : |α| ≤ k})

l=|α|
≤ CN,k

k∑

l=0

(ǫh)2l |φ|2l,D .

For (iii), we proceed by induction on |β|. For the case |β| = 1, k > 0, given
m ∈ {1, . . . , N}, we set

em = (0, . . . , 0︸ ︷︷ ︸
m−1

, 1, 0, . . . , 0) ∈ N
N

and denote by αm the m-th component of α; then

DxmTk[φ](x) =
∑

|α|≤k

(1− ǫ)

α!
(DxmD

α)φ
(
(1− ǫ)x

)
(ǫx)α

+
∑

|α|≤k
αm≥1

1

α!
Dαφ

(
(1− ǫ)x

)
ǫαm (ǫx)α−em

γ=α−em
= (1− ǫ) Tk[Dxmφ](x) +

∑

|γ|≤k−1

ǫ(γm + 1)

(γm + 1)γ!
Dγ+emφ

(
(1− ǫ)x

)
(ǫx)γ

= (1− ǫ) Tk[Dxmφ](x) + ǫ Tk−1[Dxmφ](x) .
(3.19)

The case |β| = 1, k = 0, is given by

DxmT0[φ](x) = Dxm

(
φ
(
(1− ǫ)x

))
= (1− ǫ)Dxmφ

(
(1− ǫ)x

)

= (1− ǫ)T0[Dxmφ](x) ;
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3. Approximation of homogeneous Helmholtz solutions

this completes the proof of (3.17) in the case |β| = 1. Now we proceed by
induction for 2 ≤ |β| ≤ k + 1. Let assume that (3.17) holds for every multi-
index γ such that 1 ≤ |γ| < |β| ≤ k+1. Given β, there exists m ∈ {1, . . . , N}
and γ ∈ N

N such that β = γ + em; then

DβTk[φ] = DxmD
γTk[φ]

induction
(3.17)
=

|β|−1∑

l=0

(|β| − 1

l

)
ǫl (1− ǫ)|β|−1−l DxmTk−l[D

γφ]

(3.19)
=

|β|−1∑

l=0

(|β| − 1

l

)
ǫl(1− ǫ)|β|−1−l

[
(1− ǫ) Tk−l[D

βφ] + ǫ Tk−l−1[D
βφ]
]

=

|β|∑

l=0

(|β|
l

)
ǫl (1− ǫ)|β|−l Tk−l[D

βφ]

where the last identity follows from Pascal’s rule
(j−1
l

)
+
(j−1
l−1

)
=
(j
l

)
.

In order to prove (3.18) of (iv), we fix a multi-index β and an integer l,
0 ≤ l ≤ |β| = j ≤ k+1. From the formula for the remainder of the multivariate
Taylor polynomial, we have

∥∥∥Dβφ− Tk−l[D
βφ]
∥∥∥
2

0,D

=

∫

D

∣∣∣∣∣∣

∑

|α|=k−l+1

k − l + 1

α!
(xǫ)α

∫ 1

0
(1− t)k−l DαDβφ

(
(1− ǫ+ tǫ)x

)
dt

∣∣∣∣∣∣

2

dx

≤ Ck,N (hǫ)2(k−l+1)

∫ 1

0
(1− t)2(k−l)

∑

|α|=k−l+1

∫

D

∣∣∣DαDβφ
(
(1− ǫ+ tǫ)x

)∣∣∣
2
dxdt

≤ Ck,N (hǫ)2(k−l+1)

∫ 1

0
(1− t)2(k−l) |φ|2k−l+1+j,(1−ǫ+tǫ)D dt ,

where the seminorm on the right-hand side is well defined, though φ belongs
only to Hk+1(D), because since it is harmonic, it is C∞ in the interior of D.
Thus, using Cauchy’s estimates for harmonic functions,

∥∥∥Dβφ− Tk−l[D
βφ]
∥∥∥
2

0,D

(2.30)

≤ Ck,N (hǫ)2(k−l+1)

∫ 1

0
(1− t)2(k−l)d

(
(1− ǫ+ tǫ)D, ∂D

)−2(j−l) |φ|2k+1,D dt

≤ Ck,N ρ−2j
0 (hǫ)2(k−j+1) |φ|2k+1,D ,

because (1 − ǫ + tǫ)D is star-shaped with respect to Bρ0h(1−ǫ+tǫ), d
(
(1 − ǫ +

tǫ)D, ∂D
)
≥ ρ0h(1 − t)ǫ thanks to [142, Appendix A.3], and the remaining

integral is
∫ 1
0 (1− t)2(k−j) dt ≤ 1.
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3.2. Approximation of harmonic functions

Finally we use the fact that the sum of the coefficients in (3.17) is equal to 1
and obtain

|φ− Tk[φ]|j,D ≤
∑

|β|=j

∥∥∥Dβφ−DβTk[φ]
∥∥∥
0,D

(3.17)
=

∑

|β|=j

∥∥∥∥∥

j∑

l=0

(
j

l

)
ǫl (1− ǫ)j−l (Dβφ− Tk−l[D

βφ])

∥∥∥∥∥
0,D

≤
∑

|β|=j

j∑

l=0

(
j

l

)
ǫl (1− ǫ)j−l

∥∥∥Dβφ− Tk−l[D
βφ]
∥∥∥
0,D

≤Ck,N ρ−j0 (hǫ)k+1−j |φ|k+1,D .

This lemma allows to apply Theorem 3.2.10 to harmonic functions with
given Sobolev regularity in D, regardless of whether they can be extended
outside this set. For L large enough, the obtained order of convergence is
algebraic and depends on the difference of the orders of the norms on the
right- and left-hand sides (namely, k + 1 − j), and on a parameter λD that
depends on the geometry of the domain. Without any further assumption on
D, we cannot expect to find an explicit value for λD. The following theorem
is the N -dimensional analogue of Theorem 3.2.5.

Theorem 3.2.12. Fix k ∈ N and let D ⊂ R
N , N ≥ 2, be a domain as in

Assumption 3.1.1. Then there exist three constants:

C > 0 depending only on k, N and the shape of D,

q > 0, b > 1 depending only on N and the shape of D

such that

for every L ≥ max{k, 2q} and for every φ ∈ Hk+1(D) harmonic in D,

there exists a harmonic polynomial P of degree L that satisfies

|φ− P |j,D ≤ C hk+1−j
(
L−λD(k+1−j) + b−L

1−λDq LλD(1+j+N
2
)
)

|φ|k+1,D

∀ 0 ≤ j ≤ k + 1 , ∀ λD ∈ (log 2/ log L, 1/q) .
(3.20)

If the degree L is large enough, since 1 − λDq is positive, the second term
on the right-hand side is smaller than the first one and the convergence in L
is algebraic with order λD(k+1− j). The coefficient λD depends only on the
shape of D (through the constant q of Theorem 3.2.10).

Proof of Theorem 3.2.12. Firstly, we fix three small positive constants ǫ1, ǫ2, ǫ3
in the interval (0, 1/2) and define ǫ∗ := 1−(1−ǫ1)(1−ǫ2)(1−ǫ3) < ǫ1+ǫ2+ǫ3.
For every domain Ω, we can define

Ω̂ :=
1

h
Ω , Ω′

ǫ :=
1

1− ǫ1
Ω , Ω′′

ǫ :=
1

1− ǫ2
Ω′
ǫ =

1

(1− ǫ1)(1− ǫ2)
Ω ,
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3. Approximation of homogeneous Helmholtz solutions

Ω′′′
ǫ :=

1

1− ǫ3
Ω′′
ǫ =

1

(1− ǫ1)(1 − ǫ2)(1− ǫ3)
Ω =

1

1− ǫ∗
Ω .

For every function f defined on Ω, we also define f̂(x̂) = f(hx̂) on Ω̂.
We apply Theorem 3.2.10: for every T ∈ Hj(D′′′

ǫ ) harmonic, there exists a
harmonic polynomial P̃L of degree at most L such that
∣∣∣T − P̃L

∣∣∣
j,D

≤ CN,j h
N
2
−j
∣∣∣T̂ − ˆ̃PL

∣∣∣
j,D̂

(2.30)
(3.15)

≤ CN,j h
N
2
−j (ρ0ǫ1)−j

∥∥∥T̂ − ˆ̃PL
∥∥∥
0,D̂′

ǫ

≤ CN,j h
N
2
−j |D̂′

ǫ|
1
2 (ρ0ǫ1)

−j
∥∥∥T̂ − ˆ̃PL

∥∥∥
L∞(D̂′

ǫ)

(3.13)

≤ CN,j,D̂ h
N
2
−j
(

1

1− ǫ1

)N
2

(ρ0ǫ1)
−jǫ−p2 b−Lǫ

q
2

∥∥∥T̂
∥∥∥
L∞(D̂′′

ǫ )

≤ CN,j,D̂ h
N
2
−j (ρ0ǫ1)

−jǫ−p2 b−Lǫ
q
2 ǫ

−N
2

3

∥∥∥T̂
∥∥∥
0,D̂′′′

ǫ

≤ CN,j,D̂ h−j ǫ−j1 ǫ−p2 b−Lǫ
q
2 ǫ

−N
2

3 ‖T‖0,D′′′
ǫ
, (3.21)

where the bound in the second-last step follows from the mean value theorem
for harmonic functions (2.27).

Now we define
φ̃ := φ−Qk+1φ ,

where Qk+1φ is the Taylor polynomial of φ (of order k + 1 and degree k)
averaged on Bρ0h defined in (3.4). We choose

T := Tk[φ̃]

from Lemma 3.2.11, using ǫ = ǫ∗. Let P̃L be the polynomial that approximate
T on D from Theorem 3.2.10 as above, so that (3.21) is satisfied. Finally we
define

PL := P̃L +Qk+1φ

that is a harmonic polynomial of degree at most L, because k ≤ L and thanks
to (3.6).

These definitions allow to gather all the approximation results proved so far
in the following estimate:

∣∣φ− PL
∣∣
j,D

=
∣∣∣φ̃+Qk+1φ− P̃L −Qk+1φ

∣∣∣
j,D

≤
∣∣∣φ̃− Tk[φ̃]

∣∣∣
j,D

+
∣∣∣Tk[φ̃]− P̃L

∣∣∣
j,D

(3.18)
(3.21)

≤ CN,k ρ
−j
0 (ǫ∗h)

k+1−j
∣∣∣φ̃
∣∣∣
k+1,D

+ CN,j,D̂ h−j
ǫ−j1 ǫ−p2 ǫ

−N
2

3

bLǫ
q
2

∥∥∥Tk[φ̃]
∥∥∥
0,D′′′

ǫ

(3.16)

≤ CN,j,k,D̂


(ǫ∗h)k+1−j

∣∣∣φ̃
∣∣∣
k+1,D

+
ǫ−j1 ǫ−p2 ǫ

−N
2

3

bLǫ
q
2

k∑

l=0

ǫl∗h
l−j
∣∣∣φ̃
∣∣∣
l,D



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(3.7)

≤ CN,j,k,D̂


ǫk+1−j

∗ +
ǫ−j1 ǫ−p2 ǫ

−N
2

3

bLǫ
q
2

k∑

l=0

ǫl∗


 hk+1−j |φ|k+1,D

≤ CN,j,k,D̂


ǫk+1−j

∗ +
ǫ−j1 ǫ−p2 ǫ

−N
2

3

bLǫ
q
2


 hk+1−j |φ|k+1,D ,

as Qk+1φ is a polynomial of degree at most k. Now, for every value λD ∈
(log 2/ log L, 1/q) we can fix ǫ1 = ǫ2 = ǫ3 = L−λD < 1

2 . This gives

∣∣φ− PL
∣∣
j,D

≤ CN,j,k,D̂

(
L−λD(k+1−j) +

LλD(j+p+N
2
)

bL
1−λDq

)
hk+1−j |φ|k+1,D ,

which concludes the proof.

Remark 3.2.13. As previously mentioned, in the case N ≥ 3, it would be very
desirable to prove a sharp lower bound on the parameter λD in (3.20) for
a class of domains of special interest, for example three-dimensional convex
sets. Even restricting to polyhedral domains could be enough, since D is
mainly meant to be an element in a finite element mesh. Here we describe a
few possible approaches to tackle this problem.

The most natural idea is to repeat the proof done in [19] and in the related
papers [8,20,21] for a special class of domains and to choose sharper bounding
constants in all the intermediate results. However, a first attempt suggests
that this may provide a good bound for the relevant parameter only in the
case of a spherical domain. A second approach is the use of the so-called Lh-
theory developed by V. Zahariuta and described in [179,206]; this seems to be
more suitable for harmonic problems than the theory of complex potential and
plurisubharmonic functions used in the proof of [19], on the other hand the
Lh-theory is much less developed and not easy to handle. A third possibility
that is worth investigating is the following: we consider a harmonic function
φ defined on Dδ = D + Bδh, with convex D, and we write it using the single
layer potential as

φ(x) =

∫

∂Dδ
G(x,y)q(y) dS(y) , G(x,y) =

1

|SN−1|(N − 2) |x − y|N−2
,

for some density q, where G is the fundamental solution of the Laplace equa-
tion (cf. [184, (7.4)] and [77, Sect. 2.2.1a]). Thus, if it was possible to ap-
proximate accurately x 7→ |x|2−N in the special domain (BR \ Bǫ) ∩ {x =
(x1, . . . , xN ), xN > 0} (ǫ ≪ R) with a harmonic polynomial PL,ǫ of degree L,
then φ would be approximated in D by the harmonic polynomial

PL(x) =

∫

∂Dδ

PL,ǫ(x− y) q(y)

|SN−1| (N − 2)
dS(y) .

In this case, the dependence of the error on the distance ǫ, related to δ =
d(D,Dδ)/h, is crucial.
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3. Approximation of homogeneous Helmholtz solutions

3.3. Approximation of Helmholtz solutions by
generalized harmonic polynomials

In Section 3.2 we established how a harmonic function can be approximated
by harmonic polynomials. In this section we use these results, together with
Vekua’s theory, to prove error bounds for the approximation of Helmholtz
solutions by means of generalized harmonic polynomials. We only have to
combine the results of Theorems 2.3.1, 3.2.2, 3.2.5 and 3.2.12. These estimates
guarantee the convergence when the diameter h decreases to zero or the degree
L goes to infinity.

In Section 2.3 we proved the continuity of the inverse Vekua operator V2
in Sobolev norms with constants explicit in ωh only for N = 2, 3 (due to the
poor interior estimates coming from Lemma 2.3.12). This fact is reflected
in the approximation: parts (i) and (v) of Theorem 3.3.1 give h- and p-
estimates, respectively, in any space dimension without explicit dependence
on the wavenumber. Part (ii) contains the wavenumber-explicit h-estimate
for N = 2, 3, while the corresponding results in p are given in parts (iii)
(N = 2) and (iv) (N = 3).

Theorem 3.3.1. Let D ⊂ R
N be a domain as in Assumption 3.1.1, k ∈ N and

u ∈ Hk+1(D) be a solution of the homogeneous Helmholtz equation ∆u+ω2u =
0 in D. Then the following results hold.

(i) h-estimates:
For every N ≥ 2 and for every L ≤ k there exists a generalized harmonic
polynomial QL of degree at most L such that, for every j ≤ L + 1, it
holds

‖u−QL‖j,ω,D ≤ C ρ
−N

2
0 (1 + L)4N ej+L hL+1−j ‖u‖L+1,ω,D , (3.22)

where the constant C depends only on the product ωh, ρ and N , but
is independent of L, j, ρ0 and u. In particular, this holds when QL =
V1
[
QL+1V2[u]

]
, where QL+1V2[u] denote the averaged Taylor polynomial

of degree L+ 1 of V2[u] (see Definition 3.2.1).

(ii) h-estimates, explicit in ωh:
If N = 2, 3, for every L ≤ k there exists a generalized harmonic polyno-
mial QL of degree at most L such that, for every j ≤ L+ 1, it holds

‖u−QL‖j,ω,D ≤C ρ
−N

2
0 ρ1−N (1 + L)

9N
2 ej+L

·
(
1 + (ωh)j+6

)
e

3
4
(1−ρ)ωh hL+1−j ‖u‖L+1,ω,D ,

(3.23)

where the constant C depends only on N , but is independent of h, ω, L,
j, ρ, ρ0 and u. Again, this holds when QL = V1

[
QL+1V2[u]

]
.

(iii) hp-estimates in two space dimensions:
If N = 2 and D satisfies the exterior cone condition with angle λDπ
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3.3. Approximation of Helmholtz solutions by GHPs

(see Definition 3.2.4), then for every L ≥ k there exists a generalized
harmonic polynomial Q′

L of degree at most L such that, for every j ≤
k + 1, it holds
∥∥u−Q′

L

∥∥
j,ω,D

≤ C
(
1 + (ωh)j+6

)
e

3
4
(1−ρ)ωh

(
log(L+ 2)

L+ 2

)λD(k+1−j)
hk+1−j ‖u‖k+1,ω,D ,

(3.24)
where the constant C depends only on the shape of D, j and k, but is
independent of h, ω, L and u. This holds when Q′

L = V1[P
′L], where P ′L

is the harmonic polynomial approximating V2[u] provided by Theorem
3.2.5; notice that (3.24) holds also for k = −1.

(iv) hp-estimates in three space dimensions:
If N = 3, there exists a constant λD > 0 depending only on the shape
of D, such that for every L ≥ max{k, 21/λD} there exists a generalized
harmonic polynomial Q′′

L of degree at most L such that, for every j ≤
k + 1, it holds
∥∥u−Q′′

L

∥∥
j,ω,D

≤ C
(
1 + (ωh)j+6

)
e

3
4
(1−ρ)ωh L−λD(k+1−j) hk+1−j ‖u‖k+1,ω,D ,

(3.25)

where the constant C depends only on the shape of D, j, and k, but is in-
dependent of h, ω, L and u. In particular, this holds when Q′′

L = V1[P
′′L],

where P ′′L is the harmonic polynomial approximating V2[u] provided by
Theorem 3.2.12.

(v) hp-estimates in N space dimensions:
For every N ≥ 2, there exists a constant λD > 0 depending only on the
shape of D, such that for every L large enough there exists a generalized
harmonic polynomial Q′′

L of degree at most L such that, for every j ≤
k + 1, it holds

∥∥u−Q′′
L

∥∥
j,ω,D

≤ C L−λD(k+1−j) hk+1−j ‖u‖k+1,ω,D , (3.26)

where the constant C depends only on the shape of D, j, k, and ωh, but
is independent of L and u. Again, this holds when Q′′

L = V1[P
′′L].

Proof. In order to prove both items (i) and (ii), we choose the same QL =
V1
[
QL+1V2[u]

]
, and we use the continuity of the Vekua operators (2.9), (2.10),

(2.12) and the Bramble–Hilbert Theorem 3.2.2. For every N ≥ 2 we have

‖u−QL‖2j,ω,D
(2.9)

≤ CNρ
1−N (1 + j)3N+1e2j(1 + (ωh)2)2

j∑

l=0

ω2(j−l) ∣∣V2[u]−QL+1V2[u]
∣∣2
l,D

(3.8)

≤ CNρ
1−N (1 + j)3N+1e2j(1 + (ωh)2)2
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3. Approximation of homogeneous Helmholtz solutions

·
j∑

l=0

ω2(j−l) (1 + l)2(N−1)

ρN0

N2(L+1−l)

(L− l)!2
h2(L+1−l) |V2[u]|2L+1,D

≤ CN ρ1−Nρ−N0 (1 + j)5N e2j(1 + (ωh)j+2)2 h2(L+1−j) |V2[u]|2L+1,D

(2.10)

≤ CN,ωh,ρ ρ
−N
0 (1 + j)5N e2j h2(L+1−j) (L+ 1)3N−1e2(L+1) ‖u‖2L+1,ω,D

≤ CN,ωh,ρ ρ
−N
0 (1 + L)8N−1 e2(j+L) h2(L+1−j) ‖u‖2L+1,ω,D ,

(notice that the case l = L + 1 follows from
∣∣V2[u]−QL+1V2[u]

∣∣
L+1,D

=

|V2[u]|L+1,D because QL+1V2[u] is a polynomial of degree at most L) and for
N = 2, 3 we obtain

‖u−QL‖2j,ω,D
≤ CN ρ1−Nρ−N0 (1 + j)5N e2j (1 + (ωh)j+2)2 h2(L+1−j) |V2[u]|2L+1,D

(2.12)

≤ CN ρ−N0 ρ2−2N (1 + j)5N e2j (1 + (ωh)j+2+4)2 h2(L+1−j)

· (1 + L)4N−2e2(L+1)e
3
2
(1−ρ)ωh ‖u‖2L+1,ω,D

≤ CN ρ−N0 ρ2−2N (1 + L)9N−2 e2(j+L)

· (1 + (ωh)j+6)2 e
3
2
(1−ρ)ωh h2(L+1−j) ‖u‖2L+1,ω,D .

Items (iii), (iv) and (v) can be proved in a similar way by choosing Q′
L =

V1[P
′L] andQ′′

L = V1[P
′′L], with P ′L and P ′′L approximations to V2[u] provided

by Theorems 3.2.5 and 3.2.12, respectively. For N = 2 we have

∥∥u−Q′
L

∥∥2
j,ω,D

(2.9)

≤ C (1 + j)7e2j(1 + (ωh)2)2
j∑

l=0

ω2(j−l) ∣∣V2[u]− P ′L∣∣2
l,D

(3.12)

≤ Cj,k,D̂ (1 + (ωh)2)2
j∑

l=0

ω2(j−l)h2(k+1−l)

·
(
log(L+ 2)

L+ 2

)2λD(k+1−l)
|V2[u]|2k+1,D

≤ Cj,k,D̂ (1 + (ωh)j+2)2
(
log(L+ 2)

L+ 2

)2λD(k+1−j)
h2(k+1−j) |V2[u]|2k+1,D

(2.12)

≤ Cj,k,D̂ (1 + (ωh)j+6)2e
3
2
(1−ρ)ωh

·
(
log(L+ 2)

L+ 2

)2λD(k+1−j)
h2(k+1−j) ‖u‖2k+1,ω,D ,

while for every N ≥ 2 we obtain

∥∥u−Q′′
L

∥∥2
j,ω,D

(2.9)

≤ Cρ (1 + j)3N+1e2j(1 + (ωh)2)2
j∑

l=0

ω2(j−l) ∣∣V2[u]− P ′′L∣∣2
l,D

(3.20)

≤ Cj,k,D̂ (1 + (ωh)2)2
j∑

l=0

ω2(j−l)h2(k+1−l) L−2λD(k+1−l) |V2[u]|2k+1,D
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≤ Cj,k,D̂ (1 + (ωh)j+2)2L−2λD(k+1−j) h2(k+1−j) |V2[u]|2k+1,D

(2.10)

≤ Cj,k,D̂,ωh L
−2λD(k+1−j) h2(k+1−j) ‖u‖2k+1,ω,D ,

which is the assertion (3.26). If N = 3, in the last step in the previous chain
of inequalities the dependence on ωh can be made explicit using (2.12) instead
of (2.10):

∥∥u−Q′′
L

∥∥2
j,ω,D

≤ Cj,k,D̂ (1 + (ωh)j+2)2L−2λD(k+1−j) h2(k+1−j) |V2[u]|2k+1,D

(2.12)

≤ Cj,k,D̂ (1 + (ωh)j+6)2e
3
2
(1−ρ)ωhL−2λD(k+1−j) h2(k+1−j) ‖u‖2k+1,ω,D .

Theorem 3.3.1 shows that a solution of the Helmholtz equation with Sobolev
regularity k + 1 can be approximated by generalized harmonic polynomials
with algebraic convergence both in the mesh size h and in the degree L. The
order of convergence in h is k + 1 − j and the order of convergence in L is
λD(k + 1 − j), where λD is a parameter depending on the domain shape.
The two-dimensional result comes from [144]; in this case we have complete
control of the rate of convergence since πλD is the opening of the smallest
re-entrant corner of the domain; estimate (3.24) has been shown in [144] to
be sharp. In three dimensions, the result is much less powerful because an
explicit lower bound for the parameter λD in (3.25) is not available yet, as
explained in Remark 3.2.13. This means that the convergence rate in L is not
fully explicit.

Remark 3.3.2. If the domain D does not satisfy Assumption 3.1.1 but only
the weaker Assumption 2.2.1 (namely, it is not star-shaped with respect to an
open set but only with respect to a point) then it is still possible to prove a
h-estimate, thanks to Theorem 3.2.3. We fix the value

η =





2 + log
(
1−ρ
ρ

)
N = 2 ,

2
(
1−ρ
ρ

)N−2
N > 2 ,

and define QL = V1
[
TL+1
0 [V2[u]]

]
, namely, the Vekua transform of the Taylor

polynomial of V2[u] with degree L and centered at 0. Then, using (3.9) instead
of (3.7), the bound (3.22) becomes

‖u−QL‖j,ω,D ≤ C (η
1
2N)L+1 (1 + L)

7
2
N ej+L hL+1−j ‖u‖L+1,ω,D , (3.27)

for every N ≥ 2 and j ≤ L + 1; C depends only on ρ, ωh and N (but not
on ρ0, which can be equal to zero in this domain). The second bound (3.23)
becomes

‖u−QL‖j,ω,D ≤ C ρ1−N (η
1
2N)L+1 (1 + L)4N ej+L

(
1 + (ωh)j+6

)

e
3
4
(1−ρ)ωh hL+1−j ‖u‖L+1,ω,D ,

(3.28)

for N = 2, 3; C depends only on the space dimension N .
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3. Approximation of homogeneous Helmholtz solutions

Moreover, we can express the spatial dependence of the difference between
two subsequent approximating generalized harmonic polynomials as

QL+1(x)−QL(x) = V1

[
TL+2
0

[
V2[u]

]
− TL+1

0

[
V2[u]

]]
(x) = g

( x

|x|
)
jNL+1(ω|x|) ,

for some g ∈ L2(SN−1), because TL+2
0 − TL+1

0 is a homogeneous polynomial
of degree L + 1 whose Vekua transform is given by (2.47). This fact is not
true in general for the polynomials constructed using Theorems 3.2.2, 3.2.5
and 3.2.12 because their differences are not homogeneous.

If u with ∆u + ω2u = 0 possesses an analytic extension beyond ∂D, then,
thanks to Theorem 3.2.10, we can expect exponentially accurate approxima-
tion by generalized harmonic polynomials; this is shown in the next proposi-
tion.

Proposition 3.3.3. Let D ⊂ R
N , N ≥ 2, satisfy Assumption 3.1.1. Then

there exist constants p > 0, b > 1, q > 0 and C > 0 depending only on
D, such that, for every δ ∈ (0, 1), for every u solution of ∆u + ω2u = 0 in
Dδ = D+Bδh, and for every integer L > 0, there exists a generalized harmonic
polynomial Q of degree at most L such that

‖u−Q‖L∞(D) ≤ C
(
1 + (ωh)4

)
e

1
2
(1−ρ)ωh(1+2δ) (δh)−p b−L(δh)

q ‖u‖L∞(Dδ) .
(3.29)

Moreover, if u ∈ Hj(D), j ∈ N, the following bound holds

‖u−Q‖j,ω,D ≤ C
(
1 + (ωh)4+j

)
e

1
2
(1−ρ)ωh(1+2δ) b−L(δh)

q ‖u‖L∞(Dδ) , (3.30)

where the constant C depend on N , D, j and δh, while b > 1 and q > 0
(possibly different from the previous ones) depends only on D.

Proof. In order to prove the first bound, we only have to use the continuity of
V1 and V2 in L∞-norm, Theorem 3.2.10 and the simple fact that Dδ satisfies
Assumption 3.1.1 with diameter (1 + 2δ)h:

‖u−Q‖L∞(D)

(2.13)

≤
(
1 +

(ωh)2

4

)
‖V2[u−Q]‖L∞(D)

(3.13)

≤ C
(
1 + (ωh)2

)
(δh)−p b−L(δh)

q ‖V2[u]‖L∞(Dδ)

(2.14)

≤ C
(
1 + (ωh)2

) (
1 + (ωh(1 + 2δ))2

)
e

1
2
(1−ρ)ωh(1+2δ) (δh)−p

b−L(δh)
q ‖u‖L∞(Dδ) .

If u ∈ Hj(D)∩L∞(Dδ) we apply the Cauchy estimates on the transform of u:

‖u−Q‖2j,ω,D
(2.9)

≤ CN,ρ (1 + j)3N+1 e2j
(
1 + (ωh)2

)2 ‖V2[u−Q]‖2j,ω,D
(0.2)(B.10)

≤ CN,ρ (1 + j)3N+1 e2j
(
1 + (ωh)2

)2

j∑

l=0

ω2(j−l) (1 + l)N−1 |D| |V2[u−Q]|2W l,∞(D)
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3.4. Approximation of gener. harmonic polynomials by plane waves

(2.29)

≤ CN,ρ (1 + j)4N+1 e2j
(
1 + (ωh)2+j

)2
(
Nj

δh/2

)2j

‖V2[u−Q]‖2L∞(Dδ/2)

(3.13)

≤ CN,D (1 + j)4N+1
(
1 + (ωh)2+j

)2
(
2eNj

δh

)2j (δh
2

)−2p
b−2L(δh/2)q ‖V2[u]‖2L∞(Dδ)

(2.14)

≤ CN,D (1 + j)4N+1
(
1 + (ωh)4+j

)2
e(1−ρ)ωh(1+2δ)

(
2eNj

δh

)2j

(δh)−p̃ b̃−2L(δh)q ‖u‖2L∞(Dδ)

≤ CN,D,j,δh
(
1 + (ωh)4+j

)2
e(1−ρ)ωh(1+2δ) b̃−2L(δh)q ‖u‖2L∞(Dδ) .

Remark 3.3.4. Theorem 3.3.1, Remark 3.3.2 and Proposition 3.3.3 hold true
for any complex wavenumber ω with minor modifications: in every bound ω
has to be substituted by |ω| and the right-hand sides of (3.22), (3.23), (3.24),

(3.25),(3.26), (3.27), (3.28), (3.30) have to be multiplied by e
3
2
|ω|h, while that

of (3.29) by e(1−ρ)| Imω|h (see Remark 2.3.6).

Remark 3.3.5. The Herglotz functions defined in Section 2.4.1 constitute a
subspace of the space Hj

ω(D) of the Helmholtz solutions in D, for any j ∈ N.
Part (v) of Theorem 3.3.1 ensures the density of the Herglotz functions in
Hj
ω(D) for every j ≥ 1, N ≥ 2 and D as in Assumption 3.1.1. This is

a generalization of Theorem 2 of [201] where the density in Hj(D)-norm is
proved for domains of class Cj−1,1; on the other side, we require D to be
star-shaped, which was not needed in [201].

3.4. Approximation of generalized harmonic
polynomials by plane waves

Now we want to approximate the generalized harmonic polynomials using lin-
ear combinations of plane waves. The link between plane and circular/spher-
ical waves is given by the Jacobi–Anger expansion and the addition theorem
for spherical harmonics, (see Appendix B.4).

In what follows we will always consider plane wave spaces with dimension
p chosen according to

p =

{
2q + 1 in two dimensions ,

(q + 1)2 in three dimensions ,

for some q ∈ N. This choice ensures that the value of p is equal to the
dimension of the space of harmonic polynomials of degree at most q in two
and three real variables.
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3. Approximation of homogeneous Helmholtz solutions

We pursue the following policy: given a generalized harmonic polynomial
to be approximated, we represent it as a (finite) linear combination of circu-
lar/spherical waves (see (2.49) and (2.51)); then we truncate the Jacobi–Anger
expansion of the generic element

∑p
k=1 αk e

iωx·dk of PWω,p(R
N ), “solve” the

resulting linear system with the αk’s as unknowns and thus define the approx-
imating function in PWω,p(R

N ). Error bounds will be obtained by estimating
the residual error produced by the truncation of the Jacobi–Anger expansions.
We will do this in Lemma 3.4.3 (two dimensions) and Lemma 3.4.8 (three di-
mensions): this entails bounding the norm of the inverse of a matrix defined
by the generalized harmonic polynomials. Another detailed analysis of the
residual of the truncation the Jacobi–Anger expansion in a quite different set-
ting can be found in [44]. The proof will be fairly technical, because we need
a very precise estimate of all the terms involved; on the other hand, we ob-
tain a sharp algebraic order of convergence in h, the diameter of the domain,
and a faster than exponential speed of convergence in p, the number of plane
waves used. In the two-dimensional case, this result holds for any choice of
the plane wave directions, while in three dimensions, we will have to choose
them carefully.

3.4.1. Tool: stable bases

Our analysis relies on the existence of a basis of the plane wave space that does
not degenerate for small wavenumbers. Yet, it is well-known that the plane
wave Galerkin matrix associated with the L2(D) inner product (mass matrix)
is very ill-conditioned when the wavenumber is small or when the size of the
domain is small, because in these cases the plane waves tend to be linearly
dependent. In order to cope with this problem, it is possible to introduce a
basis for the space PWω,p(R

N ) that is stable with respect to this limit.
In 2D a stable basis was introduced in [96, Sect. 3.1]. Here, we give a simpler

construction:

bl(x) := (−i)l γl |l|!
(
2

ω

)|l| q∑

l′=−q
(A−⊤)l;l′ e

iωx·dl′ l = −q, . . . , q , (3.31)

where γl = 1 if l ≥ 0 and γl = (−1)l if l < 0. The plane waves directions are

dl = (cos θl, sin θl) l = −q, . . . , q , dl 6= dk ∀ l 6= k ,

the matrix A is

A =
{
Al;l′

}
l=−q,...,q
l′=−q,...,q

=
{
e−ilθl′

}
l=−q,...,q
l′=−q,...,q

∈ C
2q+1, 2q+1 ,

and the superscript −⊤ is used to denote the transpose of the inverse (i.e.,
A−⊤ = (A−1)⊤). With this definition, using the polar coordinates x =
r(cosψ, sinψ), we have

bl(x) = (−i)l γl |l|!
(
2

ω

)|l| q∑

l′=−q
(A−⊤)l;l′ e

iωr cos(ψ−θl′ )
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(B.34)
= (−i)l γl |l|!

(
2

ω

)|l|∑

l̃∈Z
il̃ Jl̃(ωr) e

il̃ψ
q∑

l′=−q
(A−⊤)l;l′ e

−il̃θl′

= (−i)l γl |l|!
(
2

ω

)|l|


il Jl(ωr) eilψ +

∑

|l̃|>q
il̃ Jl̃(ωr) e

il̃ψ
q∑

l′=−q
(A−⊤)l;l′ e

−il̃θl′




(2.49)
= V1

[
r|l|eilψ

]
+O(ωq+1−|l|)ω→0 ,

where we used the property J−k(z) = (−1)kJk(z) ∀ k ∈ Z.
In three dimensions, thanks to the Jacobi–Anger expansion and the defini-

tion of the generalized harmonic polynomials, we can easily find a stable basis
for PWω,p(R

3).
We fix q ∈ N, p = (q + 1)2 and the p directions {dl,m}l=0,...,q; |m|≤l which

define PWω,p(R
3) in such a way that the p× p matrix1

M =
{
Ml,m;l′,m′

}
l=0,...,q, |m|≤l,
l′=0,...,q, |m′|≤l′

=
{
Y m
l (dl′,m′)

}
l=0,...,q, |m|≤l,
l′=0,...,q, |m′|≤l′

(3.32)

is invertible. We define p elements of PWω,p(R
3)

bl,m(x) :=
Γ
(
l + 3

2

)

2π
3
2

( 2

i ω

)l ∑

l′=0,...,q,
|m′|≤l′

(M−⊤)l,m;l′,m′ eiωx·dl′,m′

l = 0, . . . , q, |m| ≤ l .
(3.33)

Relying on the Jacobi–Anger expansion (B.35), we obtain:

bl,m(x) = 4π
Γ
(
l + 3

2

)

2π
3
2

( 2

i ω

)l ∑

l̃∈N,
|m̃|≤l̃

il̃ jl̃(ω|x|) Y m̃
l̃

( x

|x|
)

·
∑

l′=0,...,q,
|m′|≤l′

(M−1)l′,m′;l,mY
m̃
l̃
(dl′,m′)

=
2 Γ
(
l + 3

2

)
√
π

( 2

i ω

)l [
il jl(ω|x|) Y m

l

( x

|x|
)

+
∑

l̃>q,

|m̃|≤l̃

il̃ jl̃(ω|x|) Y m̃
l̃

( x

|x|
) ∑

l′=0,...,q,
|m′|≤l′

(M−1)l′,m′;l,mY
m̃
l̃
(dl′,m′)

]

1 Since vector indices are often denoted by a pair of integers separated by a comma (e.g.,
dl,m), here and in the following we use the semicolon to separate the row and column in-
dices of second order matrices (e.g., Ml,m;l′,m′). The components of vectors and matrices
will be denoted by round brackets with subscripts, whenever their names are composite
(e.g., (Md)l,m or (M−1)l,m;l′,m′).
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(2.51)
= V1

[
|x|l Y m

l

( x

|x|
)]

+O(ωq+1−l)ω→0 ,

thanks to to the asymptotic properties of the spherical Bessel functions for
small arguments (B.21) and to

∑

l′=0,...,q,
|m′|≤l′

(M−1)l′,m′;l,mY
m̃
l̃
(dl′,m′) =

∑

l′=0,...,q,
|m′|≤l′

(M−1)l′,m′;l,m(M)l̃,m̃;l′,m′

= δl,l̃ δm,m̃, if |m̃| ≤ l̃ ≤ q .

The functions bl,m constitute a basis in PWω,p(R
3); since

bl,m(x)
ω→0−→ |x|l Y m

l

( x

|x|
)

uniformly on compact sets, this basis does not degenerate for small positive ω
and its associated mass matrix is well conditioned.

The existence of a stable basis and the proof of the convergence of the
plane wave approximation require the matrices A and M to be invertible.
This is the case if and only if the sets of directions {dl} or {dl,m} (in two
or three dimensions, respectively) constitute a fundamental system for the
harmonic polynomials of degree at most q. In two dimensions, if the directions
dl are all different from each other, this is always true, as we will see in
the proof of Lemma 3.4.3. In three dimensions, we prove that there exist
many configurations of directions that make M invertible in the following two
lemmas and provide an example.

Lemma 3.4.1. Let the matrix M be defined as in (3.32). The set of the
configurations of directions {dl,m}l=0,...,q, |m|≤l that makes M invertible is a
dense open subset of (S2)p.

Proof. The spherical harmonics Y m
l = Y m

l (sin θ cosϕ, sin θ sinϕ, cos θ), and
thus the determinant det(M) : (S2)p → C, are polynomial functions of sin θ,
cos θ, sinϕ, cosϕ. This implies that det(M) is continuous and then its pre-
image [det(M)]−1{C \ 0} is an open set.

The existence of at least one configuration of directions {dl,m}l=0,...,q; |m|≤l
such that M is invertible is guaranteed by a simple generalization (to non
constant degrees n) of Lemma 6 of [158], or by Lemma 3.4.2 below. Since a
trigonometric polynomial is equal to zero in an open set of R2p if and only if
it is zero everywhere, then det(M) is zero only in a closed subset of (S2)p with
empty interior, which means that M is invertible on a dense set.

Lemma 3.4.2. Given q ∈ N, let the p = (q + 1)2 directions on S
2 be chosen

as

dl,m =
(
sin θl cosϕl,m, sin θl sinϕl,m, cos θl

)

for all l = 0, . . . , q, |m| ≤ l, where the q+1 colatitude angles {θl}l=0,...,q ⊂ (0, π)
are all different from each other, and the azimuths {ϕl,m}l=0,...,q;|m|≤l ⊂ [0, 2π)
satisfy ϕl,m 6= ϕl,m′ for every m 6= m′. Then the matrix M defined in (3.32)
is invertible.
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Proof. We define

cl = cos θl l = 0, . . . , q ,

Nl,m =

√
(2l + 1)(l − |m|)!
4π (l + |m|)! |m| ≤ l ≤ q .

We notice that the values cl are all different in (−1, 1) and, thanks to (B.30),
it is possible to write the elements of the matrix in the form

Ml,m;l′,m′ = Nl,m P
|m|
l (cl′) e

imϕl′ ,m′ ,

where Pml denote the Legendre function defined in (B.24).
For every m ∈ {0, . . . , q}, we define the square matrix of dimension q−m+1

Sm =
{
Smj;l
}
j=m,...,q
l=m,...,q

=
{
DmPl(cj)

}
j=m,...,q
l=m,...,q

,

where DmPl are the mth derivatives of the Legendre polynomials of degree
l defined in (B.22) and constitute a basis of the space of the polynomials of
degree q − m. If the vector ~η ∈ R

q−m+1 belongs to the kernel of Sm, i.e.,
Sm~η = ~0, then we have

0 = (Sm~η)j =

q∑

l=m

DmPl(cj) ηl ∀ j = m, . . . , q ,

that means the polynomial
∑q

l=mD
mPl(x)ηl of degree q −m has q −m + 1

distinct zeroes. This implies that ~η = ~0 and hence the matrix Sm is invertible.
This fact also implies the invertibility of the matrices

{
Rm
j;l

}
j=m,...,q
l=m,...,q

= diag
(
{(1 − c2j)

m
2 }j=m,...,q

)
· Sm · diag

(
{Nl,m}l=m,...,q

)

=
{
Nl,m (1− c2j )

m
2 DmPl(cj)

}
j=m,...,q
l=m,...,q

(B.24)
=

{
Nl,m Pml (cj)

}
j=m,...,q
l=m,...,q

m = 0, . . . , q ,

where Pml are the associated Legendre functions. Similarly, also the matrices

{
R−m
j;l

}
j=m,...,q
l=m,...,q

= diag
(
{(1− c2j )

m
2 }j=m,...,q

)
· Sm · diag

(
{Nl,−m}l=m,...,q

)

=
{
Nl,−m (1− c2j )

m
2 DmPl(cj)

}
j=m,...,q
l=m,...,q

(B.24)
= {Nl,−m Pml (cj)}j=m,...,q

l=m,...,q
m = 1, . . . , q ,

are invertible.
We fix a vector ~ξ in C

p such that

(M⊤~ξ)l′,m′ =
∑

l=0,...,q
|m|≤l

Y m
l (dl′,m′) ξl,m = 0 ∀ l′ = 0 . . . , q, |m′| ≤ l′ .
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3. Approximation of homogeneous Helmholtz solutions

If we show that ξl,m = 0 for all l = 0, . . . , q and m = −l, . . . , l, then M⊤ (and
thus M) is invertible and the proof is complete.

We define the functions

am(θ) =

q∑

l=|m|
ξl,m Nl,m P

|m|
l (cos θ) ∀ m = −q, . . . , q, θ ∈ (0, π) ,

(3.34)
so that, owing to (B.30), we have

(M⊤~ξ)l′,m′ =

q∑

m=−q
am(θl′) e

imϕl′,m′ = 0 ∀ l′ = 0, . . . , q, |m′| ≤ l′ .

(3.35)
The last expression in the case l′ = q reads

q∑

m=−q
am(θq) e

imϕq,m′ = 0 ∀ m′ = −q, . . . , q .

Thus, the function
∑q

m=−q am(θq) e
imϕ is a trigonometric polynomial of degree

q in the variable ϕ with 2q + 1 zeroes, so its coefficients vanish:

am(θq) = 0 ∀ m = −q, . . . , q . (3.36)

Take m = q; thanks to (3.34) and (B.26), we have

0 = aq(θq) = ξq,q Nq,q P
q
q (cos θq) = ξq,q Nq,q

(2q)!

2q q!
(1− cos2 θq)

q
2 ,

that implies ξq,q = 0 and also aq(θ) = 0 for every θ ∈ (0, π). Similarly we can
prove that ξq,−q = 0 and a−q(θ) = 0 for every θ ∈ (0, π).

Now we proceed by induction on the index m decreasing from q − 1 to 0:

induction hypotheses

{
ξl,m = 0 m < |m| ≤ l ≤ q , (A)

am(θj) = 0 |m| ≤ m < j ≤ q . (B)

We have already verified the induction hypotheses at the initial stepm = q−1:
ξq,±q = 0 and am(θq) = 0 for all |m| ≤ q (see (3.36)), and in particular for all
|m| ≤ q − 1.

Let us suppose that (A) and (B) hold for a fixed m ∈ {0, . . . , q − 1}. We
have to prove

induction assertions

{
ξl,m = 0 m = |m| ≤ l ≤ q , (A’)

am(θj) = 0 |m| ≤ m = j . (B’)

The equation (3.35) for l′ = m reads

m∑

m=−m
am(θm) e

imϕm,m′ = 0 ∀ |m′| ≤ m ,
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3.4. Approximation of gener. harmonic polynomials by plane waves

since, thanks to (A) and (3.34), am(θm) = 0 for |m| > m. This is a trigono-
metric polynomial in ϕ of degree m having 2m+ 1 zeroes {ϕm,m′}m′=−m,...,m,
so it is identically zero and am(θm) = 0 for every |m| ≤ m, that is (B’).

Thanks to (B) and (B’), for every j ∈ {m, . . . , q} holds

0 = am(θj)
(3.34)
=

q∑

l=m

ξl,m Nl,m Pml (cos θj) =

q∑

l=m

Rm
j,l ξl,m ,

and the analogous is true with the index −m. Since R±m are invertible, we
have (A’) and the induction argument is complete.

We conclude that all the coefficient ξl,m are equal to zero, thus M is invert-
ible.

Figure 3.2.: A graphical representation of the backward induction on the index
m in the proof of Lemma 3.4.2 with q = 8 and p = 81. At the
stepm = 4 the coefficients in the grey squares are zero (hypothesis
(A)). The induction step shows that also the coefficients in the two
boxes are equal to zero (assertion (A’)).
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Lemma 3.4.2 provides a quite general class of configurations of plane wave
directions {dl,m}l=0,...,q; |m|≤l that renders the matrix M invertible. This im-
plies the existence of a stable basis in PWω,p(R

3) and allows to prove the
approximation estimates in h in Section 3.4.3. To prove estimates in p, we
will need a smarter choice of the directions.

In order to fulfill the hypotheses of Lemma 3.4.2, the directions only have to
satisfy the following geometric requirement: there exist q+1 different heights
zj ∈ (−1, 1) such that exactly 2j + 1 different vectors dl,m belong to S

2 ∩
{(x, y, z), z = zj}j=0,...,q. An example of directions satisfying this condition
with q = 3 is shown in Figure 3.3.

The definition of the stable bases for plane wave spaces and all the prop-
erties shown in this section hold exactly in the same way for every complex
wavenumber ω 6= 0. With a little effort and the use of the hyperspherical
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3. Approximation of homogeneous Helmholtz solutions

Figure 3.3.: A choice of directions {dl,m}l=0,...,q; |m|≤l that satisfies the hypoth-
esis of Lemma 3.4.2 with q = 3, p = 16. Notice that 1 direction
belongs to level 0, 3 directions to level 1, 5 to level 2 and 7 to level
3.

d ,...,d3,-3 3,3

d0,0

d ,...,d2,-2 2,2

d ,d ,d1,-1 1,0 1,1

Bessel functions (see (B.20)) it is possible to generalize the definition of the
stable basis and the proof of Lemma 3.4.1 to every dimensions N > 3.

3.4.2. The two-dimensional case

In two space dimensions, thanks to the Jacobi–Anger expansion and the special
properties of the circular harmonics Yl(e

iθ) = eilθ/
√
2π, we can approximate a

generalized harmonic polynomial in PWω,p(R
2), with completely explicit error

estimates both in h and in p. The order of convergence with respect to h is
sharp, as it can be seen from simple numerical experiments [42, 95, 96, 148].
The proof given below improves considerably the one given in [148]. A similar
result for a circular domain was proved in [164].

Lemma 3.4.3. Let D ⊂ R
2 be a domain as in Assumption 3.1.1. Let P be a

harmonic polynomial of degree L and let

{dk = (cos θk, sin θk)}k=−q,...,q

be the different directions in the definition of PWω,p(R
2), p = 2q + 1. We

assume that there exists 0 < δ ≤ 1 such that

min
j,k=−q,...,q

j 6=k

∣∣θj − θk
∣∣ ≥ 2π

p
δ . (3.37)

82



3.4. Approximation of gener. harmonic polynomials by plane waves

Let the conditions on the indices

0 ≤ K ≤ L ≤ q, L−K ≤
⌊
q − 1

2

⌋
, (3.38)

be satisfied. Then there exists a vector ~α ∈ C
p such that, for every R > 0,

∥∥∥∥∥∥
V1[P ]−

q∑

k=−q
αk e

iωx·dk

∥∥∥∥∥∥
L∞(BR)

≤ C(ω, δ, ρ, h,R, q,K,L) ‖P‖K,ω,D ,

(3.39)
where we have set, for brevity,

C(ω, δ, ρ, h,R, q,K,L) =
e3

π
3
2ρL−K+1

(
e

5
2

2
√
2 δ2

)q (
2L

√
L+ 1

)

· (ωR)q+1−K (
1 + (ωh)−L+K

)
e
ωR
2
RK

h

1

(q + 1)
q+1
2

.

Proof. We write the harmonic polynomial

P (z) =
L∑

l=−L
al r

|l| eilψ , al ∈ C , (3.40)

with the usual identification R
2 = C and z = reiψ. We have

V1[P ](z) −
q∑

k=−q
αk e

iω(r cosψ,r sinψ)·dk

(2.49)
=

L∑

l=−L
al |l|!

(
2

ω

)|l|
eilψ J|l|(ωr)−

q∑

k=−q
αk e

iωr cos(ψ−θk)

(B.34)
=

L∑

l=−L
al |l|!

(
2

ω

)|l|
eilψ γl Jl(ωr)−

∑

l∈Z
il Jl(ωr) e

ilψ
q∑

k=−q
αk e

−ilθk ,

where γl = 1 if l ≥ 0 and γl = (−1)l if l < 0 because J−l(ωr) = (−1)lJl(ωr).
Define the p× p matrix A by

A = {Al;k}l,k=−q,...,q = {e−ilθk}l,k=−q,...,q

(cf. Section 3.4.1), and the vector ~β ∈ C
p by

βl =




al |l|!

(
2

ω

)|l|
i−l γl l ∈ {−L, . . . , L} ,

0 l ∈ {−q, . . . ,−L− 1} ∪ {L+ 1, . . . , q} .

The matrix A is non-singular because it is the product of a Vandermonde
matrix and a diagonal matrix:

A = {e−ijθk} j=0,...,2q
k=−q,...,q

· diag
(
{eiqθk}k=−q,...,q

)
= VA ·DA .
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3. Approximation of homogeneous Helmholtz solutions

By choosing the p-dimensional vector ~α as the solution of the linear system
A ~α = ~β, we have

V1[P ](z) −
q∑

k=−q
αk e

iω(r cosψ,r sinψ)·dk = −
∑

|l|>q
il Jl(ωr) e

ilψ
q∑

k=−q
αk e

−ilθk ,

and thus the L∞-norm of the error is controlled by
∥∥∥∥∥∥
V1[P ]−

q∑

k=−q
αk e

iωx·dk

∥∥∥∥∥∥
L∞(BR)

≤
(

sup
t∈[0,ωR]

2
∑

l>q

|Jl(t)|
) ∥∥A−1

∥∥
1

∥∥∥~β
∥∥∥
1
.

(3.41)

We have to bound each of the three factors on the right-hand side of (3.41).
Using the well-known bound for the Bessel functions (B.14), we have, for

the first factor,

sup
t∈[0,ωR]

∑

l>q

|Jl(t)|
(B.14)

≤ sup
t∈[0,ωR]

∑

l>q

(
t

2

)l 1

l!

≤ sup
t∈[0,ωR]

(
t

2

)q+1 1

(q + 1)!

∑

j≥0

(
t

2

)j 1

j!
=

(
ωR

2

)q+1 e
ωR
2

(q + 1)!
. (3.42)

For
∥∥A−1

∥∥
1
, we observe that the 1-norm of the inverse of the diagonal

matrix DA is one, while the norm of the inverse of the Vandermonde matrix
VA can be bounded using Theorem 1 of [89]:

∥∥A−1
∥∥
1
≤
∥∥V−1

A

∥∥
1

∥∥D−1
A

∥∥
1
≤ p

∥∥V−1
A

∥∥
∞

≤ p max
k=−q,...,q

∏

s=−q,...,q
s 6=k

1 +
∣∣e−iθs

∣∣
|e−iθs − e−iθk | .

With simple geometric considerations2, it is easy to see that, under the con-
straint (3.37), the product on the right-hand side is bounded by its value
when

θ∗s = θ∗0 +
2π

p
δ s s = −q, . . . , q ,

and the maximum is obtained for k = 0. A simple trigonometric calculation
gives

|e−iθ∗s − e−iθ
∗
0 | =

√
2
√

1− cos(θ∗s − θ∗0) ≥
√
2

√
2

π
|θ∗s − θ∗0| =

4

p
δ |s| ,

2 Indeed, we can assume without loss of generality that: (i) the directions are ordered
({θ−q < θ−q+1 < · · · < θq} ⊂ (−2π, 2π)), (ii) θ0 = 0, (iii) θq < θ−q + 2π, and that (iv)
the maximum is achieved for k = 0; notice that it may happen that either θ−q < −π or
θq > π. Then the constraint (3.37) implies 2π

p
δ|s| ≤ |θs− θ0| = |θs| ≤ 2π− 2π

p
δ(q+1) for

s = ±1, . . . ,±q; this gives, in turn, |e−iθs−e−iθ0 | = |e−iθs−1| ≥ |e−
2π
p
δs−1|, which is the

value obtained with the set {θ∗s = 2π
p
δs}s=−q,...,q. Therefore, each term in the product

is bounded from above by the corresponding one with the directions {θ∗s}s=−q,...,q.
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because 1− cos t ≥ 2
π2 t

2 for every t ∈ [−π, π]. This leads to the bound

∥∥A−1
∥∥
1
≤ p

∏

s=−q,...,q
s 6=k

2p

4 δ |s| ≤
pp

(2δ)2q (q!)2
. (3.43)

In order to bound
∥∥∥~β
∥∥∥
1
, we need to bound from below the Sobolev seminorm

of order µ of P for every µ = 0, . . . , L. Recalling that Bρh ⊆ D and taking
into account the expression of P in (3.40), we have

|P |2µ,D ≥
∥∥∥∥
∂µ

∂rµ
P

∥∥∥∥
2

0,Bρh

=

∥∥∥∥∥∥

L∑

|j|=µ
aj

|j|!
(|j| −K)!

r|j|−Keijψ

∥∥∥∥∥∥

2

0,Bρh

=

∫ ρh

0

L∑

|j|,|j′|=µ

ajaj′ |j|! |j′|!
(|j| − µ)! (|j′| − µ)!

r|j|+|j′|−2µ

∫ 2π

0
ei(j−j

′)ψ dψ r dr

= 2π
L∑

|j|=µ
|aj |2

(|j|!)2
(
(|j| − µ)!

)2
(ρh)2(|j|−µ+1)

2(|j| − µ+ 1)
, (3.44)

where in the last step we have used the identity

∫ 2π

0
ei(j−j

′)ψ dψ = 2π δjj′ .

All the terms in the sum on the right-hand side of (3.44) are non-negative, so
we can invert the estimate. Thus, considering (3.44) for µ = |l| and µ = K,
we obtain, respectively,

|al| ≤
1√
π

1

|l|! (ρh) |P ||l|,D 0 ≤ |l| ≤ L ,

|al| ≤
1√
π

(|l| −K)!
√
|l| −K + 1

|l|! (ρh)|l|−K+1
|P |K,D K ≤ |l| ≤ L .

We insert these bounds into the definition of the coefficients of ~β, with K ≤ L
(where, in the case L = K, the empty sum

∑L
|l|=L+1 is meant to be equal to

0):

∥∥∥~β
∥∥∥
1
=

L∑

l=−L
|al|

( 2
ω

)|l|
|l|!

≤
K∑

l=−K

1√
π ρh

( 2
ω

)|l|
|P ||l|,D

+

L∑

|l|=K+1

1√
π

(
2

ω

)|l| (|l| −K)!
√

|l| −K + 1

(ρh)|l|−K+1
|P |K,D

≤
√
2K + 1 2K+ 1

2

√
π ρ h

ω−K ‖P‖K,ω,D
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+
2L+1

√
π ρL−K+1 h

ω−K
(

L∑

l=K+1

(l −K)!
√
l −K + 1

(ωh)|l|−K

)
|P |K,D

≤
{

2L+1

√
π ρL−K+1

(
1 + (ωh)−L+K

) ω−K

h

·
(√

K + 1 + (L−K)(L−K)!
√
L−K + 1

)}
‖P‖K,ω,D . (3.45)

Inserting the bound on the sum of the Bessel functions (3.42), the one on∥∥A−1
∥∥
1
given by (3.43) and the one on

∥∥∥~β
∥∥∥
1
given by (3.45) inside (3.41)

gives
∥∥∥∥∥∥
V1[P ]−

q∑

k=−q
αk e

iωx·dk

∥∥∥∥∥∥
L∞(BR)

≤ 2

{(
ωR

2

)q+1 e
ωR
2

(q + 1)!

}
·
{

pp

(2δ)2q (q!)2

}

·
{

2L+1

√
πρL−K+1

ω−K h−1
(
1 + (ωh)−L+K

)√
L+ 1 (L−K + 1)!

}
‖P‖K,ω,D

≤
{(

1

8δ2

)q
(ωR)q+1e

ωR
2

pp

(q!)2(q + 1)!

}

·
{

2L+1

√
πρL−K+1

ω−K h−1
(
1 + (ωh)−L+K

)√
L+ 1 (L−K + 1)!

}
‖P‖K,ω,D

(3.38)

≤ 2√
πρL−K+1

(
1

8δ2

)q (
2L

√
L+ 1

)

· (ωR)q+1−K (
1 + (ωh)−L+K

)
e
ωR
2
RK

h

pp
⌊ q+1

2

⌋
!

(q!)2(q + 1)!
‖P‖K,ω,D . (3.46)

We use Stirling’s formula (B.1) to bound

pp
⌊ q+1

2

⌋
!

(q!)2(q + 1)!
≤ (2q + 2)2q+1

⌊ q+1
2

⌋
!

(
(q + 1)!

)3 (q + 1)2

<
22q+1

2π

(q + 1)2q+3
(q+1

2

)( q+1
2 )+ 1

2

(q + 1)3(q+1)+ 3
2

e3(q+1)− q
2 e

− 3
12(q+1)+1

+ 1
6q .

For q ≥ 3, since the exponent in the last factor on the right-hand side of the
last inequality is negative, we get

pp
⌊ q+1

2

⌋
!

(q!)2(q + 1)!
≤ e3

2π

(
2
√
2 e

5
2

)q
(q + 1)−

q+1
2 .

For q = 1, 2, one can see directly that the same bound holds true, thus we can
use it for any q ≥ 1 and obtain
∥∥∥∥∥∥
V1[P ]−

q∑

k=−q
αk e

iωx·dk

∥∥∥∥∥∥
L∞(BR)

≤ e3

π
3
2ρL−K+1

(
e

5
2

2
√
2 δ2

)q (
2L

√
L+ 1

)
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· (ωR)q+1−K (
1 + (ωh)−L+K

)
e
ωR
2
RK

h

1

(q + 1)
q+1
2

‖P‖K,ω,D ;

this concludes the proof.

In Section 3.5 we will use the bound in Lemma 3.4.3 with R = h in the
derivation of hp-approximation error estimates of Helmholtz solutions by plane
waves in the 2D case (see Theorem 3.5.2). Notice that, thanks to the properties
of the polynomials, the assertion of Lemma 3.4.3 holds for every R > 0, which,
so far, is not related to the size of D.

The dependence on ω, h, R of the constant in the bound (3.39) is slightly
different from the one in [106, Lemma 3.1.3]. Actually we could substitute the
term

(ωR)q+1−K (1 + (ωh)−L+K
) RK
h

with (ωR)q+1
(
1 + (ωh)−L

)
hK−1 .

This could be useful, for instance, to prove bounds with large R independent
of h.

Remark 3.4.4. When δ = 1 in (3.37) we have uniformly spaced directions

θj = θ0 +
2π
p j in S

1. In this case, we see that
∥∥A−1

∥∥
1
=
∥∥∥1
pA

t
∥∥∥
1
= 1:

(AA
t
)l;k =

q∑

j=−q
e−ilθjeikθj =

q∑

j=−q
e−i(l−k)(θ0+

2π
p
j)

=




e−i(l−k)θ0ei(l−k)

2π
p
q 1−e−i(l−k)

2π
p p

1−e−i(l−k)
2π
p

= 0 l 6= k ,

p l = k .

Thus, for uniformly spaced directions, the bounding constant in Lemma 3.4.3
becomes slightly smaller, but the orders of convergence remain unchanged:

∥∥∥∥∥∥
V1[P ]−

q∑

k=−q
αk e

iωx·dk

∥∥∥∥∥∥
L∞(BR)

≤ e
7
6√

πρL−K+1

(
e

1
2

2
√
2

)q (
2L

√
L+ 1

)

· (ωR)q+1−K (
1 + (ωh)−L+K

)
e
ωR
2
RK

h

1

(q + 1)
q+1
2

‖P‖K,ω,D ,

where we have used
⌊ q+1

2 ⌋!
(q+1)! ≤ e

1
6

(
e
2

) q
2
+1

(q + 1)−
q+1
2 . The constant has been

reduced by a factor e
11
6
+2q/π ≃ 2e2q.

Remark 3.4.5. Notice that, in Lemma 3.4.3, the assumption (3.38), which
basically means L . q/2, has been used only once, i.e., in the inequalities
chain (3.46).

We could modify the condition (3.38) into L − K ≤ η(q − 1), η ∈ (0, 1).
This allows to choose higher order generalized harmonic polynomials in the
final p-estimate and modify the constants in Theorem 3.5.2 and in Corollary
3.5.5. However, this does not affect the general order of convergence. See also
Remark 3.4.10.
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3. Approximation of homogeneous Helmholtz solutions

3.4.3. The three-dimensional case

Now we would like to prove an approximation estimate similar to Lemma 3.4.3
in a three-dimensional setting. The two-dimensional case has shown that the
proof of the order of convergence with respect to q requires a sharp bound on
the norm of the inverse of the matrix A. In three dimensions, the correspond-
ing matrix is M, defined in (3.32). This matrix is more complicated and it is
not of Vandermonde type. As a consequence, we are not able to bound the
norm of M−1 with a reasonable dependence on q in the general case, but we
restrict ourselves to a particular choice of the directions dl,m.

Lemma 3.4.6. Given q ∈ N, there exists a set of directions {dl,m}0≤|m|≤l≤q ⊂
S
2 such that ∥∥M−1

∥∥
1
≤ 2

√
π p = 2

√
π (q + 1)2. (3.47)

Proof. Given a set of p = (q+1)2 directions {dl,m} we define the determinant

∆ : (S2)p 7→ C , ∆({dl,m}) := det(M) .

This is a continuous function, so |∆(·)| achieves its maximum in, say,

{d∗
l,m}0≤|m|≤l≤q ∈ (S2)p .

Thanks to Lemma 3.4.2, ∆(·) is not identically zero, so it is possible to define
the polynomials

Ll,m(x) :=
∆(d∗

0,0, . . . ,x, . . . ,d
∗
q,q})

∆({d∗
l,m})

x ∈ S
2

(in the numerator, the direction d∗
l,m is replaced by x). From their definition,

is clear that these functions are spherical polynomials of degree at most q;
they satisfy

Ll,m(d
∗
l′,m′) = δl,l′δm,m′ , 0≤|m|≤l≤q,

0≤|m′|≤l′≤q ,

which means that they are the Lagrange polynomials of the set {d∗
l,m}, and

‖Ll,m‖L∞(S2) = 1 .

Now we show that the set {d∗
l,m} is the one which satisfies (3.47). With the

choice dl,m = d∗
l,m, the entries of M−1 satisfy

∑

0≤|m′|≤l′≤q
(M−1)l,m;l′,m′ Y m′

l′ (dl′′,m′′) = δl,l′′δm,m′′ , 0≤|m|≤l≤q,
0≤|m′′|≤l′′≤q,

that means (M−1)l,m;l′,m′ is the (l′,m′)th coefficient of Ll,m with respect to
the standard spherical harmonic basis. This gives:

∥∥M−1
∥∥
1
= max

0≤|m′|≤l′≤q

∑

0≤|m|≤l≤q
|(M−1)l,m;l′,m′ |

≤ p max
0≤|m′|≤l′≤q

max
0≤|m|≤l≤q

|(M−1)l,m;l′,m′ |
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3.4. Approximation of gener. harmonic polynomials by plane waves

≤ p max
0≤|m|≤l≤q


 ∑

0≤|m′|≤l′≤q
|(M−1)l,m;l′,m′ |2




1
2

= p max
0≤|m|≤l≤q

‖Ll,m‖L2(S2)

≤ p
√
4π max

0≤|m|≤l≤q
‖Ll,m‖L∞(S2) = 2

√
π p ,

where we used the orthonormality of the spherical harmonics in L2(S2).

The first part of this proof is adapted from that of [169, Theorem 14.1],
which is a special case of the Auerbach theorem.

Lemma 3.4.6 is true, with the same proof, for any basis of orthonormal
spherical harmonics in N ≥ 3 dimensions. The final bound turns out to be∥∥M−1

∥∥
1
≤ ñ(N, q)

√
|SN−1|, where ñ(N, q) is the dimension of the space of

spherical harmonics of degree at most q, namely, the size of M (see (B.28)).

Remark 3.4.7. Lemma 3.4.6 does not provide a way of computing the set of
directions satisfying (3.47). However, an efficient algorithm that computes
systems of directions which satisfy a bound close to (3.47) is introduced in
[180]. The computed directions (up to q = 165, p = 27556) can be downloaded
from the website [204]. The table presented on that website shows that the
Lebesgue constant for p = (q + 1)2 computed directions is smaller than 2q,
which gives the slightly worse bound

∥∥M−1
∥∥
1
≤ 4

√
π p q.

Now we can prove the three-dimensional counterpart of Lemma 3.4.3.

Lemma 3.4.8. Let D ⊂ R
3 be a domain that satisfies Assumption 3.1.1,

q ∈ N, p = (q + 1)2, and let {dl,m}0≤|m|≤l≤q ⊂ S
2 be a set of directions for

which the matrix M is invertible. Then, for every harmonic polynomial P of
degree L ≤ q and for every R > 0 and K ∈ N satisfying

0 ≤ K ≤ L ≤ q , L−K ≤
⌊
q − 1

2

⌋
, (3.48)

there exists a vector ~α ∈ C
p such that

∥∥∥∥∥∥∥∥
V1[P ]−

∑

l=0,...,q;
|m|≤l

αl,m eiωx·dl,m

∥∥∥∥∥∥∥∥
L∞(BR)

≤ C(ω, ρ, h,R, q,K,L)
∥∥M−1

∥∥
1
‖P‖K,ω,D ,

(3.49)
where

C(ω, ρ, h,R, q,K,L) =
1

2
√
π ρL−K+ 3

2

(L+ 1)2 eK+1

√
2
L

· (ωR)q+1−K (1 + (ωh)−L+K
)
e
ωR
2
RK

h
3
2

1

q
q−3
2 (q + 1)2

.
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Proof. As in two dimensions, we write the harmonic polynomial

P (x) =

L∑

l=0

l∑

m=−l
al,m |x|l Y m

l

( x

|x|
)
, al,m ∈ C ,

and we use the Jacobi–Anger expansion:

V1[P ](x)−
∑

l′=0,...,q;
|m′|≤l′

αl′,m′ eiωx·dl′,m′

(2.51),
(B.35)
=

L∑

l=0

l∑

m=−l
al,m

(
1

2ω

)l (2l + 1)!

l!
Y m
l

( x

|x|
)
jl(ω|x|)

− 4π
∑

l≥0

il jl(ω|x|)
l∑

m=−l
Y m
l

( x

|x|
) ∑

l′=0,...,q;
|m′|≤l′

αl′,m′ Y m
l (dl′,m′)

= −4π
∑

l≥q+1

il jl(ω|x|)
l∑

m=−l
Y m
l

( x

|x|
) ∑

l′=0,...,q;
|m′|≤l′

αl′,m′ Y m
l (dl′,m′) , (3.50)

provided that the vector ~α ∈ C
p is the solution of the linear system M · ~α = ~β

with

βl,m =





1

4π

(
1

2iω

)l (2l + 1)!

l!
al,m l = 0, . . . , L ; |m| ≤ l ,

0 l = L+ 1, . . . , q ; |m| ≤ l ,

(3.51)
and M is the p× p matrix defined in (3.32).

Now we can bound the coefficients al,m with the norms of the polynomial
P , denoting r = |x|:

|P |2µ,D ≥
∥∥∥∥
∂µ

∂rµ
P

∥∥∥∥
2

0,Bρh

=

∥∥∥∥∥∥

L∑

l=µ

l∑

m=−l
al,m

l!

(l − µ)!
rl−µY m

l

( x

|x|
)
∥∥∥∥∥∥

2

0,Bρh

=

∫ ρh

0

L∑

l=µ

l∑

m=−l

L∑

l′=µ

l′∑

m′=−l′
al,mal′,m′

l! l′!
(l − µ)! (l′ − µ)!

rl+l
′−2µ

·
∫

S2

Y m
l (d)Y m′

l′ (d) dd r2 dr

=

L∑

l=µ

l∑

m=−l
|al,m|2

(l!)2
(
(l − µ)!

)2
(ρh)2(l−µ)+3

2(l − µ) + 3
0 ≤ µ ≤ L

thanks to the orthonormality of the spherical harmonics. Choosing µ = l and
µ = K, this gives:

l∑

m=−l
|al,m| ≤

√
2l + 1

(
l∑

m=−l
|al,m|2

) 1
2
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≤
√
2l + 1

√
3

l! (ρh)
3
2

|P |l,D 0 ≤ l ≤ L ,

l∑

m=−l
|al,m| ≤

√
2l + 1

(l −K)!
√

2(l −K) + 3

l! (ρh)l−K+ 3
2

|P |K,D

≤ (l −K)! (2l + 2)

l! (ρh)l−K+ 3
2

|P |K,D K ≤ l ≤ L . (3.52)

Now, for every dl′,m′ and for every x ∈ BR, we have

∣∣∣∣∣∣
4π

∑

l≥q+1

il jl(ω|x|)
l∑

m=−l
Y m
l

( x

|x|
)
Y m
l (dl′,m′)

∣∣∣∣∣∣

≤ 4π
∑

l≥q+1

√
π

2ω|x|
∣∣Jl+ 1

2
(ω|x|)

∣∣
√√√√

l∑

m=−l

∣∣∣∣Y m
l

( x

|x|
)∣∣∣∣

2

√√√√
l∑

m=−l

∣∣Y m
l (dl′,m′)

∣∣2

(B.14)

≤ 4π

√
π

2ω|x|
∑

l≥q+1

(ω|x|)l+ 1
2

Γ
(
l + 3

2

)
2l+

1
2

2l + 1

4π

j=l−q−1
≤

√
π

2

(
ω|x|
2

)q+1 ∞∑

j=0

(
ω|x|
2

)j
2
(
q + j + 1 + 1

2

)

Γ(q + j + 1 + 3
2)

≤
√
π

(
ω|x|
2

)q+1 q! 22q+1

√
π(2q + 1)!

∞∑

j=0

(
ω|x|
2

)j

j!

≤ q! 2q

(2q + 1)!
(ωR)q+1 e

ωR
2 , (3.53)

where, in the second inequality, we have bounded the sum of the spherical
harmonics with (2.4.105) of [160], and in the fourth inequality we have used

(q + j + 3
2 )

Γ(q + j + 1 + 3
2)

=
1

Γ(q + j + 3
2)

≤ 1

Γ(q + 3
2)Γ(j + 1)

=
q! 22q+1

√
π(2q + 1)! j!

.

We will also need the following bound. When q ≥ 3, using the Stirling
formula (B.1), e < 2

√
2 and the hypothesis on the indices, we have

(L−K)!

2q−L q!
≤ (L−K)L−K+ 1

2 eq+1

2q−L qq+
1
2 eL−K

(3.48)

≤ eK+1
(e
2

)q−L ⌊ q−1
2 ⌋⌊ q−1

2
⌋+ 1

2

qq+
1
2

≤
√
2
−L

eK+1

(
e

2
√
2

)q−L (q − 1)
q
2

qq+
1
2

≤
√
2
−L

eK+1 q−
q
2
+ 3

2
1

(q + 1)2
. (3.54)
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3. Approximation of homogeneous Helmholtz solutions

The same bound holds true also for q = 1, 2.
We plug (3.53) in (3.50) with the definition of ~β and the bound (3.52) on the

coefficients al,m with K = l, and obtain the assertion of the lemma through
following chain of inequalities:

∥∥∥∥∥∥∥∥
V1[P ]−

∑

l=0,...,q;
|m|≤l

αl,m eiωx·dl,m

∥∥∥∥∥∥∥∥
L∞(BR)

(3.50)

≤ sup
x∈BR

l′=0,...,q,
m′=−l′,...,l′

∣∣∣∣∣∣
4π

∑

l≥q+1

il jl(ω|x|)
l∑

m=−l
Y m
l

( x

|x|
)
Y m
l (dl′,m′)

∣∣∣∣∣∣
· ‖~α‖1

(3.53)

≤ q! 2q

(2q + 1)!
(ωR)q+1 e

ωR
2

∥∥M−1
∥∥
1

∥∥∥~β
∥∥∥
1

(3.51)

≤
∥∥M−1

∥∥
1

q! 2q

(2q + 1)!
(ωR)q+1 e

ωR
2

L∑

l=0

l∑

m=−l

1

4π

(
1

2ω

)l (2l + 1)!

l!
|al,m|

(3.52)

≤
∥∥M−1

∥∥
1

4π

q! 2q

(2q + 1)!
(ωR)q+1 e

ωR
2

·
[
K−1∑

l=0

(
1

2ω

)l (2l + 1)!
√
3
√
2l + 1

l! l! (ρh)
3
2

|P |l,D

+
L∑

l=K

(
1

2ω

)l (2l + 1)! (l −K)! (2l + 2)

l! l! (ρh)l−K+ 3
2

|P |K,D

]

≤
√

3

π

∥∥M−1
∥∥
1

4
√
π

q! 2q

ρL−K+ 3
2 (2q + 1)!

(ωR)q+1

h
3
2

e
ωR
2

[
K−1∑

l=0

(2l + 1)!
√
2l + 1

2l l! l!

+

L∑

l=K

(2l + 1)! (l −K)! (2l + 2)

2l l! l! (ωh)l−K

]
ω−K ‖P‖K,,ω,D

≤
∥∥M−1

∥∥
1

4
√
π

1

ρL−K+ 3
2

q! 2q

(2q + 1)!

[
(2L+ 1)!

2L L! L!

(
(L+ 1) (L−K)! (2L+ 2)

)]

· (ωR)q+1−K RK

h
3
2

(
1 + (ωh)−L+K

)
e
ωR
2 ‖P‖K,ω,D

≤
∥∥M−1

∥∥
1

2
√
π

1

ρL−K+ 3
2

1

q! 2q
q! q! 4q

(2q + 1)!

(2L+ 1)!

4L L! L!
2L (L+ 1)2 (L−K)!

· (ωR)q+1−K RK

h
3
2

(
1 + (ωh)−L+K

)
e
ωR
2 ‖P‖K,ω,D

≤
∥∥M−1

∥∥
1

2
√
π

1

ρL−K+ 3
2

(L−K)!

q! 2q−L
(L+ 1)2

· (ωR)q+1−K RK

h
3
2

(
1 + (ωh)−L+K

)
e
ωR
2 ‖P‖K,ω,D
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(3.54)

≤
∥∥M−1

∥∥
1

2
√
π(q + 1)2

(L+ 1)2 eK+1

ρL−K+ 3
2

√
2
L
q−

q
2
+ 3

2

· (ωR)q+1−K RK

h
3
2

(
1 + (ωh)−L+K

)
e
ωR
2 ‖P‖K,ω,D ,

where we have used the monotonicity of the increasing sequences l 7→ (2l+1)!
2l l! l!

and l 7→ (2l+1)!
4l l! l!

= 2Γ(l+3/2)√
πΓ(l+1)

(see (B.5)).

Remark 3.4.9. Lemma 3.4.8 provides a way to compute a plane wave approxi-
mation of a given generalized harmonic polynomial. Solving the linear system
M · ~α = ~β, with the matrix M defined in (3.32) and the right-hand side ~β as
in (3.51), gives the coefficient vector ~α of the approximating linear combina-
tion of plane waves. Since M is independent of ω and h, the conditioning of
this problem depends only on the choice of the directions. Hence, in terms of
stability, approximation with plane waves is no less stable with respect to ω
than approximation by generalized harmonic polynomials.

However, if the considered generalized harmonic polynomial is the Vekua
transform of a fixed harmonic polynomial, the coefficient vector ~β blows up
for ω → 0 because of its definition (3.51).

Remark 3.4.10. The relation (3.48) between the number of plane waves and
the degree of the generalized harmonic polynomials can be written in more
general form as

L−K ≤ ⌊η(q − 1)⌋ , η ∈ (0, 1) .

For q ≥ 1 + 1/η, the bound (3.54) becomes

(L−K)!

2q−L q!
≤ (L−K)L−K+ 1

2 eK−L+q+1

2q−L qq+
1
2

≤ eK+1 ηη(L−1)+ 1
2

(e ηη
2

)q−L
q(η−1)q−η ,

and the constant in (3.49) is changed into

C(q, ω, ρ, h,R,K,L) =
1

2
√
πρL−K+ 3

2

eK+1 ηη(L−1)+ 1
2

(e ηη
2

)q−L
(L+ 1)2

· (ωR)q+1−K (1 + (ωh)−L+K
)
e
ωR
2
RK

h
3
2

1

q(1−η)q+η
.

This provides more flexibility in the choice of L and q and allows to increase
the order of convergence in q but does not change substantially the estimates
for general Helmholtz solutions.

Combining Lemma 3.4.8 and Lemma 3.4.6 immediately gives the following
result.

Corollary 3.4.11. Let D ⊂ R
3 be a domain that satisfies Assumption 3.1.1,

q ∈ N and p = (q+1)2. Then there exists a set of directions {dl,m}0≤|m|≤l≤q ⊂
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S
2 such that for every harmonic polynomial P of degree L ≤ q and for every
R > 0 and K ∈ N satisfying (3.48), there exists a vector ~α ∈ C

p such that

∥∥∥∥∥∥∥∥
V1[P ]−

∑

l=0,...,q;
|m|≤l

αl,m eiωx·dl,m

∥∥∥∥∥∥∥∥
L∞(BR)

≤ C(ω, ρ, h,R, q,K,L) ‖P‖K,ω,D ,

(3.55)
where

C(ω, ρ, h,R, q,K,L) =
1

ρL−K+ 3
2

(L+ 1)2 eK+1

√
2
L

· (ωR)q+1−K (1 + (ωh)−L+K
)
e
ωR
2
RK

h
3
2

1

q
q−3
2

.

Remark 3.4.12. All the results proved in Sections 3.4.2 and 3.4.3 and their
proofs are valid for every complex wavenumber ω 6= 0 with minor changes: ω
has to be replaced by |ω| in the bounds and a term e| Imω|R has to be multiplied
to every majorant after the use of the inequality (B.14) (in particular, all the
right-hand sides in the assertions are multiplied with this value).

3.5. Approximation of Helmholtz solutions by plane

waves

In order to use Lemma 3.4.3 and Lemma 3.4.8 to derive error estimates for the
approximation of homogeneous Helmholtz solutions in PWω,p(R

N ), we need
to link the Sobolev norms of the error to its L∞-norm. This is done in the
following lemma, that generalizes the usual Cauchy estimates for harmonic
functions to the Helmholtz case. The result is a simple consequence of the
continuity of the Vekua transform.

Lemma 3.5.1. Let D ⊂ R
N , N = 2, 3, be a domain as in Assumption 2.2.1,

and let u ∈ Hj(Bh), j ∈ N, be a solution to the homogeneous Helmholtz
equation with ω > 0. Then we have

‖u‖j,ω,D ≤ CN,j ρ
1−N

2
−j (1 + (ωh)j+4

)
e

1
2
ωh h

N
2
−j ‖u‖L∞(Bh)

. (3.56)

where the constant C depends only on N and j.

Proof. Assumption 2.2.1 implies that D ⊂ B(1−ρ)h and henceforth the distance
between the boundaries of the domains involved in formula (3.56) satisfies
d(D, ∂Bh) ≥ ρh. Using the Cauchy estimates for harmonic functions and the
continuity of the Vekua operators, we have

‖u‖j,ω,D
(2.9)

≤ CN ρ
1−N

2 (1 + j)
3
2
N+ 1

2 ej
(
1 + (ωh)2

)
‖V2[u]‖j,ω,D

≤ CN,j ρ
1−N

2
(
1 + (ωh)2

) j∑

l=0

ωj−l |V2[u]|l,D
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≤ CN,j ρ
1−N

2

(
1 + (ωh)2

) j∑

l=0

ωj−l h
N
2 |V2[u]|W l,∞(D)

(2.29)

≤ CN,j ρ
1−N

2

(
1 + (ωh)2

) j∑

l=0

ωj−l h
N
2 (ρh)−l ‖V2[u]‖L∞(Bh)

≤ CN,j ρ
1−N

2
−j (1 + (ωh)j+2) h

N
2
−j ‖V2[u]‖L∞(Bh)

(2.14) on Bh
≤ CN,j ρ

1−N
2

−j (1 + (ωh)j+4) e
1
2
ωh h

N
2
−j ‖u‖L∞(Bh)

,

where, in the last step, the exponential has coefficient 1/2 because the ball Bh
has diameter 2h and shape parameter ρ(Bh) = 1/2.

Now we can state the main results: the hp-approximation estimates for
homogeneous Helmholtz solutions in Hj(D) with plane waves in PWω,p(D).
We consider the two cases N = 2 and N = 3 separately in Theorem 3.5.2
and Theorem 3.5.3, respectively; we will write a simpler (and probably more
useful) version in Corollary 3.5.5.

Theorem 3.5.2 (hp-estimates, N = 2). Let u ∈ HK+1(D) be a solution
of the homogeneous Helmholtz equation in a domain D ⊂ R

2 satisfying As-
sumption 3.1.1 and the exterior cone condition with angle λDπ (see Defi-
nition 3.2.4). Fix q ≥ 1, set p = 2q + 1 and let the directions {dk =
(cos θk, sin θk)}k=−q,...,q satisfy the condition (3.37).

Then for every integer L satisfying

0 ≤ K ≤ L ≤ q , L−K ≤
⌊
q − 1

2

⌋
,

there exists ~α ∈ C
p such that, for every 0 ≤ j ≤ K + 1,

∥∥∥∥∥u−
p∑

k=1

αke
iωx·dk

∥∥∥∥∥
j,ω,D

≤ C e(
7
4
− 3

4
ρ)ωh

(
1 + (ωh)j+6

)
hK+1−j

·
{(

log(L+ 2)

L+ 2

)λD(K+1−j)

+
(
1 + (ωh)q−K+2

) (2

ρ

)L√L+ 1

q + 1

(
e

5
2

2
√
2 δ2

√
q + 1

)q}
‖u‖K+1,ω,D ,

(3.57)

where the constant C > 0 depends only on j, K and the shape of D, but is
independent of q, L, δ, {dk}, ω, h and u.

Proof. Let Q be the generalized harmonic polynomial of degree at most L
equal to Q′

L from Theorem 3.3.1, item (iii).
Since V2[Q] approximates V2[u], we notice that, for K ≥ 1,

‖V2[Q]‖K,ω,D ≤ ‖V2[u]‖K,ω,D + ‖V2[u]− V2[Q]‖K,ω,D
(3.12)

≤ (1 + C) ‖V2[u]‖K,ω,D
(2.12)

≤ C
(
1 + (ωh)4

)
e

3
4
(1−ρ)ωh ‖u‖K,ω,D ,

(3.58)
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where C depends only on K and the shape of D. In the second step we could
use the stability bound (3.20) with j = k + 1 = K and φ = V2[u] because
Q = Q′

L = V1[P ], with P from Theorem 3.2.12.
We combine all the ingredients and obtain, in the case K ≥ 1,
∥∥∥∥∥u−

p∑

k=1

αke
iωx·dk

∥∥∥∥∥
j,ω,D

≤ ‖u−Q‖j,ω,D +

∥∥∥∥∥Q−
p∑

k=1

αke
iωx·dk

∥∥∥∥∥
j,ω,D

(3.24),
(3.56)

≤ C
(
1 + (ωh)j+6

)
e

3
4
(1−ρ)ωh

(
log(L+ 2)

L+ 2

)λD(K+1−j)
hK+1−j ‖u‖K+1,ω,D

+ C
(
1 + (ωh)j+4

)
e

1
2
ωh h1−j

∥∥∥∥∥Q−
p∑

k=1

αke
iωx·dk

∥∥∥∥∥
L∞(Bh)

(3.39),
R=h≤ C

(
1 + (ωh)j+6

)
e

3
4
(1−ρ)ωh

(
log(L+ 2)

L+ 2

)λD(K+1−j)
hK+1−j ‖u‖K+1,ω,D

+ C ρ−L+K−1

(
e

5
2

2
√
2δ2

)q
(2L

√
L+ 1)

(
1 + (ωh)q−K+j+4

)
eωh

· hK+1−j 1

(q + 1)
q+1
2

ω ‖V2[Q]‖K,ω,D

(3.58)

≤ C e(1+
3
4
(1−ρ))ωh (1 + (ωh)j+6

)
hK+1−j

·
{(

log(L+ 2)

L+ 2

)λD(K+1−j)

+
2L
(
1 + (ωh)q−K+2

)

ρL−K+1

√
L+ 1

q + 1

(
e

5
2

2
√
2 δ2

√
q + 1

)q}
‖u‖K+1,ω,D ,

where the constant C > 0 depends only on j, K and the shape of D. If K = 0
and j ∈ {0, 1}, we have to use (2.11) instead of (2.12) in (3.58), so that (3.58)
becomes

‖V2[Q]‖0,D ≤ C (1 + (ωh)4) e
1
2
(1−ρ)ωh (‖u‖0,D + h |u|1,D) .

The rest of the proof continues as in the case K ≥ 1 until the last but one
step. For the last step, since

ω ‖V2[Q]‖0,D ≤ C (1 + (ωh)4) e
1
2
(1−ρ)ωh ω (‖u‖0,D + h |u|1,D)

≤ C (1 + (ωh)4) e
1
2
(1−ρ)ωh (1 + ωh) ‖u‖1,ω,D

≤ C (1 + (ωh)4) e
3
4
(1−ρ)ωh ‖u‖1,ω,D ,

we get exactly the same conclusion as in the case K ≥ 1.

Theorem 3.5.3 (hp-estimates, N = 3). Let u ∈ HK+1(D) be a solution of
the homogeneous Helmholtz equation in a domain D ⊂ R

3 satisfying Assump-
tion 3.1.1. Fix q ≥ 1, set p = (q+1)2 and let the directions {dl,m}0≤|m|≤l≤q ⊂
S
2 be such that the matrix M defined by (3.32) is invertible.
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Then for every integer L satisfying

0 ≤ K ≤ L ≤ q , L−K ≤
⌊
q − 1

2

⌋
, L ≥ 21/λD ,

where λD > 0 is the constant that depends only on the shape of D from The-
orem 3.2.12, there exists ~α ∈ C

p such that, for every 0 ≤ j ≤ K + 1,

∥∥∥∥∥∥
u−

∑

0≤|m|≤l≤q
αl,me

iωx·dl,m

∥∥∥∥∥∥
j,ω,D

≤ C
(
1 + (ωh)j+6

)
e(

7
4
− 3

4
ρ)ωh hK+1−j

·
{
L−λD(K+1−j) +

(
1 + (ωh)q−K+2

) (L+ 1)2
∥∥M−1

∥∥
1

(
√
2 ρ)L−K q

q+1
2

}
‖u‖K+1,ω,D .

(3.59)
where the constant C > 0 depends only on j, K and the shape of D, but is
independent of q, L, {dl,m}, ω, h and u.

Proof. Let Q be the generalized harmonic polynomial of degree at most L
equal to Q′′

L from Theorem 3.3.1, item (iv).
We proceed as we did in two dimensions: for K ≥ 1,

‖V2[Q]‖K,ω,D ≤ ‖V2[u]‖K,ω,D + ‖V2[u]− V2[Q]‖K,ω,D
(3.20)

≤ (1 + C) ‖V2[u]‖K,ω,D
(2.12)

≤ C
(
1 + (ωh)4

)
e

3
4
(1−ρ)ωh ‖u‖K,ω,D ,

(3.60)

where C depends only on K and the shape of D.

∥∥∥∥∥∥
u−

∑

0≤|m|≤l≤q
αl,me

iωx·dl,m

∥∥∥∥∥∥
j,ω,D

≤ ‖u−Q‖j,ω,D +

∥∥∥∥∥∥
Q−

∑

0≤|m|≤l≤q
αl,me

iωx·dl,m

∥∥∥∥∥∥
j,ω,D

(3.25),
(3.56)

≤ C
(
1 + (ωh)j+6

)
e

3
4
(1−ρ)ωh L−λD(K+1−j) hK+1−j ‖u‖K+1,ω,D

+ C
(
1 + (ωh)j+4

)
e

1
2
ωh h

3
2
−j

∥∥∥∥∥∥
Q−

∑

0≤|m|≤l≤q
αl,me

iωx·dl,m

∥∥∥∥∥∥
L∞(Bh)

(3.49),
R=h≤ C

(
1 + (ωh)j+6

)
e

3
4
(1−ρ)ωh L−λD(K+1−j) hK+1−j ‖u‖K+1,ω,D

+ C ρ−L+K
(
1 + (ωh)q+j−K+4

)
eωh hK+1−j (L+ 1)2

∥∥M−1
∥∥
1√

2
L
q
q−3
2 (q + 1)2

ω ‖V2[Q]‖K,ω,D

(3.60)

≤ C
(
1 + (ωh)j+6

)
e(1+

3
4
(1−ρ))ωh hK+1−j
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·
{
L−λD(K+1−j) +

(
1 + (ωh)q−K+2

) (L+ 1)2
∥∥M−1

1

∥∥

ρL−K
√
2
L
q
q+1
2

}
‖u‖K+1,ω,D ,

where C > 0 depends only on j, K and the shape of D.
If K = 0 and j ∈ {0, 1}, (3.60) becomes

ω ‖V2[Q]‖0,D ≤ ω ‖V2[u]‖0,D + ω ‖V2[u]− V2[Q]‖0,D
(3.20), j=k=0

≤ ω ‖V2[u]‖0,D + ω C h |V2[u]|1,D
≤ C (1 + ωh) ‖V2[u]‖1,ω,D

(2.12)

≤ C
(
1 + (ωh)5

)
e

3
4
(1−ρ)ωh ‖u‖1,ω,D , (3.61)

where the constant C depends only on the shape of D. We continue by bound-
ing in a slightly different way the second term in the triangle inequality above:

∥∥∥∥∥∥
Q−

∑

0≤|m|≤l≤q
αl,me

iωx·dl,m

∥∥∥∥∥∥
j,ω,D

(3.56)

≤ C
(
1 + (ωh)j+4

)
e

1
2
ωh h

3
2
−j

∥∥∥∥∥∥
Q−

∑

0≤|m|≤l≤q
αl,me

iωx·dl,m

∥∥∥∥∥∥
L∞(Bh)

(3.49),
R=h≤ C ρ−L

(
1 + (ωh)q+j+4−L) eωh h1−j

(L+ 1)2
∥∥M−1

∥∥
1√

2
L
q
q−3
2 (q + 1)2

ω ‖V2[Q]‖0,D

(3.61)

≤ C ρ−L
(
1 + (ωh)q+j+9−L)e(1+ 3

4
(1−ρ))ωh h1−j

(L+ 1)2
∥∥M−1

∥∥
1√

2
L
q
q−3
2 (q + 1)2

‖u‖1,ω,D ,

where C > 0 depends only on the shape of D; since L ≥ 1 this estimate
completes the assertion of the theorem.

Remark 3.5.4. If the directions {dl,m}0≤|m|≤l≤q ⊂ S
2 in Theorem 3.5.3 are

chosen as in Lemma 3.4.6, using the bound (3.55) of Corollary 3.4.11 instead
of (3.49), the estimate (3.59) becomes

∥∥∥∥∥∥
u−

∑

0≤|m|≤l≤q
αl,me

iωx·dl,m

∥∥∥∥∥∥
j,ω,D

≤ C
(
1 + (ωh)j+6

)
e(

7
4
− 3

4
(1−ρ))ωh

· hK+1−j
{
L−λD(K+1−j) +

(
1 + (ωh)q−K+2

)
(L+ 1)2

(
√
2 ρ)L−K q

q−3
2

}
‖u‖K+1,ω,D .

with C > 0 depending only on j, K and the shape of D, but independent of
q, L, ω, h and u.

For q ≥ 2K + 1, we can rewrite the the error bounds of the two previous
theorems in a simpler fashion.
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Corollary 3.5.5. Let u ∈ HK+1(D) be a solution of the homogeneous Helm-
holtz equation and fix

q ≥ 2K + 1 .

We consider the same assumptions on the domain D and on the directions
{dk}k=1,...,p (in 3D, we relabel the directions {dl,m} as {dk}k=1,...,p) as in
Theorem 3.5.2 and Theorem 3.5.3 for N = 2 and N = 3, respectively. In the
three-dimensional case, we assume also q ≥ 2(1 + 21/λD), where λD > 0 is the
constant that depends only on the shape of D from Theorem 3.2.12.

Then, there exists ~α ∈ C
p such that, for every 0 ≤ j ≤ K + 1,

∥∥∥∥∥u−
p∑

k=1

αke
iωx·dk

∥∥∥∥∥
j,ω,D

≤ C
(
1 + (ωh)j+6

)
e(

7
4
− 3

4
ρ)ωh hK+1−j

·





[(
log(q + 2)

q

)λD(K+1−j)
+

1 + (ωh)q−K+2

(
c0 (q + 1)

) q
2

]
‖u‖K+1,ω,D D ⊂ R

2 ,

[
q−λD(K+1−j) +

1 + (ωh)q−K+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]
‖u‖K+1,ω,D D ⊂ R

3 ,

(3.62)

where C > 0 depends only on j, K and the shape of D, and, in two dimensions,

c0 =

{
4e−5 ρ δ4 general {dk} as in (3.37),

4e−1 ρ uniformly spaced {dk.}
(3.63)

Proof. Choose L =
⌊
q−1
2

⌋
in Theorems 3.5.2 and 3.5.3 and use Remark 3.4.4

for the uniformly spaced case in two dimensions.

Notice that in the bounds (3.57), (3.59), and (3.62) the dependence on ωh is
slightly better than the one written in the paper [150]. This choice admits the
p-convergence also in the case ωh > 1 because the factor (ωh)q is multiplied
only with the term with (more than) exponential decay in q and not to the
algebraic one.

Remark 3.5.6. If we do not care about the dependence on p, in order to obtain
a h-estimate with optimal order it is enough to require q ≥ K and, in three
dimensions, to assume M invertible. This gives

∥∥∥∥∥u−
p∑

k=1

αke
iωx·dk

∥∥∥∥∥
j,ω,D

≤ C
(
1+(ωh)q+j−K+8

)
e(

7
4
− 3

4
ρ)ωh hK+1−j ‖u‖K+1,ω,D

(3.64)
where the constant C does not depend on h, ω and u. No requirement depend-
ing on λD is needed, because we can simply use part (ii) (Bramble–Hilbert)
instead of (iii)–(iv) of Theorem 3.3.1. Thanks to Remark 3.3.2, the h-estimate
(3.64) holds also for domains that are star-shaped with respect to a single point
only, i.e., that satisfy Assumption 2.2.1 instead of 3.1.1.
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3. Approximation of homogeneous Helmholtz solutions

Remark 3.5.7. The estimates in Corollary 3.5.5 look very similar in two and in
three spatial dimensions, but few important differences must be pointed out.

If D ⊂ R
2, any choice of (different) directions dk guarantees the estimate

and the convergence. The parameter λD, which provides the actual rate of
convergence, can be computed explicitly by “measuring” the re-entrant corners
of D.

If D ⊂ R
3, the estimate, as it is stated, which is valid provided that M

is invertible, guarantees the convergence in q only if the growth of the norm
of M−1 is controlled. This is true, for instance, for the optimal set of direc-
tions introduced in Lemma 3.4.6 and for Sloan’s directions of Remark 3.4.7.
Moreover, the rate λD is not known. If a harmonic polynomial approximation
estimate like (3.20) with explicit order were available, then we could plug this
coefficient in place of λD in (3.62); see Remark 3.2.13.

We have always used a total number of plane waves equal to p = 2q + 1
and p = (q + 1)2 in two and three dimensions, respectively. In a compari-
son with polynomial approximation, q represents the polynomial degree (the
error behaves as q−λD(K+1−j)) and p the total number of degrees of freedom
involved. The value of p is equal to the dimension of the space of harmonic
polynomials of degree at most q, which is lower than the dimension of the
complete polynomial space of the same degree. Thus the approximation with
plane waves seems to require asymptotically less degrees of freedom than the
corresponding polynomial one (see [146, Remark 3.3]). In convex or smooth
two-dimensional domains this is true, since λD ≈ 1, while in three dimensions
the problem is still open.

Remark 3.5.8. The second term within the square brackets in the estimates of
Corollary 3.5.5 converges to zero faster than exponentially, while the first one
only algebraically (if we assume that the norm of M−1 is controlled, when N =
3). This gives the algebraic convergence of the best approximation, if u has
finite Sobolev regularity in D. On the other hand, the order of convergence of
these estimates is given by the harmonic approximation problem described in
Section 3.2. Thus, if the function u is solution of the homogeneous Helmholtz
equation in a domain D′ such that D ⊂ D′, d(D, ∂D′) = δh, 0 < δ < 1, we
will have exponential convergence in D (recall Proposition 3.3.3). The speed
will depend on δ; see [144, Corollary 2.7] (two dimensions) and [19] (three
dimensions).

Repeating the proof of Theorems 3.5.2 and 3.5.3 with the help of the bound
(3.30) we obtain easily for N = 2, 3 and q large enough

∥∥∥∥∥u−
p∑

k=1

αke
iωx·dk

∥∥∥∥∥
j,ω,D

(3.65)

≤ C
(
1 + (ωh)q+j−K+8

)
e

3
2
ωh b−q

(
‖u‖K+1,ω,D + ‖u‖L∞(D+Bδ)

)
,

where the constant C depends on j, K, {dk}, N , D, h and δ, but is indepen-
dent of q, ω, u; the value of b ≥ 1 depends only on D and δ.

Remark 3.5.9. All the results proved in this section hold true with minor
changes if ω 6= 0 is any complex number (cf. Remarks 2.3.6, 3.3.4 and 3.4.12).
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In particular, the right-hand sides of the equations (3.57), (3.59), (3.62), and

(3.64) are multiplied by e
3
2
|ω|h+| Imω|h, that of equation (3.56) is multiplied by

e
3
2
|ω|h and ω is substituted by its absolute value in all the bounds and in the

definition of the weighted norms.

Remark 3.5.10. In order to prove similar results in more than three space di-
mensions, the intermediate steps that still have to be verified are the extension
of (i) the wavenumber-explicit interior estimates of Lemma 2.3.12 and of (ii)
Lemma 3.4.8, which requires the use of theN -dimensional addition formula for
spherical harmonics and the corresponding Jacobi–Anger expansion (B.36).

Remark 3.5.11. If the function u we want to approximate using plane waves is
not a solution of the homogeneous Helmholtz equation, or it is solution with a
different wavenumber, we can not expect p-convergence and high orders in h.
Anyhow, for every u ∈ H2(D), linear h-convergence inH1-norm and quadratic
in L2-norm have been proved in [96, Prop. 3.12–3.13].
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4. Trefftz-discontinuous Galerkin
methods for the Helmholtz
equation

4.1. Introduction

One of the prominent examples of finite element methods for the discretization
of Helmholtz equation based on the use of plane wave trial and test functions
is the ultra weak variational formulation (UWVF), introduced by Cessenat
and Després in the 1990’s [46, 47]. Since then, this method has seen rapid
algorithmic development and extensions, see [117, 118, 121, 122, 124] and Sec-
tion 1.2.1 of the present thesis. It turns out that the UWVF can be recast
as a special discontinuous Galerkin (DG) method employing local trial spaces
spanned by a few plane waves, as pointed out in [42, 85, 96]. In a sense, this
is a special case of a Trefftz-type approximation, as the local trial functions
are solutions of the homogeneous Helmholtz equation −∆u − ω2u = 0. This
perspective paves the way for marrying plane wave approximation with many
of the various DG methods developed for second-order elliptic boundary value
problems. This has been pursued in [84,96,110,148] for a class of primal and
mixed DG methods, which generalize the ultra weak scheme, and which differ
from each other in the choice of the numerical fluxes.

Here we adopt a more general perspective: we develop the a priori er-
ror analysis for general Trefftz spaces, not necessarily constituted by plane
wave functions. We refer to these methods as “Trefftz–discontinuous Galerkin
(TDG) methods” for the general case and “plane wave discontinuous Galerkin
(PWDG) methods” for the special choice of the trial space.

In [96] an h-version error analysis for the PWDG method applied to the
2D inhomogeneous Helmholtz problem was carried out. In that case, indepen-
dently of how many plane waves are used in the local approximation spaces,
only first order convergence can be achieved in general. The analysis was
restricted to a class of PWDG methods with flux parameters depending on
the product ωh (not including the classical ultra weak variational formula-
tion of [47]). Key elements of this analysis are local approximation estimates
and inverse estimates for plane waves, and a duality technique. This involves
estimating the approximation error of the solution of an inhomogeneous dual
problem by plane waves. High order convergence as h→ 0 is actually achieved
in the homogeneous case f ≡ 0 only [148], because plane waves are not capable
to approximate general H2 functions in a fixed domain (cf. Remark 3.5.11).

The application of a duality argument in the h-version error analysis entails
a threshold condition on the mesh size: quasi-optimality of the PWDG solu-
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tion is guaranteed only if ω2h is “sufficiently small”; see [96, Theorem 4.10]. In
numerical experiments this is observed as a widening gap between discretiza-
tion error and plane wave best approximation error as ω becomes larger and
larger. Thus, the notorious pollution effect that haunts local discretizations
of wave propagation problems manifests itself in the theoretical estimates.

For polynomial schemes, their p-versions, also called spectral versions, are
immune to the pollution effect [3–5]. Thus, we believe that the spectral/p-
version of TDG methods, which strives for better accuracy by enlarging the
local trial spaces, will also possess this desirable property. Besides, practical
experience suggests that (well balanced local) p–refinement is highly advis-
able [124], because (local) smoothness/analyticity of the solution u can be
exploited. Ultimately, a judicious hp-refinement strategy will be the most at-
tractive option, though one has to confront the notorious ill-conditioning of
the linear systems arising from spectral PWDG approaches. Since aspects of
implementation are not covered here, we will gloss over this issue.

Unfortunately, a comprehensive hp convergence analysis is elusive so far.
Thus, the more modest aim of this chapter is the derivation of abstract a
priori p-version error estimates for the TDG method applied to the two- and
three-dimensional homogeneous Helmholtz equation in convex domains, and
to specialize those estimates in concrete convergence bounds in the case of the
PWDG method. The used approach has little in common with the duality
techniques pursued in [96,148], because p-refinement does not yield any useful
approximation of the solution of the inhomogeneous dual problem, since plane
waves fail to approximate general functions.

Moreover, we cannot rely on coercivity in the seminorm of the bilinear form
defining the TDG method for general functions. Instead, we consider a weaker
skeleton-based energy seminorm (i.e., containing interelement jump terms and
boundary terms only), which is a norm when restricted to the space of local
Trefftz’ functions. We prove a coercivity result in this norm. This grants
more freedom in the choice of the flux parameters; in particular, constant
flux parameters are allowed so that also the classical ultra weak variational
formulation of [47] is covered by our analysis.

Our argument is based on an estimate of the L2-norm of Trefftz’ functions by
their skeleton-based norm, which was discovered in the context of least squares
Trefftz methods in [154]. We rederive this estimate in order to establish the
dependence of the constants in front of the estimate explicitly not only on the
meshwidth h, but also on the wavenumber ω. In parts, the analysis is carried
out along the lines of [42]. On the other hand, we do not rewrite the TDG
bilinear form in terms of impedance traces, but stay closer to the DG setting
and our arguments are substantially simpler than those of [42].

We point out that the constant in front of the final p-version error estimates
for the PWDG depends on the product ωh. This is inevitable, because no
accuracy can be expected unless the underlying wavelength is resolved by the
trial space. Yet, in contrast to the h-version estimates of [42, Sect. 4], the
error bounds do not hinge on the assumption that ωh is “sufficiently small.”

The outline of this chapter is as follows: in Section 4.2, we report the
derivation of the TDG method for the homogeneous Helmholtz equation with
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4.2. The TDG method

impedance boundary conditions. Next, we derive abstract error estimates for
the general TDG method in Section 4.3: we state a coercivity property and
continuity of the TDG bilinear form, then we prove quasi-optimality of the
approximation error in a mesh skeleton-based norm. In Section 4.3.1 we derive
a bound for the L2-norm of the error via a duality argument following [154]
and [42]; this hinges on certain assumptions on the domain and the mesh,
in particular the convexity of Ω and the uniformity of element sizes. Subse-
quently, in Section 4.4, from the approximation results proved in Chapter 3, we
derive error estimates for the PWDG method in the skeleton-based norm and
in energy-norm: these are reported in Theorem 4.4.4. In Section 4.5, we derive
error estimates in a stronger norm, containing the difference between the gra-
dient of the analytical solution and the gradient of a (computable) projection
of the TDG solution. The final section studies the PWDG discretization error
numerically for some model problems.

We follow the paper [108] with two major differences: (i) the method and
the abstract analysis are presented for the general TDG method instead of
the special PWDG case; (ii) all the results hold not only for two- but also for
three-dimensional domains.

4.2. The TDG method

In this section, we introduce the Trefftz–discontinuous Galerkin (TDG) meth-
od for the homogeneous Helmholtz equation, following [96] and [108].

Assume Ω to be a bounded Lipschitz domain in R
N , N = 2, 3. For the

duality argument used in our error analysis, we need to assume Ω to be convex.
Consider the Helmholtz boundary value problem

−∆u− ω2u = 0 in Ω ,

∇u · n+ iω u = g on ∂Ω .
(4.1)

Here, ω > 0 is a fixed wavenumber (the corresponding wavelength is λ =
2π/ω), n is the outer normal unit vector to ∂Ω, and i is the imaginary unit. In-
homogeneous first order absorbing boundary conditions in the form of imped-
ance boundary conditions are used in (4.1), with boundary data g ∈ L2(∂Ω).

Let Th be a Lipschitz finite element partition of Ω, with possible hanging
nodes, of meshwidth h (i.e., h = maxK∈Th hK , with hK := diam(K)) on which
we define our TDG method; we will denote by Fh =

⋃
K∈Th ∂K the skeleton

of the mesh, and set FB
h = Fh ∩ ∂Ω and FI

h = Fh \ FB
h .

In the p-version setting, we assume the mesh Th to be fixed, and we only
vary the dimension p of the local trial spaces. Further assumptions on the
problem domain and on the mesh Th will be made precise at the beginning of
Section 4.3 and in Section 4.4.

In order to derive the TDG method, we start by writing problem (4.1) as a
first order system:

iωσ = ∇u in Ω ,

iω u−∇ · σ = 0 in Ω ,

iωσ · n+ iω u = g on ∂Ω .

(4.2)
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4. Trefftz-discontinuous Galerkin method for the Helmholtz equation

By multiplying the first and second equation of (4.2) by smooth test functions
τ and v, respectively, and integrating by parts on each K ∈ Th, we obtain
∫

K

iω σ · τ dV +

∫

K

u∇ · τ dV −
∫

∂K

u τ · n dS = 0 ∀ τ ∈ H(div;K) ,

∫

K

iω u v dV +

∫

K

σ · ∇v dV −
∫

∂K

σ · n v dS = 0 ∀ v ∈ H1(K) . (4.3)

Replace u, v by up, vp ∈ Vp(K) and σ, τ by σp, τ p ∈ Vp(K), where Vp(K) ⊂
H1(K) and VP (K) ⊂ H(div;K) are finite dimensional space. Then, approx-
imate the traces of u and σ across interelement boundaries by the so-called
numerical fluxes denoted by ûp and σ̂p, respectively, to obtain

∫

K

iωσp · τ p dV +

∫

K

up∇ · τ p dV −
∫

∂K

ûp τ p · n dS = 0 ∀ τ p ∈ Vp(K) ,

∫

K

iω up vp dV +

∫

K

σp · ∇vp dV −
∫

∂K

σ̂p · n vp dS = 0 ∀ vp ∈ Vp(K) .

(4.4)

The numerical fluxes will be defined below; they also take into account the
inhomogeneous boundary conditions.

Integrating again by parts the first equation of (4.4), we obtain
∫

K

σp · τ p dV =
1

iω

∫

K

∇up · τ p dV − 1

iω

∫

∂K

(up − ûp) τ p · n dS . (4.5)

We assume ∇hVp(K) ⊆ Vp(K) and take τ p = ∇vp in each element. Inserting
the resulting expression for

∫
K σp · ∇vp dV into the second equation of (4.4),

we arrive at
∫

K

(∇up ·∇vp−ω2upvp) dV −
∫

∂K

(up− ûp)∇vp · n dS−
∫

∂K

iωσ̂p ·n vp dS = 0 .

(4.6)
Notice that the formulation (4.6) is equivalent to (4.4) in the sense that their
up solution components coincide and the σp solution component of (4.4) can
be recovered from up by using (4.5).

Another equivalent formulation can be obtained by integrating by parts
once more the first term in (4.6) (notice that the boundary term appearing
in this integration by parts cancels out with a boundary term already present
in (4.6)):
∫

K

(−∆vp − ω2vp)up dV +

∫

∂K

ûp∇vp · n dS −
∫

∂K

iωσ̂p · n vp dS = 0 . (4.7)

Now we assume that Vp(K) satisfies the Trefftz property :

−∆vp − ω2vp = 0 in K ∀ vp ∈ Vp(K) ;
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4.2. The TDG method

notice that this ensures that the gradients of the functions in Vp(K) belong
to H(div;K), thus no assumption on Vp(K) needs to be made. With this
condition the volume term in (4.7) vanishes, thus (4.7) simply becomes

∫

∂K
ûp∇vp · n dS −

∫

∂K
iωσ̂p · n vp dS = 0 . (4.8)

In order to define the numerical fluxes we recall some standard DG notation.
Write n+, n− for the exterior unit normals on ∂K+ and ∂K−, respectively. Let
up and σp be a piecewise smooth function and vector field on Th, respectively.
On ∂K− ∩ ∂K+, we define

the averages: {{up}} := 1
2(u

+
p + u−p ) , {{σp}} := 1

2 (σ
+
p + σ−

p ) ,

the jumps: [[up]]N := u+p n
+ + u−p n

− , [[σp]]N := σ+
p · n+ + σ−

p · n− .

Furthermore, we denote by ∇h the elementwise application of ∇. Then, we
define the TDG fluxes by setting





σ̂p =
1

iω
{{∇hup}} − α [[up]]N ,

ûp = {{up}} − β
1

iω
[[∇hup]]N

on interior faces, and




σ̂p =
1

iω
∇hup − (1− δ)

(
1

iω
∇hup + upn− 1

iω
gn

)
,

ûp = up − δ

(
1

iω
∇hup · n+ up −

1

iω
g

)

on boundary faces, where the parameters α, β and δ are the so-called flux
parameters; assumptions on them will be specified in Section 4.3.

For every a ∈
∏
K∈Th L

2(∂K) and A ∈
∏
K∈Th L

2(∂K)N we have the so-
called scalar “DG magic formula”:

∑

K∈Th

∫

∂K
aA · ndS =

∫

FIh
[[a]]N · {{A}}+ {{a}} [[A]]N dS +

∫

FBh
aA · ndS ,

thus, adding (4.8) over all elements K ∈ Th gives
∫

FIh

(
ûp [[∇hvP ]]N − iω σ̂p · [[vp]]N

)
dS

+

∫

FBh

(
ûp∇hvP · n− iω σ̂p · n vp

)
dS = 0 .

(4.9)

Defining the global Trefftz trial space

Vp(Th) :=
{
vp ∈ L2(Ω) : vp|K ∈ VP (K) ∀ K ∈ Th

}

and inserting the above defined numerical fluxes into (4.9) allows us to write
the TDG method as follows: find up ∈ Vp(Th) such that, for all vp ∈ Vp(Th),

Ah(up, vp) = ℓh(vp) ,
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4. Trefftz-discontinuous Galerkin method for the Helmholtz equation

where

Ah(u, v) :=

∫

FIh
{{u}}[[∇hv]]N dS + iω−1

∫

FIh
β [[∇hu]]N [[∇hv]]N dS

−
∫

FIh
{{∇hu}} · [[v]]N dS + iω

∫

FIh
α [[u]]N · [[v]]N dS

+

∫

FBh
(1− δ)u∇hv · n dS + iω−1

∫

FBh
δ∇hu · n∇hv · n dS

−
∫

FBh
δ∇hu · n v dS + iω

∫

FBh
(1− δ)u v dS ,

and

ℓh(v) := iω−1

∫

FBh
δ g∇hv · n dS +

∫

FBh
(1− δ)g v dS .

The TDG formulation is consistent by construction; thus, if u ∈ H2(Ω)
solves (4.1), then it holds that

Ah(u, vp) = ℓh(vp) ∀ vp ∈ Vp(Th) . (4.10)

In order to completely specify the scheme, only the finite dimensional func-
tion space Vp(Th) has to be fixed. In Section 4.3 we study the error analysis
for any trial Trefftz space, while in Section 4.4 we will describe a special choice
for Vp(Th) using plane wave functions.

4.3. Error analysis

We develop our a priori error analysis under the additional assumption that

α, β and δ are real, strictly positive, independent of p, h, and ω,
with 0 < δ ≤ 1/2.

Remark 4.3.1. A choice of flux parameters that depends on p and on the
product ω h, in the spirit of standard DG methods and of the PWDG method
of [96], will be discussed in Remark 4.4.6. The choice α = β = δ = 1/2 gives
rise to the original UWVF by Cessenat and Despres (see [47] and [42]).

Define the broken Sobolev spaces

Hs(Th) :=
{
w ∈ L2(Ω) : w|K ∈ Hs(K) ∀ K ∈ Th

}
.

Let T (Th) be the piecewise Trefftz space defined on Th by

T (Th) :=
{
w ∈ H2(Th) : ∆w + ω2w = 0 in each K ∈ Th

}
,

and endow it with the norm (see Proposition 4.3.2)

|||w|||2Fh :=ω−1
∥∥∥β1/2[[∇hw]]N

∥∥∥
2

0,FIh
+ ω

∥∥∥α1/2[[w]]N

∥∥∥
2

0,FIh

+ ω−1
∥∥∥δ1/2∇hw · n

∥∥∥
2

0,FBh
+ ω

∥∥∥(1− δ)1/2w
∥∥∥
2

0,FBh
.

(4.11)

108



4.3. Error analysis

In the following, we will also make use of the augmented norm

|||w|||2F+
h

:= |||w|||2Fh + ω
∥∥∥β−1/2{{w}}

∥∥∥
2

0,FIh

+ ω−1
∥∥∥α−1/2{{∇hw}}

∥∥∥
2

0,FIh
+ ω

∥∥∥δ−1/2w
∥∥∥
2

0,FBh
.

(4.12)

We collect a few technical prerequisites for the convergence analysis.

Proposition 4.3.2. The seminorm (4.11) is actually a norm on T (Th).

Proof. Let w ∈ T (Th) be such that |||w|||2Fh = 0. Then w ∈ H2(Ω) and

satisfies ∆w + ω2w = 0 in Ω, w = 0 and ∇w · n = 0 on ∂Ω, which implies
∇w ·n+ iωw = 0 on ∂Ω. The uniqueness of the solution of problem (4.1) gives
w = 0.

Proposition 4.3.3. If w ∈ T (Th), then

Im[Ah(w,w)] = |||w|||2Fh .

Proof. Provided that u, v ∈ T (Th), local integration by parts permits us to
rewrite the bilinear form Ah(u, v) as

Ah(u, v) =(∇hu,∇hv)0,Ω −
∫

FI
h

[[u]]N · {{∇hv}} dS −
∫

FI
h

{{∇hu}} · [[v]]N dS

−
∫

FB
h

δ u∇hv · n dS −
∫

FB
h

δ∇hu · n v dS

+ iω−1

∫

FI
h

β[[∇hu]]N [[∇hv]]N dS + iω−1

∫

FB
h

δ∇hu · n∇hv · n dS

+ iω

∫

FI
h

α [[u]]N · [[v]]N dS + iω

∫

FB
h

(1− δ)u v dS − ω2(u, v)0,Ω ,

where (·, ·)0,Ω denotes the L2-scalar product in Ω. Therefore,

Ah(w,w) = ‖∇hw‖20,Ω − 2 Re

[∫

FI
h

[[w]]N · {{∇hw}} dS +

∫

FB
h

δ w∇hw · n dS

]

+ iω−1
∥∥∥β1/2[[∇hw]]N

∥∥∥
2

0,FIh
+ iω−1

∥∥∥δ1/2∇hw · n
∥∥∥
2

0,FBh

+ iω
∥∥∥α1/2[[w]]N

∥∥∥
2

0,FIh
+ iω

∥∥∥(1− δ)1/2w
∥∥∥
2

0,FBh
− ω2 ‖w‖20,Ω ,

from which, by taking the imaginary part, we get the result.

Remark 4.3.4. As a consequence of Propositions 4.3.2 and 4.3.3, the TDG
method is well posed without any constraint on the mesh and the wavenumber.
Indeed, if Ah(up, vp) = 0 for all vp ∈ Vp(Th), then Ah(up, up) = 0 and thus
|||up|||Fh = 0, which implies up = 0.
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4. Trefftz-discontinuous Galerkin method for the Helmholtz equation

Proposition 4.3.5. For all w1, w2 ∈ H2(Th),

|Ah(w1, w2)| ≤ 2 |||w1|||F+
h
|||w2|||Fh .

Proof. The result follows from the definition of Ah(·, ·), δ ≤ 1 − δ < 1 and
repeated applications of the (weighted) Cauchy–Schwarz inequality.

In the next proposition, we prove quasi-optimality of the TDG method in
the ||| · |||Fh -norm.

Proposition 4.3.6. Let u be the analytical solution to (4.1) and let up be the
TDG solution. Then,

|||u− up|||Fh ≤ 3 inf
vp∈Vp(Th)

|||u− vp|||F+
h
,

where ||| · |||F+
h

is defined by (4.12).

Proof. We apply the triangle inequality and write

|||u− up|||Fh ≤ |||u− vp|||Fh + |||up − vp|||Fh (4.13)

for all vp ∈ Vp(Th). Since up − vp ∈ T (Th), Proposition 4.3.3 gives

|||up − vp|||2Fh = Im [Ah(up − vp, up − vp)] .

From Galerkin orthogonality and continuity of Ah(·, ·) (see Proposition 4.3.5),
we have

|||up − vp|||2Fh ≤ 2 |||u − vp|||F+
h
|||up − vp|||Fh ,

which, inserted into (4.13), gives the result.

4.3.1. Duality estimates in L2-norm

Following [42, 154], we bound the L2-norm of any Trefftz’ function by using
a duality argument. For this purpose, we define two mesh parameters which
will enter the constants in the error estimates: the shape regularity measure

s.r.(Th) := max
K∈Th

hK
dK

,

where dK is the diameter of the largest ball contained in K, and the quasi-
uniformity measure

q.u.(Th) := max
K∈Th

h

hK
=

maxK∈Th hK
minK∈Th hK

.

The bounding constants C in Lemma 4.3.7 and in the following results will
depend on s.r.(Th) and q.u.(Th).

From now on, we will need to assume Ω to be convex in order to have elliptic
regularity.
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Lemma 4.3.7. There exists a constant C > 0 independent of h and ω such
that, for any w ∈ T (Th),

‖w‖0,Ω ≤ C diam(Ω)
(
1 + ω−1/2h−1/2

)
|||w|||Fh . (4.14)

Proof. Let ϕ be in L2(Ω). Consider the adjoint problem:

−∆v − ω2v = ϕ in Ω ,

∇v · n− iω v = 0 on ∂Ω .
(4.15)

The solution v belongs to H2(Ω) and, since Ω is convex, the stability estimates

|v|1,Ω + ω ‖v‖0,Ω ≤ C1 diam(Ω) ‖ϕ‖0,Ω ,

|v|2,Ω ≤ C2(1 + ω diam(Ω)) ‖ϕ‖0,Ω ,
(4.16)

hold, with C1, C2 > 0 depending only on the shape of Ω (see [142, Proposi-
tion 8.1.4] in two dimensions, [66] and [104, Propositions 3.3, 3.5, and 3.6] in
three dimensions).

Multiplying by w ∈ T (Th), integrating by parts twice the first equation
of (4.15) element by element (using ∆w + ω2w = 0 in each K ∈ Th), and
taking into account that ∇v · n = iωv on ∂Ω, we obtain

|(w,ϕ)0,Ω|

=

∣∣∣∣∣∣

∑

K∈Th

∫

∂K

(
∇w · n v −w∇v · n

)
dS

∣∣∣∣∣∣

=

∣∣∣∣∣

∫

FIh

(
[[∇hw]]Nv − [[w]]N · ∇v

)
dS +

∫

FBh
(∇hw · n+ iωw) v dS

∣∣∣∣∣

≤
∑

f∈FIh

(∥∥∥β1/2[[∇hw]]N

∥∥∥
0,f

∥∥∥β−1/2v
∥∥∥
0,f

+
∥∥∥α1/2[[w]]N

∥∥∥
0,f

∥∥∥α−1/2∇hv
∥∥∥
0,f

)

+
∑

f∈FBh

(∥∥∥δ1/2∇w · n
∥∥∥
0,f

∥∥∥δ−1/2v
∥∥∥
0,f

+ ω1/2
∥∥∥δ1/2w

∥∥∥
0,f
ω1/2

∥∥∥δ−1/2v
∥∥∥
0,f

)

≤|||w|||Fh

[
∑

f∈FIh

(
ω
∥∥∥β−1/2v

∥∥∥
2

0,f
+ ω−1

∥∥∥α−1/2∇hv
∥∥∥
2

0,f

)

+
∑

f∈FBh

ω
∥∥∥δ−1/2v

∥∥∥
2

0,f

]1/2

=: |||w|||Fh G(v)1/2 .

Introducing, for convenience, a parameter γ defined by γ = β on interior faces
and γ = δ on boundary faces, we have

G(v) ≤
∑

K∈Th

(
ω
∥∥∥γ−1/2v

∥∥∥
2

0,∂K
+ ω−1

∥∥∥α−1/2∇v
∥∥∥
2

0,∂K

)
.
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We recall that, for any K ∈ Th, the trace inequality [38, Theorem 1.6.6]

‖u‖20,∂K ≤ C ‖u‖0,K
(
h−1
K ‖u‖0,K + |u|1,K

)
∀ u ∈ H1(K) (4.17)

holds with a constant C > 0 depending only on the “shape regularity measure”
of K, thus on s.r.(Th). Since v ∈ H2(Ω), using the definition of the flux pa-
rameters, the trace estimate (4.17), the quasi-uniformity (h−1

K ≤ q.u.(Th)h−1),
and the stability estimates (4.16), we can bound G(v) as follows:

G(v)

≤ C
∑

K∈Th

[
ωh−1

K ‖v‖20,K + ω ‖v‖0,K |v|1,K + ω−1h−1
K |v|21,K + ω−1 |v|1,K |v|2,K

]

≤ C
[
diam(Ω)2

(
q.u.(Th)ω−1h−1 + 1

)
+ ω−1 diam(Ω)

]
‖ϕ‖20,Ω

≤ C diam(Ω)2
(
q.u.(Th)ω−1h−1 + 1

)
‖ϕ‖20,Ω

(we have also used the obvious inequality h ≤ diam(Ω)), with a constant C > 0
independent of h, p, and ω. Consequently, for all ϕ ∈ L2(Ω), we obtain

|(w,ϕ)0,Ω|
‖ϕ‖0,Ω

≤ C diam(Ω)
(
1 +

(
q.u.(Th)

)1/2
ω−1/2h−1/2

)
|||w|||Fh ,

and the result readily follows.

By applying Lemma 4.3.7 to u− up ∈ T (Th) we can bound the L2-norm of
the error by its ||| · |||Fh -norm, like in [42].

Corollary 4.3.8. Let u be the analytical solution to (4.1) and let up be the
TDG solution. Then, there exists a constant C > 0 independent of h, ω,
Vp(Th), and u such that

‖u− up‖0,Ω ≤ C diam(Ω)
(
1 + ω−1/2h−1/2

)
|||u− up|||Fh . (4.18)

Remark 4.3.9. The convexity assumption used in this section might be re-
laxed to any domain Ω that allows the stability estimates (4.16); here the
seminorm |v|2,Ω can be substituted by the weaker |v|3/2+η,Ω for some η > 0.
See Theorem 5.5.5 for a similar result in the Maxwell setting.

4.4. Error estimates for the PWDG method

If the Trefftz discrete space Vp(Th) is constituted by plane wave functions,
we denote the particular TDG method obtained as plane wave discontinuous
Galerkin (PWDG) method.

We fix p different propagation directions {dℓ}ℓ=1,...,p ⊂ S
N−1, p ∈ N, and

set Vp(K) equal to

PWω,p(K) :=

{ p∑

ℓ=1

αℓe
iωx·dℓ , αℓ ∈ C

}
∀ K ∈ Th ;
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consequently Vp(Th) corresponds to

PWω,p(Th) :=
{
vp ∈ L2(Ω) : vp|K ∈ PWω,p(K) ∀ K ∈ Th

}
.

Note that p is the spectral discretization parameter, i.e., the dimension of the
local trial space. Of course, a different set of directions could be chosen for
each mesh element, we use the same choice throughout the domain only for
the simplicity of the presentation.

We also make the following assumptions on the mesh and the plane wave
propagation directions:

• there exists q ∈ N, q ≥ 1, such that p = 2q+1 if N = 2, and p = (q+1)2

if N = 3;

• if N = 2 there exists δd ∈ (0, 1] such that the propagation directions
{dℓ = (cos θℓ, sin θℓ)}ℓ=1,...,p satisfy the following condition:

min
ℓ,ℓ′=1,...,p

ℓ 6=ℓ′
|θℓ − θℓ′ | ≥

2π

p
δd ,

(cf. (3.37));

• if N = 3 the matrix M defined in (3.32) depending on the propagation
directions is invertible and the norm

∥∥M−1
∥∥
1
grows less than exponen-

tially with respect to its size p (e.g., the directions are the optimal ones
of Lemma 3.4.6 or Sloan’s directions of Remark 3.4.7);

• there exist two parameters 0 < ρ0 ≤ ρ ≤ 1/2 such that all the ele-
ments K ∈ Th (after a suitable translation) satisfy Assumption 3.1.1.
For example, a shape-regular mesh with convex elements satisfies this
condition with ρ = ρ0 = (2s.r.(Th))−1.

The use of Assumption 3.1.1 on the elements implies that, if N = 2, every
K ∈ Th satisfies the exterior cone condition (Def. 3.2.4) with a certain angle
λK π, λK ∈ (0, 1]. On the other hand, if N = 3, for every element K the
analogous parameter λK ∈ (0, 1] has been introduced in Theorem 3.2.12 (see
Remark 3.2.13). We define

λTh := min
K∈Th

λK . (4.19)

Notice that λTh = 1 if the elements are convex and N = 2. This parameter
will appear in the orders of convergence of the PWDG method and in the last
assumption:

• if N = 3 then q ≥ 2(1 + 21/λTh ).

Under these assumptions, the approximation estimates of Corollary 3.5.5
can be employed in every element. For every 0 ≤ j ≤ k + 1 ∈ N, 2k + 1 ≤ q,
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4. Trefftz-discontinuous Galerkin method for the Helmholtz equation

we define the values

εj :=
(
1 + (ωh)j+6

)
e(

7
4
− 3

4
ρ)ωh hk+1−j

·





[(
log(q + 2)

q

)λTh (k+1−j)
+

1 + (ωh)q−K+2

(
c0 (q + 1)

)q/2

]
N = 2 ,

[
q−λTh (k+1−j) +

1 + (ωh)q−K+2

(
√
2 ρ q)(q−3)/2

∥∥M−1
∥∥
1

]
N = 3 ,

(4.20)

where c0 has been defined in (3.63).
In the next lemma, we use Corollary 3.5.5 and the trace inequality to prove

best approximation estimates on the mesh skeleton and in the mesh-dependent
norm ||| · |||F+

h
.

Lemma 4.4.1. Given u ∈ T (Th) ∩Hk+1(Ω), k ≥ 1, q ≥ 2k + 1, there exists
ξ ∈ PWω,p(Th) such that we have the following estimates:

‖u− ξ‖20,Fh ≤ C ε0
(
ε0 h

−1 + ε1
)
‖u‖2k+1,ω,Ω ,

‖∇h(u− ξ)‖20,Fh ≤ C ε1
(
ε1 h

−1 + ε2
)
‖u‖2k+1,ω,Ω ,

|||u− ξ|||2F+
h

≤ C
(
ω ε20 h

−1 + ω ε0 ε1 + ω−1 ε21 h
−1 + ω−1 ε1 ε2

)
‖u‖2k+1,ω,Ω

with the constant C > 0 independent of h, p, q, ω, k, {dℓ}, and u.
Proof. We have

‖u− ξ‖20,∂K
(4.17)

≤ C (h−1
K ‖u− ξ‖20,K + ‖u− ξ‖0,K |u− ξ|1,K)

(3.62)

≤ C ε0
(
ε0 h

−1 + ε1
)
‖u‖2k+1,ω,K ,

and

‖∇(u− ξ)‖20,∂K
(4.17)

≤ C (h−1
K |u− ξ|21,K + |u− ξ|1,K |u− ξ|2,K)

(3.62)

≤ C ε1
(
ε1 h

−1 + ε2
)
‖u‖2k+1,ω,K .

Adding over all elements gives the first two bounds in the assertion. The last
bound follows from

|||u− ξ|||2F+
h
≤ C

(
ω ‖u− ξ‖20,Fh + ω−1 ‖∇h(u− ξ)‖20,Fh

)
.

Lemma 4.4.1 holds also if u belongs only to the broken Trefftz-Sobolev space
T (Th) ∩ Hk+1(Th), provided that the weighted Hk+1(Ω) norm on the right-
hand side of the bounds is substituted by its piecewise counterpart Hk+1(Th).
Remark 4.4.2. The graphs of the factor in the last bound of Lemma 4.4.1
showed in Figure 4.1 highlight the pronounced increase of the constants for
large ωh and small p. This is evidence of a threshold condition, that is, a
minimal resolution requirement on the plane wave space before any reasonable
approximation can be expected.
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Figure 4.1.: Logarithmic plot of the PWDG best approximation factor for the
(squared) |||·|||F+

h
-norm: (ωε20h

−1+ωε0ε1+ω
−1ε21h

−1+ω−1ε1ε2) as

proved in Lemma 4.4.1, in two (left) and three (right) dimensions.
Here ω = 1, k = 5, ρ = 0.25, λTh = 1, h ∈ {0.1, 0.25, 0.5, 1} and
on the abscissas it is represented q ∈ {1, . . . , 100}. For N = 2
we use δd = 1, i.e., the propagation directions are equispaced; for
N = 3 we assume

∥∥M−1
∥∥
1
= 2

√
π p as in Lemma 3.4.6.

Remark 4.4.3. The first term in the square brackets of (4.20) decays alge-
braically for increasing q (and thus p) while the second one decays faster than
exponentially. Therefore, the final estimate of Lemma 4.4.1, for large q, can
be written as

|||u− ξ|||F+
h
≤ C ω−1/2 hk−1/2 ‖u‖k+1,ω,Ω





(
log(q+2)

q

)λTh (k−1/2)
N = 2 ,

q−λTh (k−1/2) N = 3 ,

(4.21)

where the constant C depends on the product ωh as an increasing function.
Due to to the first two bounds of Lemma 4.4.1, the orders of convergence are
not improved when working with the weaker ||| · |||Fh -norm.

In the following theorem, we state error estimates for the PWDG method
in the following energy-type norm:

‖w‖2DG := |||w|||2Fh + ω2 ‖w‖20,Ω .
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4. Trefftz-discontinuous Galerkin method for the Helmholtz equation

Theorem 4.4.4. Under the assumptions stated in Section 4.3.1 on the numer-
ical fluxes and those in Section 4.4 on the mesh and on PWω,p(Th), with Ω con-
vex, let u ∈ Hk+1(Ω) be the analytical solution to (4.1) and let up ∈ PWω,p(Th)
be the PWDG solution. If p is sufficiently large, there exists a C = C(ωh) > 0
independent of p and u, but depending on ω and h only as an increasing func-
tion of their product ωh, such that

|||u− up|||Fh ≤ C ω−1/2 hk−1/2 q̂−λTh (k−1/2) ‖u‖k+1,ω,Ω , (4.22)

ω ‖u− up‖0,Ω ≤ C diam(Ω)hk−1 q̂−λTh (k−1/2) ‖u‖k+1,ω,Ω , (4.23)

and thus

‖u− up‖DG
≤ C diam(Ω)1/2

[
ω−1/2 + diam(Ω)1/2

]
hk−1 q̂−λTh (k−1/2) ‖u‖k+1,ω,Ω ,

(4.24)

where

q̂ :=

{
q

log(q+2) N = 2 ,

q N = 3 .

Proof. The first two bounds follow from Proposition 4.3.6, Remark 4.4.3, and
Corollary 4.3.8. The third bound is a direct consequence of the first two.

Remark 4.4.5. Using the definition of εj , it is easy to verify that the depen-
dence of the constant C on ωh in (4.21) and in (4.22), for large p, can be
bounded as

C(ωh) = C
(
1 + (ωh)q−k+9

)
e(

7
4
− 3

4
ρ)ωh

and that in (4.23) and (4.24) as

C(ωh) = C
(
1 + (ωh)q−k+9+1/2

)
e(

7
4
− 3

4
ρ)ωh .

Remark 4.4.6. If we choose the flux parameters depending on p and ωh in the
following way:

α =
a

ωh
q̂ , β =

bωh

q̂
, δ =

dωh

q̂
,

with the same q̂ of Theorem 4.4.4, a, b and d strictly positive and independent
of h, ω and p, again with 0 < δ ≤ 1/2, then the result of Lemma 4.3.7 becomes

‖w‖0,Ω ≤ C diam(Ω)
[
q̂1/2

(
ω−1/2h−1/2 + ω−1h−1

)
+ q̂−1/2

(
1 + ω1/2h1/2

)]

· |||w|||Fh ,

and the best approximation estimate of Lemma 4.4.1 is

|||u− ξ|||2F+
h

≤ C

(( q̂
h
+ ω

)
‖u− ξ‖20,Fh +

h

q̂
‖∇(u− ξ)‖20,Fh

)

≤ C

(( q̂
h
+ ω

)(
h−1ε20 + ε0ε1

)
+
h

q̂

(
h−1ε21 + ε1ε2

))
‖u‖2k+1,ω,Ω .
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4.4. Error estimates for the PWDG method

Consequently, reasoning as in Remark 4.4.3 yields the estimate

|||u− ξ|||F+
h
≤ C hk q̂−λTh k

(
q̂ (1−λTh )/2 + q̂ (λTh−1)/2

)
‖u‖k+1,ω,Ω

≤ C hk q̂−λTh(k+1/2)+1/2 ‖u‖k+1,ω,Ω

where full order k for the best approximation is achieved if λTh = 1, e.g., in
two-dimensional convex elements. On the other hand, the final error bounds
(see Theorem 4.4.4) for this choice of flux parameters are

|||u− up|||Fh ≤ C hk q̂−λTh(k+1/2)+1/2 ‖u‖k+1,ω,Ω ,

ω ‖u− up‖0,Ω ≤ C diam(Ω) hk−1 q̂−λTh (k+1/2)+1 ‖u‖k+1,ω,Ω ,

‖u− up‖DG ≤C diam(Ω) hk−1 q̂−λTh (k+1/2)+1 ‖u‖k+1,ω,Ω .

Thus, the gain of half a power of q̂ in the best approximation estimate, with
respect to the case of constant flux parameters, is compensated by a loss of half
a power of q̂ in the result of Lemma 4.3.7. If λTh = 1 the order of convergence
in the energy-norm is the same as in the case of constant flux parameters, if
λTh < 1 then the former is lower than the latter.

Remark 4.4.7. By matching the final estimate of Theorem 4.4.4 with the best
approximation estimate (4.21), we find that the bounds in DG-norm feature
optimal asymptotic behavior with respect to p, but half a power of h is lost.

Remark 4.4.8. The proof of the “coercivity” result of Proposition 4.3.3 does
not involve inverse trace inequalities. This allows to choose either constant flux
parameters or the variable flux parameters discussed in Remark 4.4.6, which
give convergence in the energy-norm of order q̂−λTh(k−1/2) and q̂−λTh(k+1/2)+1,
respectively.

On the other hand, in a two-dimensional triangular shape-regular mesh
(λTh = 1), the bound of the L2-norm of the trace of a discrete function on
the boundary of an element K by the L2-norm of the discrete function within

K involves a constant proportional to q h
−1/2
K (see numerical evidence in [96,

Sect. 3.2]). Therefore, the use of inverse trace inequalities would have required
a choice of the flux parameters similar to the one in Remark 4.4.6, but with
q2 instead of q/ log(q), resulting in a deterioration of the order of convergence
of the energy norm by a factor q log(q).

Remark 4.4.9. If the function u to be approximated is regular enough such
that it can be extended analytically to a strictly larger domain Ω′ ⊃ Ω, the
convergence with respect to p turns out to be exponential. Indeed, the alge-
braic term in the assertion of Lemma 4.4.1 and Theorem 4.4.4 can be replaced
with an exponential one provided by Remark 3.5.8:

‖u− up‖DG ≤ C b−q
(
‖u‖k+1,ω,Ω + ‖u‖L∞(Ω′)

)
,

where C is independent of q and u, and the speed of exponential convergence
b > 1 depends on Ω, Th, and on d(Ω, ∂Ω′), i.e., on how far u can be extended
analytically.

This fact also implies that in elements of Th that have a positive distance
from ∂Ω, we always obtain exponential convergence in p for the local best
approximation by plane waves.
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4. Trefftz-discontinuous Galerkin method for the Helmholtz equation

Remark 4.4.10. In Theorem 3.3.1 we have seen that the generalized har-
monic polynomials have the same (or better) approximation properties of plane
waves. If we replace PWω,p(Th) with

GHPω,p(Th) :=
{
vp ∈ L2(Ω) : vp|K is a generalized harmonic polynomial

of degree at most q , ∀ K ∈ Th
}
,

then we have the same estimates of Theorem 4.4.4 (of course, without the
need of any assumption concerning the propagation directions). Moreover, the
number of degrees of freedom involved is the same, namely dimPWω,p(Th) =
dimGHPω,p(Th) = p ·#{K ∈ Th}.

Since the quasi-optimality estimate (4.18) does not depend on the special
trial Trefftz space used, a convergence estimate holds also if plane waves and
generalized harmonic polynomials are used together or separately in different
elements; for example the former might be used in parts of the domain where
the solution propagates in a clear direction and the latter in the parts where
resonances occur. Detecting these different regions in automatic fashion re-
quires a highly non trivial adaptive algorithm. Other problem-specific Trefftz
functions, as corner solutions, could be added to these two families (cf. [186]).

Remark 4.4.11. In order to have p- or h-convergence in the bounds of Theo-
rem 4.4.4, the analytic solution u has to belong to H2(Ω). On the other hand,
it is known that in a (star-shaped) non-convex, polygonal or polyhedral do-
main Ω, the solution might present corner and edge singularities and it belongs
to H3/2+η(Ω) only, for some 0 < η < 1/2 (see [67,100]); the duality argument
of Lemma 4.3.7 can be generalized to this setting using more general trace
inequalities, for example the ones of [145, Theorem A.2] (cf. (7.11)). However,
in two space dimensions, the possible singularities of the solutions are known
explicitly: they are “corner waves”, i.e., circular waves centered at the reen-
trant corners with non-integer Bessel exponents which depends on the size of
the corner. For a given Sobolev regularity, they constitute a finite dimensional
space of Trefftz functions, thus it is possible to include them in the discrete
trial and test spaces, only in the mesh elements that are adjacent to reentrant
corners. Since the solution u belongs to H2(Ω) up to a linear combination of
these functions (cf. [100, Theorem 2.4.3] for the Laplace case and [23] for the
Helmholtz one with Dirichlet boundary conditions), the approximation esti-
mates for plane (or circular) waves guarantee the convergence of the scheme.
This technique has already been adopted in a least squares setting in [23].

Remark 4.4.12. In Lemma 4.4.1 and in Theorem 4.4.4, for the sake of simplic-
ity, we used the assumption of quasi-uniformity of the mesh and we took the
same number of basis functions in every mesh element. In order to develop a
hp-version of the PWDG method, a better control over the dependence of the
error on the local discretization parameters is needed. Since all our approxi-
mation results are local, it turns out that such control can be achieved very
easily.

In every element K ∈ Th (with diameter hK) we fix a local value qK and
we denote with pK the dimension of the corresponding plane wave space
PWω,pK (K) (such that pK = 2qK + 1 for N = 2 and pK = (qK + 1)2 for
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4.4. Error estimates for the PWDG method

N = 3). Then, the best approximation bounds in the assertion of Lemma 4.4.1
can easily be restated as:

‖u− ξ‖20,Fh ≤ C
∑

K∈Th
ε0,K

(
ε0,K h

−1
K + ε1,K

)
‖u‖2k+1,ω,K ,

‖∇h(u− ξ)‖20,Fh ≤ C
∑

K∈Th
ε1,K

(
ε1,K h

−1
K + ε2,K

)
‖u‖2k+1,ω,K ,

|||u− ξ|||2F+
h

≤ C
∑

K∈Th

(
ωε20,Kh

−1
K + ωε0,Kε1,K + ω−1ε21,Kh

−1
K + ω−1ε1,Kε2

)
‖u‖2k+1,ω,K ,

where the εj,K ’s are equal to the εj ’s from (4.20), provided that h and q are
substituted by hK and qK , respectively.

The error bound in the skeleton norm (4.22) becomes

|||u− up|||Fh ≤ C ω−1/2
∑

K∈Th
h
k−1/2
K q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K .

Notice that so far we have never used the mesh quasi-uniformity. Finally, the
error bounds (4.23) and (4.24), in L2- and DG-norms, can be written as

ω ‖u− up‖0,Ω ≤C diam(Ω)

(
q.u.(Th)

h

)1/2 ∑

K∈Th
h
k−1/2
K q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K ,

‖u− up‖DG ≤C

[
ω−1/2 + diam(Ω)

(
q.u.(Th)

h

)1/2
]

·
∑

K∈Th
h
k−1/2
K q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K .

Notice that q.u.(Th)/h = (minK∈Th hK)−1. The same results hold also for
generalized harmonic polynomials (see Remark 4.4.10).

These bounds might be useful in order to study a full hp-version of the
PWDG method; other necessary ingredients are the regularity theory for the
Helmholtz equation and the approximation bounds with exponential speed in
p for smooth solutions as the ones described in Remark 3.5.8. The final result
might provide exponential convergence of the error (in the norms mentioned
above) with respect to the total number of degrees of freedom involved Ndof =∑

K∈Th pK , when a properly scaled mesh is chosen.
However, the presence of the factor q.u.(Th) requires the use of a quasi-

uniform mesh. In order to employ graded meshes, a possible idea is to let the
flux parameters α, β and δ depend on the local meshsize hK .

By making explicit the dependence on the flux parameters, the bounds
(4.14), (4.22) and (4.23) (with C independent of q.u.(Th)) can be written as:

‖w‖0,Ω ≤ C diam(Ω) |||w|||Fh
∑

K∈Th
(1 + ω−1/2h

−1/2
K )

·
(∥∥α−1

∥∥1/2
L∞(∂K∩FIh)

+
∥∥β−1

∥∥1/2
L∞(∂K∩FIh)

+
∥∥δ−1

∥∥1/2
L∞(∂K∩FBh )

)
,
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|||u− up|||Fh ≤ C
∑

K∈Th

[
ω1/2

(
h
−1/2
K ǫ0,K + ǫ

1/2
0,Kǫ

1/2
1,K

)

·
(
1 + ‖α‖1/2

L∞(∂K∩FIh)
+
∥∥β−1

∥∥1/2
L∞(∂K∩FIh)

+
∥∥δ−1

∥∥1/2
L∞(∂K∩FBh )

)

+ ω−1/2
(
h
−1/2
K ǫ1,K + ǫ

1/2
1,Kǫ

1/2
2,K

)

·
( ∥∥α−1

∥∥1/2
L∞(∂K∩FIh)

+ ‖β‖1/2
L∞(∂K∩FIh)

+ ‖δ‖1/2
L∞(∂K∩FBh )

)]
‖u‖k+1,ω,K

≤ C
∑

K∈Th
h
k−1/2
K q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K

·
[
ω1/2hK q̂

−λK
K

(
1 + ‖α‖1/2

L∞(∂K∩FIh)
+
∥∥β−1

∥∥1/2
L∞(∂K∩FIh)

+
∥∥δ−1

∥∥1/2
L∞(∂K∩FBh )

)

+ ω−1/2
(∥∥α−1

∥∥1/2
L∞(∂K∩FIh)

+ ‖β‖1/2
L∞(∂K∩FIh)

+ ‖δ‖1/2
L∞(∂K∩FBh )

)]
,

ω ‖u− up‖0,Ω ≤ C diam(Ω)

·
[ ∑

K∈Th
h
−1/2
K

(∥∥α−1
∥∥1/2
L∞(∂K∩FIh)

+
∥∥β−1

∥∥1/2
L∞(∂K∩FIh)

+
∥∥δ−1

∥∥1/2
L∞(∂K∩FBh )

)]

·
[
∑

K∈Th
h
k−1/2
K q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K

·
(
ωhK q̂

−λK
K

(
1 + ‖α‖1/2

L∞(∂K∩FIh)
+
∥∥β−1

∥∥1/2
L∞(∂K∩FIh)

+
∥∥δ−1

∥∥1/2
L∞(∂K∩FBh )

)

+
(∥∥α−1

∥∥1/2
L∞(∂K∩FIh)

+ ‖β‖1/2
L∞(∂K∩FIh)

+ ‖δ‖1/2
L∞(∂K∩FBh )

))]
.

In the last bound the two sums are independent of each other. Therefore, the
positive powers of hK from the second sum can not balance the negative half
power coming from the first one, unless the quasi-uniformity of the mesh is
assumed (as we did before) or the flux parameters are chosen appropriately.
A natural choice is to take

α ∼ β ∼ δ ∼ h

hK
.

In this case the above formulas become

‖w‖0,Ω ≤ C diam(Ω)
(
1 + ω−1/2h−1/2

)
|||w|||Fh ,

|||u− up|||Fh ≤ C ω−1/2 h1/2
∑

K∈Th
hk−1
K q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K ,

ω ‖u− up‖0,Ω ≤ C diam(Ω)
∑

K∈Th
hk−1
K q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K .

At a first glance, all these inequalities seem to be independent of the relative
sizes of the elements, but the assumption δ ≤ 1/2 needed to define the bilinear
form and the Fh/F+

h -norms requires the quasi-uniformity of the mesh.
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If the fluxes are chosen according to

α−1 ∼ β ∼ δ ∼ ωhK

(cf. Remark 4.4.6) the best approximation estimate in Fh-norm improves,
because every term contains the same powers of hK and ω, but the duality
procedure gives a linear dependence on q.u.(Th):

‖w‖0,Ω ≤ C diam(Ω)
( ∑

K∈Th
ω1/2h

1/2
K + ω−1h−1

K

)
|||w|||Fh ,

|||u− up|||Fh ≤ C
∑

K∈Th
hkK q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K ,

ω ‖u− up‖0,Ω ≤ C diam(Ω)
q.u.(Th)

h

∑

K∈Th
hkK q̂

−λK(k−1/2)
K ‖u‖k+1,ω,K .

4.5. Error estimates in stronger norms

It would be desirable to derive an asymptotically quasi-optimal estimate of
‖∇h(u− up)‖0,Ω as was achieved for the h-version of PWDG in [96]. The
duality technique employed in our approach does not provide such estimates.
We have to settle for weaker results.

Fix q ∈ N, q ≥ 1, and define the followingH1(Th)-orthogonal projection onto
the space P

q(Th) ⊂ H1(Ω) of globally continuous, Th-piecewise polynomial
functions of degree at most q: P : H1(Th) → P

q(Th) is such that, if w ∈
H1(Th),

Lh(P(w), v) = Lh(w, v) ∀ v ∈ P
q(Th) ,

where

Lh(w, v) :=
∫

Ω
(∇hw · ∇hv + ω2w v) dV ∀ w , v ∈ H1(Th) .

Note that, given w, the computation of P amounts to solving a Neumann
boundary value problem for −∆+ ω2 by means of q-degree Lagrangian finite
elements. Thus, in principle, P(up) can be obtained from the TDG solution
up ∈ Vp(Th) by means of solving a discrete positive definite second order elliptic
boundary value problem in a postprocessing step.

Proposition 4.5.1. With the same assumptions as in Corollary 4.3.8, u ∈
Hk+1(Ω), and 0 ≤ k ≤ q, we have

‖∇ (u− P(up))‖0,Ω

≤ C

((h
q

)k
‖u‖k+1,ω,Ω + h−1/2

(
diam(Ω)ω1/2 + ω−1/2

)
|||u− up|||Fh

)
,

(4.25)

with C = C(ωh) > 0 independent of q, Vp(Th), and u, but depending mono-
tonically on the product ωh.
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Proof. By the triangle inequality, we can write

‖∇ (u− P(up))‖0,Ω ≤ ‖∇ (u− P(u))‖0,Ω + ‖∇ (P(u− up))‖0,Ω . (4.26)

We bound the second term on the right-hand side. By the definition of P, for
all v ∈ P

q(Th), local integration by parts gives

Lh(P(u − up), v)

=
∑

K∈Th

∫

K
∇(u− up) · ∇v dV + ω2(u− up, v)0,Ω

= −
∑

K∈Th

∫

K
∆(u− up) v dV

+
∑

K∈Th

∫

∂K
∇(u− up) · nK v dS + ω2(u− up, v)0,Ω

= 2ω2(u− up, v)0,Ω +

∫

FIh
[[∇h(u− up)]]N v dS +

∫

FBh
∇h(u− up) · n v dS .

Aiming for the |||w|||Fh -norm, we use the Cauchy–Schwarz inequality and get

Lh(P(u − up), v) ≤ 2ω ‖u− up‖0,Ω ω ‖v‖0,Ω
+ ω−1/2

∥∥∥β1/2[[∇h(u− up)]]N

∥∥∥
0,FIh

ω1/2
∥∥∥β−1/2v

∥∥∥
0,FIh

+ ω−1/2
∥∥∥δ1/2∇h(u− up) · n

∥∥∥
0,FBh

ω1/2
∥∥∥δ−1/2v

∥∥∥
0,FBh

≤ 2ω ‖u− up‖0,Ω ω ‖v‖0,Ω
+ |||u− up|||Fhω1/2 max{δ−1/2, β−1/2} ‖v‖0,Fh .

Now, the trace inequality (4.17) gives

Lh(P(u − up), v) ≤2ω ‖u− up‖0,Ω ω ‖v‖0,Ω + C(ωh)−1/2|||u− up|||Fh
·max{δ−1/2, β−1/2} ·

(
ω ‖v‖0,Ω + ωh ‖∇v‖0,Ω

)
,

≤
(
ω2 ‖u− up‖20,Ω + (ωh)−1|||u− up|||2Fh

)1/2

· Cmax{δ−1/2, β−1/2}max{ωh, 1}

·
(
ω2 ‖v‖20.Ω + ‖∇v‖20,Ω

)1/2

where C > 0 depends only on the shape-regularity of the mesh Th. Setting
v := P(u− up) yields the estimate

‖∇P(u− up)‖20,Ω + ω2 ‖P(u − up)‖20,Ω
≤ C (min{δ, β})−1max{ωh, 1}2

(
ω2 ‖u− up‖20,Ω + (ωh)−1|||u− up|||2Fh

)
.

We plug in the duality estimate of Corollary 4.3.8 and allow C > 0 to depend
on an upper bound for ωh and also on the (constant) flux parameters. Thus,
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we arrive at

‖∇P(u− up)‖0,Ω ≤ C
(
ω ‖u− up‖0,Ω + (ωh)−1/2|||u− up|||Fh

)

(4.18)

≤ C
(
diam(Ω)ω1/2h−1/2 + (ωh)−1/2

)
|||u− up|||Fh

(4.27)
Further, standard error estimates forH1-conforming Lagrangian finite element
spaces [15, Sect. 4.2] provide

∥∥∇
(
u− P(u)

)∥∥
0,Ω

≤ C
hk

qk
‖u‖k+1,ω,Ω , (4.28)

where C > 0 depends on the shape-regularity of Th and Ω.
Inserting (4.27) and (4.28) into (4.26) yields the assertion of the theorem.

When Proposition 4.5.1 is applied to the PWDG method of Section 4.4 we
obtain the orders of convergence in H1(Ω)-norm for the projection P(up).

Corollary 4.5.2. With the assumptions of Theorem 4.4.4, p as defined in
Section 4.4, and 1 ≤ k ≤ q, we have

‖∇ (u− P(up))‖0,Ω ≤ C
(
diam(Ω) + ω−1

)
hk−1 q̂−λTh(k−1/2) ‖u‖k+1,ω,Ω ,

with C = C(ωh) > 0 independent of p and u, but depending monotonically on
the product ωh.

Proof. It is enough to plug the bound (4.22) into (4.25) and use h ≤ diam(Ω).

4.6. Numerical experiments

In this section, we numerically investigate the p-convergence of the PWDG
method for regular and singular solutions of the Helmholtz equation in 2D.

We consider a square domain Ω = [0, 1]× [−0.5, 0.5], partitioned by a mesh
consisting of eight triangles (see Figure 4.2, upper-left plot), so that h = 1/

√
2.

For the time being, we fix ω = 10, such that an entire wavelength λ = 2π/ω ≃
0.628 is completely contained in Ω. All of the computations have been done
in MATLAB, and the system matrix was computed by exact integration on
the mesh skeleton.

We choose the inhomogeneous boundary conditions in such a way that the
analytical solutions are the circular waves given, in polar coordinates x =
(r cos θ, r sin θ), by

u(x) = Jξ(ωr) cos(ξθ) , ξ ≥ 0 ;

here, Jξ denotes the Bessel function of the first kind and order ξ. For t ≪ 1,
these functions behave like

Jξ(t) ≈
1

Γ(ξ + 1)

(
t

2

)ξ
.
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4. Trefftz-discontinuous Galerkin method for the Helmholtz equation

Thus, if ξ ∈ N, u can be analytically extended to a Helmholtz solution in
R
2, while, if ξ /∈ N, its derivatives have a singularity at the origin. Then

u ∈ Hξ+1−ǫ(Ω) for every ǫ > 0, but u 6∈ Hξ+1(Ω) (see [99, Theorem 1.4.5.3]).
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Figure 4.2.: The mesh used for the numerical experiments and the analytical
solutions for ξ = 1 (top right), ξ = 2/3 (bottom left), ξ = 3/2
(bottom right) and ω = 10.

We compute the numerical solutions in the regular case ξ = 1 and in the
singular cases ξ = 2/3 and ξ = 3/2. The profiles of the analytical solutions
corresponding to these three cases are displayed in Figure 4.2, upper-right and
lower plots.

We consider two choices of numerical fluxes: with constant parameters, as
in the original ultra weak variational formulation (UWVF) of Cessenat and
Despres [47] (α = β = δ = 1/2; dashed line in the plots), or depending on p,
h, and ω as in Remark 4.4.6: α = β−1 = δ−1 = a0 p/(ωh log p), with a0 = 10
(PWDG from here on; dashed-dotted lines in the plots). We also plot the
error of the L2-projection of u onto PWω,p(Th) (solid line). For every case,
we compute the L2-norm of the error, the broken H1-seminorm and the L2-
norm of the jumps on the skeleton of the mesh. The errors are plotted in
Figures 4.3–4.6.

These plots highlight three different regimes for increasing p: (i) a preasymp-
totic region with slow convergence, (ii) a region of faster convergence, and
finally, (iii) a sudden stalling of convergence, due to the impact of round-off.
In fact, for high dimensional local bases, it has been observed that PWDG ap-
proaches suffer from serious ill-conditioning (see [47] and [124]), thus without
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Figure 4.3.: The errors in L2-norm, H1-seminorm, and L2-norm for the jumps
for the regular solution u = J1(ωr) cos(θ) plotted against p ∈
{3, . . . , 27}. The convergence is exponential before the onset of
numerical instability, and the discretization error is very close to
the L2-projection error.
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Figure 4.4.: The errors in L2-norm for the two singular solutions (ξ = 2/3 on
the left and ξ = 3/2 on the right) in logarithmic scale with respect
to p/log p, p ∈ {3, . . . , 27}.

an appropriate preconditioning or a clever choice of the bases it is impossible
to obtain meaningful results for large p, we refer to [124] for a discussion of
this issue and a possible remedy.

With a parameter a0 ≥ 5 in the definition of the fluxes, such that the
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Figure 4.5.: The errors in broken H1-seminorm for the two singular solutions
(ξ = 2/3 on the left and ξ = 3/2 on the right) in logarithmic scale
with respect to p/log p, p ∈ {3, . . . , 27}.
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Figure 4.6.: The errors in L2-norm on the skeleton for the jumps of the two
singular solutions (ξ = 2/3 on the left and ξ = 3/2 on the right)
in logarithmic scale with respect to p/log p, p ∈ {3, . . . , 27}.

condition δ < 1 (and thus 1 − δ > 0) is satisfied for all the considered p, the
PWDG method is slightly superior to the one with constant fluxes (UWVF)
in the L2- and H1-norms; the difference in the jumps norm is even more
pronounced.

The most evident outcome is that, for both methods, the numerical errors
are always close to L2-approximation error of the analytical solution, that is,
the p-version is not affected by the pollution effect (in the examples that are
considered here).

The discretization error for ξ = 1 (analytic solution) converges in all the
considered norms with exponential rate (see Figure 4.3). This behavior is not
a surprise: the algebraic convergence in the theoretical estimates is only due
to the best approximation error and becomes exponential when the analytical
solution of the problem can be extended analytically outside the domain (see
Remarks 3.5.8 and 4.4.9).

For ξ = 2/3 and ξ = 3/2, the solution u has a singularity located in a
boundary node of the mesh. It corresponds to the typical corner singularities
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arising from re-entrant corners in scattering problems. In this case, as ex-
pected, the convergence is not exponential but algebraic, although the orders
of convergence are not clear. In the region of faster convergence, the orders are
significantly better than the ones expected from the theory; for higher p, nu-
merical instability prevents us from obtaining a neat slope in the logarithmic
plot. In all the considered norms, the orders of convergence are clearly better
for the solution with higher Sobolev regularity (with ξ = 3/2, u ∈ H2(Ω)).

By decreasing the wavenumber ω, keeping the mesh fixed, we obtain a faster
convergence in all the norms for both methods; see Figure 4.7. On the other
hand, the instability appears for smaller p because the plane waves are closer
to being linearly dependent. Of course in this case the domain accommodates
fewer wavelengths.

Conversely, if we increase ω, again with the same mesh, the preasymptotic
region becomes larger and larger (more plane waves are needed before the onset
of convergence) and the instability reduces the maximum possible accuracy we
can reach.
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Figure 4.7.: The errors in L2-norm for the regular solution (ξ = 1, on the left)
and the singular one (ξ = 2/3, on the right, in logarithmic scale
with respect to p/log p) for different values of ω (0.25, 1, 4, 16,
64), p ∈ {3, . . . , 40}.
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Part II.

The Maxwell equations
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5. Stability results for the
time-harmonic Maxwell equations

5.1. Introduction

Stability estimates of variational solutions to PDE’s with stability constants
which are explicit in some of the characteristic parameters are important in
the theoretical analysis, and then in the design, of discretization methods.
Often, discretization parameters have to be chosen in relation to the physical
ones, in order to design accurate, robust, and efficient numerical methods.
This is the case for time-harmonic wave propagation problems, where the
choice of the discretization parameters in relation to the wavenumber is crucial.
There, fundamental model problems consider bounded domains with piecewise
smooth boundary and first order absorbing boundary conditions (impedance
boundary conditions, IBC).

For the Helmholtz problem with IBC, stability estimates in weighted H1-
norm with explicit dependence on the wavenumber were derived in Proposi-
tion 8.1.4 of [142] in the 2D case, then extended to the 3D case, with a similar
argument, in [66] and [104]; in the latter reference, the case of mixed bound-
ary conditions was also considered. In these results, in order to use Rellich
identities, the problem domain is assumed to be star-shaped with respect to
a ball. A key ingredient in the proof given in [142] is the fact that the weak
solution belongs to H2, which holds true for convex or smooth domains; [66]
and [104] weakened this requirement to H1 solutions, thus to problems posed
on any star-shaped polygon/polyhedron. In Section 2.1 of [75] a very pow-
erful similar result is proved with a completely different argument, based on
special decompositions of boundary integral operators; the dependence on the
wavenumber is worse but the bound holds for any Lipschitz domain.

For the time-harmonic Maxwell equations with IBC, stability estimates were
derived with a Fredholm-type argument in [152, Theorem 4.17]. Unfortunately,
this analysis does not allow to establish how the stability constant depends on
the wavenumber.

In this chapter, we consider the time-harmonic Maxwell equations with con-
stant coefficients in bounded, uniformly star-shaped domains. In Section 5.4,
stability estimates in a weighted H(curl)-norm are derived. For polyhedral or
smooth domains, relying on new Rellich-type identities proved in Section 5.3,
we extend the argument of [142] and prove stability with constants independent
of the wavenumber (see Theorem 5.4.5).

For the analysis of numerical approximations of Maxwell solutions, which
relies on duality arguments, it is also interesting to derive elliptic regularity
results. For this reason, in Section 5.5 (see Theorem 5.5.5), we prove that,
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provided that the boundary data are in Hs′

T (∂Ω), 0 < s′ < 1/2, the solutions
reach a regularity H1/2+s(curl; Ω), for some 0 < s ≤ s′ < 1/2, in polyhedral
domains. In a convex polyhedron, the regularity is always optimal: s = s′ <
1/2. The constant in the stability estimates in stronger norms (H1 for smooth
domains, H1/2+s for polyhedral domains) depends linearly on the wavenumber.

Our main reason of interest in these stability and regularity results was
their application in the error analysis of Trefftz-discontinuous Galerkin ap-
proximations of the time-harmonic Maxwell equations. In fact, in Chapter 7
we will extend to the Maxwell case the theory developed in Chapter 4 for the
Helmholtz problem, where uniform stability with respect to the wavenumber,
together with elliptic regularity, played an essential role. Another potential
application is the extension to electromagnetic waves of the norm and sta-
bility bounds of boundary integral operators for acoustic scattering derived
in [53] and [182]. A few possible developments of this theory are discussed in
Remark 5.5.9.

We have already presented the main results of this chapter in the paper [109],
however the proof of the stability of the impedance boundary value problem
(Theorem 5.4.5 here, Theorems 3.1 and 3.2 in [109]) given there is much more
complicated, even if the basic tools used are the same. Here, the use of Rellich-
type identities in pointwise form (see Section 5.3) and the density provided
by [62] allowed to prove the final statement directly on polyhedral domains
instead of resorting to an involved approximating process with smooth ones,
as we did in Section 3.2 of [109]. Moreover, here we have corrected the proof
of Corollary 5.5.2 (and consequently the definition of the spaces Hs(∂Ω)) that
was faulty in [109]; however the final result is not affected by this modification.

5.2. The Maxwell boundary value problem

Let Ω ⊂ R
3 be an open bounded domain, which either has a C2 boundary or

is a polyhedron. We assume that

there exist a point x0 ∈ Ω and a real number γ > 0 for which Ω is
star-shaped with respect to all points in Bγ(x0).

For each point x ∈ ∂Ω, the open cone with vertex x, height |x − x0| and
opening angle θ = arctan(γ/|x−x0|) > arctan(γ/diam(Ω)) is contained in Ω.
This means that the domain satisfies the uniform cone condition; therefore,
by [99, Theorem 1.2.2.2], Ω is Lipschitz.

We consider the following frequency-domain formulation of the Maxwell
equations in terms of electric field E and magnetic field H with impedance
boundary conditions in the domain Ω:





−iωǫ E−∇×H = −(iω)−1 J in Ω ,

−iωµ H+∇×E = 0 in Ω ,

H× n− ϑ(n×E)× n = (iω)−1 g on ∂Ω ,

(5.1)

where ω > 0 is a fixed wavenumber, J ∈ H(div0; Ω) is related to a given
current density, and g ∈ L2

T (∂Ω) (see (0.3) for the definition of these spaces).
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The material coefficients

ǫ, µ, ϑ ∈ R are assumed to be constant with ǫ, µ > 0 and ϑ 6= 0.

By expressing H in terms of E using the second equation of (5.1) and by
substituting it into the first equation and into the boundary condition, we
obtain {

∇× (µ−1∇×E)− ω2ǫ E = J in Ω ,

(µ−1∇×E)× n− iωϑ(n×E)× n = g on ∂Ω .
(5.2)

We introduce the “energy space” (equipped with graph norm)

Himp(curl; Ω) :=
{
v ∈ H(curl; Ω) : vT ∈ L2

T (∂Ω)
}
, (5.3)

where H(curl; Ω) has been defined in (0.3) and the subscript T denotes the
tangential component according to (0.4). Then the variational formulation of
the Maxwell problem (5.2) reads as follows: find E ∈ Himp(curl; Ω) such that,
for all ξ ∈ Himp(curl; Ω), it holds

AM(E, ξ) =

∫

Ω
J · ξ dV +

∫

∂Ω
g · ξT dS , (5.4)

where

AM(E, ξ) :=

∫

Ω

[
(µ−1∇×E) · (∇× ξ)− ω2(ǫE) · ξ

]
dV − iω

∫

∂Ω

ϑET ·ξT dS .

Well-posedness of problem (5.4) in Himp(curl; Ω) is proved in [152, Theo-
rem 4.17] that we report here.

Theorem 5.2.1. Under the assumptions made on Ω, J, g and on the material
coefficients, there exists a unique E ∈ Himp(curl; Ω) with ∇ · (ǫE) = 0 solution
to (5.4).

5.2.1. Regularity for smooth domains

It was shown in [68, Sect. 4.5.d] that in a C2-domains, for smooth boundary
data, the solution of problem (5.4) belongs to H1(curl; Ω). We report here the
proof for the sake of completeness.

We recall that on the boundary of a C2-domains all the Sobolev spaces
Hs(∂Ω), −2 < s < 2, and their tangential vectorial counterparts Hs

T (∂Ω) :=
{ϕ ∈ Hs(∂Ω)3 : ϕ · n = 0} are well defined (see [7, p. 825]).

Lemma 5.2.2. Let Ω ⊂ R
3 be a bounded C2-domain. In addition to the

assumptions made on J, g and on the material coefficients, we assume g ∈
H

1/2
T (∂Ω). Then, the solution E to problem (5.4) belongs to H1(curl; Ω) :=

{v ∈ H1(Ω)3 : ∇× v ∈ H1(Ω)3}.

Proof. Decompose E as
E = Φ0 +∇ψ ,
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where Φ0 ∈ H1(Ω) ∩ H(div0; Ω) and ψ ∈ H1(Ω) (see [105, Lemma 2.4]);
clearly, ∆ψ = 0 in Ω. By using this decomposition, we can write the boundary
condition in problem (5.4) by

(µ−1∇×E)× n− iωϑΦ0
T − iωϑ∇Tψ = g on ∂Ω ,

where ∇Tψ is the tangential gradient of ψ, i.e., ∇Tψ := (n×∇ψ)× n.
Using the results of [39] (see also [152, eq. (3.52)]), the tangential divergence

divT of (µ−1∇ × E) × n is well-defined, belongs to H−1/2(∂Ω). Moreover,
Φ0
T ,g ∈ H1/2(∂Ω)3, and thus divT (ϑΦ

0
T + g) ∈ H−1/2(∂Ω). It follows that

divT ϑ∇Tψ ∈ H−1/2(∂Ω) and, by an elliptic lifting theorem for the Laplace–
Beltrami operator on smooth surfaces, we find ψ ∈ H3/2(∂Ω); this, together
with ∆ψ = 0 in Ω, gives ψ ∈ H2(Ω), due to the smoothness of ∂Ω, which
implies E ∈ H1(Ω)3.

Similarly, we prove the smoothness of ∇×E: decompose ∇×E as

∇×E = Ψ0 +∇φ

where Ψ0 ∈ H1(Ω)3 ∩H(div0; Ω), and φ ∈ H1(Ω); again, ∆φ = 0 in Ω. The
boundary condition in problem (5.4) can be written as

µ−1Ψ0 × n+ µ−1∇φ× n− iωϑET = g on ∂Ω .

The tangential curl curlT ET is well-defined and belongs to H−1/2(∂Ω). More-

over, Ψ0×n, g ∈ H
1/2
T (∂Ω). Thus, curlT (µ

−1Ψ0×n−g) ∈ H−1/2(∂Ω). Thus,
since

curlT (µ
−1∇φ× n) = − divT

(
n× (µ−1∇φ× n)

)
= − divT µ

−1∇Tφ

(see [152, Formula (3.15), p. 49]), we have that divT µ
−1∇Tφ ∈ H−1/2(∂Ω).

Again, the regularity results for the Laplace–Beltrami operator confirm φ ∈
H3/2(∂Ω), which, together with ∆φ = 0, gives φ ∈ H2(Ω), and thus ∇× E ∈
H1(Ω)3.

5.3. Rellich identities for Maxwell’s equations

The so-called Rellich-type identities are a family of formulas widely used in the
theory of partial differential equations. The first specimen of this family was
proved by F. Rellich in [170]. They found their main application in the analysis
of the regularity of solutions of scalar elliptic PDEs in non-smooth domains, as
described extensively in Chapter 5 of [159] (see also [141, p. 146 and following
ones]). In the context of boundary integral equations they provided explicit
bounds for the inverse of a combined integral operator in [53, Lemma 2.3] and
they were used to define a new coercive operator in [182].

We will prove a new Rellich-type identity which contains the Maxwell op-
erator. Our approach is similar to the one developed to prove wavenumber-
explicit stability bounds for impedance Helmholtz boundary value problems
in [142, Prop. 8.1.4] (in two dimensions), [66] (in three dimensions, also for elas-
ticity problems) and in [104] (for mixed boundary conditions in more general
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domains). The only previous identity of this kind in the context of Maxwell
equations we are aware of is presented in the report [101], where unbounded
penetrable dielectric media are considered.

All these identities share a common structure. Given the differential opera-
tor L which defines the considered PDE and a function v, a special multiplier
Mv is introduced. Then, the Rellich identity is often written in the form

Re
{
Lv Mv

}
= P +∇ ·Q , (5.5)

for appropriate terms P and Q. If v is a solution of the PDE Lv = f in the
(sufficiently smooth) domain Ω, integration by parts gives

∫

Ω
P dV +

∫

∂Ω
Q · n dS = Re

∫

Ω
f Mv dV

(notice that this integral version is often referred to as Rellich identity). A
smart choice of the multiplier Mv may ensure that a volume norm of v
(contained in

∫
Ω P dV ) is bounded by some boundary norm (contained in∫

∂ΩQ · ndS) and by the PDE datum f .
For example, if L = −∆ − ω2 is the Helmholtz operator in N dimensions,

the multipliers M1v = v and M2v = x · ∇v give the identities

Re
{
(−∆v − ω2v) v

} (A.3)
= Re

{
−∇ ·

(
(∇v)v

)
+ |∇v|2 − ω2|v|2

}

2Re
{
(−∆v − ω2v) x · ∇v

}
= ∇ ·

(
2Re

{
(x · ∇v)∇v

}
+ (ω2|v|2 − |∇v|2)x

)

+ (N − 2)|∇v|2 −Nω2|v|2

(see [182, Lemma 2.1]). The integration of these two equations leads to a
bound on the H1(Ω)-norm of v in terms of its impedance boundary condition
and the source term f , as in the mentioned theorems of [66,104,142].

L.E. Payne and H.F. Weinberger in [163] proved analogous formulas for
general elliptic operators instead of the Laplace one (see also [159, p. 245]
and [141, Lemma 4.22]). In domains with unbounded boundaries (e.g., the so-
called “rough surfaces”), the multipliers xN ∂v/∂xN and ∂v/∂xN were used to
prove the well-posedness of certain scattering problems; see for instance [52,
Lemma 4.6] and [51, Lemma 3.3].

Finally, when Ω is the complement of a bounded domain (a common situ-
ation in scattering problems) the multipliers have to be modified to include
a suitable radiation condition that ensure a sufficient decay at infinity to de-
fine all the needed integrals. In this case the obtained identities are called of
Morawetz–Ludwig type and can be found in [155] and in [182, Lemma 2.2].

In the Maxwell case, we will use as multiplier the vector analogous of M2:
ME = (∇ × E) × x. In order to highlight the symmetry between electric
and magnetic field and to keep the proofs as neat as possible we will use a
multiplier for E and a mirror one for H (see Proposition 5.3.2). For a more
general choice of the multiplier see Remark 5.3.5.

We begin by proving a simple vector calculus identity; the key tool is (A.12).

135



5. Stability results for the time-harmonic Maxwell equations

Lemma 5.3.1. Let v be a C1 vector field with values in C
3 defined in a open

domain of R3. Then

2Re
{
∇×v · (v×x)

}
= 2Re

{
∇·
(
(v ·x)v

)
− (v ·x)∇·v

}
−∇·

(
|v|2x

)
+ |v|2 .

(5.6)

Proof. We use some of the identities shown in Appendix A:

2Re
{
∇× v · (v × x)

}

(A.5)
= 2Re

{
∇ ·
(
v × (v × x)

)
+ v · ∇ × (v × x)

}

(A.2),(A.6)
= 2Re

{
∇ ·
(
(v · x)v − |v|2x

)

+ v ·
(
v ∇ · x− x ∇ · v + (x · ∇)v − (v · ∇)x

)}

(A.11)
= 2Re

{
∇ ·
(
(v · x)v − |v|2x

)
+ 2|v|2 − (v · x)∇ · v + v · (x · ∇)v

}

(A.12)
= 2Re

{
∇ ·
(
(v · x)v − |v|2x

)
− (v · x)∇ · v

}
+∇ ·

(
|v|2x

)
+ |v|2

= 2Re
{
∇ ·
(
(v · x)v

)
− (v · x)∇ · v

}
−∇ ·

(
|v|2x

)
+ |v|2 .

Now we put this identity in relation with the Maxwell operator in the E–H
formulation (5.1); we use the coefficients ǫ and µ in order to make the sum-
mands containing both fields vanish. The result is in the form of a Rellich
identity: the PDE operator is applied to the vector fields E and H and multi-
plied by special multipliers to obtain a divergence term summed to a positive
one. The terms containing ∇ · E and ∇ · H will vanish as soon as the iden-
tity will be applied to solutions of Maxwell’s equations. At this stage, all the
manipulations are pointwise; we will integrate by parts in Section 5.4.

Proposition 5.3.2. Let E and H be C1 vector fields with values in C
3 defined

in a open domain of R3. Let ω, ǫ and µ be non-zero real numbers. Then

2Re
{(

∇×E− iωµH
)
· (ǫE× x) +

(
∇×H+ iωǫE

)
· (µH× x)

}

= 2Re
{
∇ ·
(
ǫ(E · x)E+ µ(H · x)H

)
− ǫ(E · x)(∇ · E)− µ(H · x)(∇ ·H)

}

−∇ ·
(
ǫ|E|2x+ µ|H|2x

)
+ ǫ|E|2 + µ|H|2 .

(5.7)

Proof. The identity (5.7) is a simple consequence of Lemma 5.3.1:

2Re
{(

∇×E− iωµH
)
· (ǫE× x) +

(
∇×H+ iωǫE

)
· (µH× x)

}

= 2Re
{
∇×E · (ǫE× x) +∇×H · (µH× x)

+ iωǫµ
(
−H · E× x+E ·H× x

)}
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(5.6),(A.1)
= 2Re

{
∇ ·
(
ǫ(E · x)E+ µ(H · x)H

)

− ǫ(E · x)(∇ ·E)− µ(H · x)(∇ ·H)
}
−∇ ·

(
ǫ|E|2x+ µ|H|2x

)

+ ǫ|E|2 + µ|H|2 − 2ωǫµ Im
{
E ·H× x+E ·H× x︸ ︷︷ ︸

∈R

}

︸ ︷︷ ︸
=0

.

Remark 5.3.3. Under the hypothesis of Proposition 5.3.2, by choosing H =
−i(ωµ)−1∇×E and multiplying by ω2, if also ∇×E is of class C1, the Rellich
identity (5.7) reads

2Re
{
∇ ·
(
ω2ǫ(E · x)E+ µ−1(∇×E · x)∇×E

)
− ω2ǫ(E · x)(∇ ·E)

}

−∇ ·
(
ω2ǫ|E|2x+ µ−1|∇ ×E|2x

)
+ ω2ǫ|E|2 + µ−1|∇ ×E|2

= 2Re
{(

∇× (µ−1∇×E)− ω2ǫE
)
· (∇×E)× x

}
. (5.8)

This formula can be put in the form of the general Rellich identity (5.5) by
choosing:

LE = ∇× (µ−1∇×E)− ω2ǫE ,

ME = (∇×E)× x ,

P =
1

2
ω2ǫ|E|2 + 1

2
µ−1|∇ ×E|2 − Re

{
ω2ǫ(E · x)(∇ · E)

}
,

Q = Re
{
ω2ǫ(E · x)E + µ−1(∇×E · x)∇×E

}

− 1

2
ω2ǫ|E|2x− 1

2
µ−1|∇ ×E|2x .

Remark 5.3.4. Equation (5.7) is true in distributional sense for E and H in
H1(Ω)3, as well as equation (5.8) is true for E ∈ H1(curl; Ω).

This is not the case for E and H merely in L2(Ω)3 (or E ∈ H(curl; Ω))
because the proof of equation (5.6) uses the product v · (x · ∇)v (where v

represents E, H and ∇×E) which is not even defined in this general setting.

Remark 5.3.5. In Proposition 5.3.2 we have used a Rellich multiplier defined
through the position vector field x. This choice guarantees (i) the positivity
of the non-divergence terms in the identities (5.7) and (5.8) (called P in (5.5))
and (ii) the positivity of x · n on the boundary of a star-shaped domain.
Clearly this can be generalized in order to cope with more general domains.
If we choose instead a C1 vector field Z with values in R

3, the identities (5.6),
(5.7) and (5.8) become:

2Re
{
∇× v · (v × Z)

}

= 2Re
{
∇ ·
(
(v · Z)v

)
− (v · Z)∇ · v − v(v · ∇)Z

}

+ |v|2(∇ · Z)−∇ ·
(
|v|2Z

)
, (5.9)
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2Re
{(

∇×E− iωµH
)
· (ǫE× Z) +

(
∇×H+ iωǫE

)
· (µH× Z)

}

= 2Re
{
∇ ·
(
ǫ(E · Z)E+ µ(H · Z)H

)
− ǫE(E · ∇)Z− µH(H · ∇)Z

− ǫ(E · Z)(∇ · E)− µ(H · Z)(∇ ·H)
}

−∇ ·
(
ǫ|E|2Z+ µ|H|2Z

)
+ ǫ|E|2(∇ · Z) + µ|H|2(∇ · Z) , (5.10)

2Re
{
∇ ·
(
ω2ǫ(E · Z)E+ µ−1(∇×E · Z)∇×E

)
− ω2ǫ(E · Z)(∇ · E)

− ω2ǫE(E · ∇)Z− µ−1∇×E
(
(∇×E) · ∇

)
Z
}

−∇ ·
(
ω2ǫ|E|2Z+ µ−1|∇ ×E|2Z

)

+ ω2ǫ|E|2(∇ · Z) + µ−1|∇ ×E|2(∇ · Z)
= 2Re

{(
∇× (µ−1∇×E)− ω2ǫE

)
· (∇×E)× Z

}
. (5.11)

They can be proved as in the case of Z = x by using (A.10) instead of (A.12)
and (A.11).

If ∇·E = 0, the non-divergence terms in the last identity correspond to (the
real part of) the sesquilinear form defined by the matrix B := (∇·Z) Id3 −2DZ

(DZ being the Jacobian matrix of Z) applied to ωǫ1/2E and to µ−1/2∇ × E.
Notice that in the case Z = x, B boils down to the 3 × 3 identity matrix
Id3, thanks to (A.11). In order to obtain a useful identity when we integrate
by parts these formulas, Z has to be chosen such that B is either positive or
negative semidefinite in the domain and the sign of Z · n is constant on the
boundary.

5.4. Stability estimates

In this section, we prove stability estimates in energy-norm for problem (5.4),
with stability constants independent of the wavenumber ω. We use an argu-
ment similar to the one developed in [142, Sect. 8.1] (see also [66] and [104])
for the Helmholtz problem. Before doing that, we establish the following geo-
metric equivalence.

Lemma 5.4.1. Let Ω ⊂ R
3 be a bounded, either C2 or polyhedral domain.

Then Ω is star-shaped with respect to Bγ(x0) if and only if, for all x ∈ ∂Ω for
which n(x) is defined, (x− x0) · n(x) ≥ γ.

Proof. Set Γ := {x ∈ ∂Ω : n(x) is defined}; our assumptions on Ω imply that
∂Ω \ Γ has zero 2–measure.

If Ω is star-shaped with respect to Bγ(x0) then, for all x ∈ Γ, the tangent
plane in x to ∂Ω does not intersects the (open) tangential cone to ∂Bγ(x0)
with vertex x. Since (x− x0) · n(x) is equal to the signed distance of x0 from
the tangent plane in x to ∂Ω, then (x− x0) · n(x) ≥ γ.

We prove the converse by contradiction; see Fig. 5.1. Assume that there
exist x ∈ Ω and y ∈ Bγ(x0) such that the segment (x,y) is not contained in
Ω. Then, there exists z ∈ (x,y) ∩ ∂Ω such that the open segment (x, z) is
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x

y

z

Cη

γ

n

x0

Figure 5.1.: Geometric considerations in the proof of Lemma 5.4.1.

contained in Ω. (i) If z ∈ Γ, then (z−x0) ·n(z) = (z−y) ·n(z)+(y−x0 ) ·n(z);
since (z − y) · n(z) ≤ 0 and (y − x0) · n(z) < γ · 1, then (z − x0) · n(z) < γ,
which contradicts the assumption. (ii) If z 6∈ Γ, there exists η > 0 such that
the (open, infinite) cylinder Cη with axis through x and y, and radius η is
such that its orthogonal sections Sx and Sy through x and y, respectively,
are contained in Ω and Bγ(x0), respectively. Since Cη ∩ Γ is an open dense
subset of Cη ∩ ∂Ω, let z′ be one of its points such that, defined x′ and y′ as
the orthogonal projections of z′ onto Sx and Sy, respectively, the points x

′, y′

and z′ are in the same situation as the points x, y and z in case (i). Then we
conclude that (z′ − x0) · n(z′) < γ, which contradicts the assumption.

The assertion of Lemma 5.4.1 amounts to the identity

sup
{
γ ∈ R : Ω is star-shaped with respect to Bγ(x0)

}

= inf
{
(x− x0) · n(x) : x ∈ ∂Ω and n(x) is defined

}
.

The integration on Ω of the Rellich identity (5.7) gives a new equation that
relates the volume norms of E and H with their tangential and normal traces
on ∂Ω and with the source term J = iω(∇×H+ iωǫE). In Lemma 5.4.2 we
prove this new formula; in Lemma 5.4.3 we exploit the star-shapedness of the
domain and Lemma 5.4.1 to get rid of the normal traces.

Lemma 5.4.2. Let E and H ∈ H(curl; Ω) ∩H(div; Ω) ∩ C1(Ω)3, where Ω is
an open, bounded, Lipschitz domain. Then the following identity holds

∥∥∥ǫ1/2E
∥∥∥
2

0,Ω
+
∥∥∥µ1/2H

∥∥∥
2

0,Ω

=− 2Re

∫

∂Ω
ǫ
(
ET · xT

)
(E · n) + µ

(
HT · xT

)
(H · n) dS
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+

∫

∂Ω
ǫ
(
|ET |2 − |EN |2

)
(x · n) + µ

(
|HT |2 − |HN |2

)
(x · n) dS

+ 2Re

∫

Ω
ǫ(E · x)(∇ ·E) + µ(H · x)(∇ ·H) dV

+ 2Re

∫

Ω

(
∇×E− iωµH

)
· (ǫE× x) +

(
∇×H+ iωǫE

)
· (µH× x) dV .

(5.12)

Proof. We remind the decomposition (0.4) in tangential and normal parts
v = n(v · n) + (n× v)× n = vN + vT of the vector fields defined on ∂Ω; this
gives v · x = vN · xN + vT · xT and |v|2 = |vN |2 + |vT |2.

We integrate by parts the Rellich identity (5.7), and obtain
∥∥∥ǫ1/2E

∥∥∥
2

0,Ω
+
∥∥∥µ1/2H

∥∥∥
2

0,Ω

=− 2Re

∫

∂Ω
ǫ(E · x)(E · n) + µ(H · x)(H · n) dS

+

∫

∂Ω
ǫ|E|2(x · n) + µ|H|2(x · n) dS

+ 2Re

∫

Ω
ǫ(E · x)(∇ ·E) + µ(H · x)(∇ ·H) dV

+ 2Re

∫

Ω

(
∇×E− iωµH

)
· (ǫE× x) +

(
∇×H+ iωǫE

)
· (µH× x) dV

=− 2Re

∫

∂Ω
ǫ
(
ET · xT

)
(E · n) + µ

(
HT · xT

)
(H · n) dS

+

∫

∂Ω
ǫ
(
|ET |2 − |EN |2

)
(x · n) + µ

(
|HT |2 − |HN |2

)
(x · n) dS

+ 2Re

∫

Ω
ǫ(E · x)(∇ ·E) + µ(H · x)(∇ ·H) dV

+ 2Re

∫

Ω

(
∇×E− iωµH

)
· (ǫE× x) +

(
∇×H+ iωǫE

)
· (µH× x) dV .

Lemma 5.4.3. Let Ω be an open, bounded, either C2 or polyhedral domain,
which is star-shaped with respect to the ball Bγ(0), ω, ǫ and µ be positive
numbers, and let E and H be vector fields in Himp(curl; Ω)∩H(div; Ω). Then
the following bound holds
∥∥∥ǫ1/2E

∥∥∥
2

0,Ω
+
∥∥∥µ1/2H

∥∥∥
2

0,Ω

≤
(
diam(Ω)

)2

γ

(∥∥∥ǫ1/2ET

∥∥∥
2

0,∂Ω
+
∥∥∥µ1/2HT

∥∥∥
2

0,∂Ω

)

+ 2

∣∣∣∣
∫

Ω
ǫ(E · x)(∇ ·E) + µ(H · x)(∇ ·H) dV

∣∣∣∣

+ 2

∣∣∣∣
∫

Ω

(
∇×E− iωµH

)
· (ǫE× x) +

(
∇×H+ iωǫE

)
· (µH× x) dV

∣∣∣∣ .

(5.13)
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Proof. The theorem proved in [62] states that the space of smooth vector fields
C∞(Ω)3 is dense in Himp(curl; Ω) ∩H(div; Ω) for every bounded, Lipschitz Ω
(see also [152, Theorem 3.54] and [26] for similar results). This is a deep result
based on the regularity theory for the Laplace equation. This density gives us
the possibility to assume that E and H are C1(Ω)3 vector fields.

We use the weighted Young inequality 2ab ≤ a2/ε+ εb2 (here ε = x ·n) and
the result of Lemma 5.4.1, i.e., x · n(x) ≥ γ > 0 on ∂Ω, in the identity (5.12):

∥∥∥ǫ1/2E
∥∥∥
2

0,Ω
+
∥∥∥µ1/2H

∥∥∥
2

0,Ω

≤
∫

∂Ω
ǫ
(
|ET |2

|xT |2
x · n + |EN |2(x · n) + |ET |2(x · n)− |EN |2(x · n)

)
dS

+

∫

∂Ω
µ
(
|HT |2

|xT |2
x · n + |HN |2(x · n) + |HT |2(x · n)− |HN |2(x · n)

)
dS

+ 2

∣∣∣∣
∫

Ω
ǫ(E · x)(∇ · E) + µ(H · x)(∇ ·H) dV

∣∣∣∣

+ 2

∣∣∣∣
∫

Ω

(
∇×E− iωµH

)
· (ǫE× x) +

(
∇×H+ iωǫE

)
· (µH× x) dV

∣∣∣∣

≤
(
diam(Ω)

)2

γ

∫

∂Ω
ǫ|ET |2 + µ|HT |2 dS

+ 2

∣∣∣∣
∫

Ω
ǫ(E · x)(∇ · E) + µ(H · x)(∇ ·H) dV

∣∣∣∣

+ 2

∣∣∣∣
∫

Ω

(
∇×E− iωµH

)
· (ǫE× x) +

(
∇×H+ iωǫE

)
· (µH× x) dV

∣∣∣∣ .

because (|xT |2+(x ·n)2)/xN = (|xT |2+ |xN |2)/xN = |x|2/xN ≤ diam(Ω)2/γ.

Remark 5.4.4. If we choose H = −i(ωµ)−1∇ × E (as in Remark 5.3.3) and
we assume ∇ · E = 0, the integral identity of Lemma 5.4.2 and the bound of
Lemma 5.4.3 read

ω2
∥∥∥ǫ1/2E

∥∥∥
2

0,Ω
+
∥∥∥µ−1/2∇×E

∥∥∥
2

0,Ω

= −2Re

∫

∂Ω
ω2ǫ
(
ET · xT

)
(E · n) + µ−1

(
(∇×E)T · xT

)
(∇×E · n) dS

+

∫

∂Ω
ω2ǫ
(
|ET |2−|EN |2

)
(x · n) + µ−1

(
|(∇×E)T |2−|(∇×E)N |2

)
(x · n) dS

+ 2Re

∫

Ω

(
∇× (µ−1∇×E)− ω2ǫE

)
· (∇×E)× xdV ,

and

ω2
∥∥∥ǫ1/2E

∥∥∥
2

0,Ω
+
∥∥∥µ−1/2∇×E

∥∥∥
2

0,Ω

≤
(
diam(Ω)

)2

γ

(∥∥∥ǫ1/2ET

∥∥∥
2

0,∂Ω
+
∥∥∥µ−1/2(∇×E)T

∥∥∥
2

0,∂Ω

)
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+ 2

∣∣∣∣
∫

Ω

(
∇× (µ−1∇×E)− ω2ǫE

)
· (∇×E)× xdV

∣∣∣∣ , (5.14)

respectively.

We are now ready to prove our stability result. We may notice that so far
we have not used the impedance boundary condition: all the previous results
hold for any Maxwell boundary value problem. Now the boundary condition
defined in (5.2) will be crucial.

Theorem 5.4.5. Let Ω ⊂ R
3 be a bounded either C2 or polyhedral domain

which is star-shaped with respect to Bγ(x0), and let J, g and the material
coefficients satisfy the assumptions made in Section 5.2. Then, there exist two
positive constants C1, C2 independent of ω, but depending on diam(Ω), γ, ϑ,
ǫ and µ, such that, if E is the solution to (5.4),

∥∥∥µ−1/2∇×E

∥∥∥
0,Ω

+ ω
∥∥∥ǫ1/2E

∥∥∥
0,Ω

≤ C1 ‖J‖0,Ω + C2 ‖g‖0,∂Ω . (5.15)

Moreover, there exist two positive constants C3 and C4 independent of ω, but
depending on diam(Ω), γ, ϑ, ǫ and µ, such that

ω
∥∥∥|ϑ|1/2ET

∥∥∥
0,∂Ω

≤ C3 ‖J‖0,Ω + C4 ‖g‖0,∂Ω . (5.16)

Proof. We assume, with no loss of generality, that x0 = 0. Taking the imagi-
nary part of AM(E,E) and using the Young inequality give

ω
∥∥∥|ϑ|1/2ET

∥∥∥
2

0,∂Ω
≤
∣∣∣∣
∫

Ω
J · E dV

∣∣∣∣+
ω−1

2

∥∥∥|ϑ|−1/2g

∥∥∥
2

0,∂Ω
+
ω

2

∥∥∥|ϑ|1/2ET

∥∥∥
2

0,∂Ω
,

from which

ω2
∥∥∥|ϑ|1/2ET

∥∥∥
2

0,∂Ω
≤ 2ω

∣∣∣∣
∫

Ω
J ·E dV

∣∣∣∣+
∥∥∥|ϑ|−1/2g

∥∥∥
2

0,∂Ω
. (5.17)

From Theorem 5.2.1, we see that the hypothesis of Lemma 5.4.3 hold true
and ∇ ·E = 0, thus we can use the bound (5.14) together with the impedance
boundary condition, the Cauchy–Schwarz and the weighted Young inequality:

ω2
∥∥∥ǫ1/2E

∥∥∥
2

0,Ω
+
∥∥∥µ−1/2∇×E

∥∥∥
2

0,Ω

(5.14)

≤
(
diam(Ω)

)2

γ

(
ω2
∥∥∥ǫ1/2ET

∥∥∥
2

0,∂Ω
+
∥∥∥µ−1/2(∇×E)T

∥∥∥
2

0,∂Ω

)

+ 2

∣∣∣∣
∫

Ω
J · (∇×E)× xdV

∣∣∣∣
(5.2)

≤
(
diam(Ω)

)2

γ

(
ω2
∥∥∥ǫ1/2ET

∥∥∥
2

0,∂Ω
+ ω2

∥∥∥µ1/2ϑET

∥∥∥
2

0,∂Ω
+
∥∥∥µ1/2g

∥∥∥
2

0,∂Ω

)

+ 2
(
diam(Ω)

) ∥∥∥µ1/2J
∥∥∥
0,Ω

∥∥∥µ−1/2∇×E

∥∥∥
0,Ω

(5.17)

≤
(
diam(Ω)

)2

γ

(
2ω(ǫ|ϑ|−1 + |ϑ|µ)

∣∣∣∣
∫

Ω
J · E dV

∣∣∣∣+ (ǫ|ϑ|−2 + 2µ) ‖g‖20,∂Ω
)
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+ 2
(
diam(Ω)

) ∥∥∥µ1/2J
∥∥∥
0,Ω

∥∥∥µ−1/2∇×E

∥∥∥
0,Ω

≤ ω2

2

∥∥∥ǫ1/2E
∥∥∥
2

0,Ω
+ 2

(
diam(Ω)

)4

ǫγ2
(ǫ|ϑ|−1 + |ϑ|µ)2 ‖J‖20,Ω

+

(
diam(Ω)

)2

γ
(ǫ|ϑ|−2 + 2µ) ‖g‖20,∂Ω

+
1

2

∥∥∥µ−1/2∇×E

∥∥∥
2

0,Ω
+ 2
(
diam(Ω)

)2
µ ‖J‖20,Ω .

By moving the two terms containing E to the left-hand side, taking the square
root and using

√
a+ b ≤ √

a +
√
b for positive a and b, we obtain the asser-

tion (5.15) with

C1 = 2

(
diam(Ω)

)2
√
ǫ γ

(ǫ|ϑ|−1 + |ϑ|µ) + 2diam(Ω)
√
µ

and

C2 =
√
2
diam(Ω)√

γ

√
ǫ|ϑ|−2 + 2µ .

The bound (5.16) on the trace is obtained from (5.17) using the Cauchy–
Schwarz and the weighted Young inequalities, and the stability bound (5.15):

ω2
∥∥∥|ϑ|1/2ET

∥∥∥
2

0,∂Ω

(5.17)

≤ ‖J‖20,Ω + ω2 ‖E‖20,Ω + |ϑ|−1 ‖g‖20,∂Ω
(5.15)

≤ ‖J‖20,Ω + ǫ−1
(
C1 ‖J‖0,Ω + C2 ‖g‖0,∂Ω

)2
+ |ϑ|−1 ‖g‖20,∂Ω

≤
(
1 + 2ǫ−1C2

1

)
‖J‖20,Ω +

(
|ϑ|−1 + 2ǫ−1C2

2

)
‖g‖20,∂Ω ,

thus the constants can be chosen as

C3 = 1 +
√
2 ǫ−1/2 C1 and C4 = |ϑ|−1/2 +

√
2 ǫ−1/2 C2 .

The use of (5.15) before the Young inequality leads to a different choice of the
constants:

C3 = ǫ−1/4
√

2C1 + C2 and C4 = ǫ−1/4
√
C2 + |ϑ|−1/2 .

Remark 5.4.6. In Theorems 3.2 and 3.3 of the paper [109] we proved exactly the
same result of Theorem 5.4.5 here but that proof is apparently very different
and more intricate. In that case the Rellich identity was not written explicitly
in pointwise form but was obtained directly in integral form by using the vector
multiplier ξ = (∇×E)×x as test function in the variational formulation (5.4)
(such an approach is closer to the one of Proposition 8.1.4 of [142]). This choice
required E to be in H1(curl; Ω), thus Ω to be of class C2, due to Lemma 5.2.2.
The extension to polyhedra was then accomplished by adopting a limiting
technique to approximate the problem domain with a sequence of smooth
domains. The boundary value problem posed on the former was the limit of
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5. Stability results for the time-harmonic Maxwell equations

the ones posed on the latter via a pullback. Here, a better understanding of
Rellich-type identities in pointwise form and the density borrowed from [62]
allowed us to avoid this procedure.

Remark 5.4.7. The assertion of Theorem 5.4.5 holds true also if Ω is not
a polyhedron but is open, Lipschitz, bounded, star-shaped with respect to
Bγ(x0) and the set {x ∈ ∂Ω : n(x) is not defined} has zero measure in ∂Ω
(cf. Lemma 5.4.1).

Remark 5.4.8. The assumption of the star-shapedness of Ω enters the proof
of the stability bound through Lemma 5.4.3. In concrete, it allows to bound
the volume norms by using only the tangential parts of the traces of E and
H. These are the most natural traces for electromagnetic problems.

In the spirit of [104], we might allow the domain Ω to be defined as Ω =
Ω1 \Ω2, with both Ω1 and Ω2 star-shaped with respect to the ball Bγ(0) and
Ω2 ⊂ Ω1. In other words, the domain contains a hole: this configuration is
important since it can be used to model the scattering of an electromagnetic
wave by a bounded scatterer Ω2. We fix the unit normal n to be outgoing from
Ω, therefore on the exterior boundary ∂Ω1 we have x ·n ≥ γ > 0 while on the
interior boundary ∂Ω2 the converse x · n ≤ −γ < 0 holds. Thus the signs of
the boundary norms on ∂Ω2 in (5.12) are swapped and the Cauchy–Schwarz
inequality has to be used in the opposite way. This leads to the bound

ω2
∥∥∥ǫ1/2E

∥∥∥
2

0,Ω
+
∥∥∥µ−1/2∇×E

∥∥∥
2

0,Ω

≤
(
diam(Ω)

)2

γ

(
ω2
∥∥∥ǫ1/2ET

∥∥∥
2

0,∂Ω1

+
∥∥∥µ−1/2(∇×E)T

∥∥∥
2

0,∂Ω1

+ ω2
∥∥∥ǫ1/2EN

∥∥∥
2

0,∂Ω2

+
∥∥∥µ−1/2(∇×E)N

∥∥∥
2

0,∂Ω2

)

+ 2

∣∣∣∣
∫

Ω

(
∇× (µ−1∇×E)− ω2ǫE

)
· (∇×E)× xdV

∣∣∣∣ .

(5.18)

instead of (5.14), for every divergence-free vector field E in Ω. This result
is not satisfactory because it allows to control the solution with constants
independent of the wavenumber only by using normal traces on the interior
boundary, which are not commonly used in boundary conditions for electro-
magnetic problems. For example, Theorem 5.2.1 holds true in the domain
Ω = Ω1 \ Ω2 if a tangential Dirichlet boundary condition ET = 0 is imposed
on ∂Ω2 (see [152, Theorem 4.17]).

In the same way, we might look for a “Morawetz-type” analogue of (5.13),
i.e., a bound that takes into account the Silver–Müller radiation condition
(cf. [160, (5.2.24-25)]) and holds in exterior domains. Again we would find a
bound that involves the normal traces on ∂Ω.

5.5. Regularity of solutions in polyhedral domains

In this section, we establish the regularity of the solutions to problem (5.4)
for a Lipschitz polyhedral domain Ω, when g possesses extra smoothness.
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The definition of Sobolev spaces on the polyhedral boundary requires care.
For every real number s, the Sobolev space Hs(Γ) on a smooth (C∞) man-

ifold Γ of dimension N − 1 is defined via local charts that map open sub-
sets which cover the manifold itself into domains of RN−1, see [137, Chap. 1,
Sect. 7.3]. This definition is well-posed in the sense that it provides equivalent
norms for different parameterizations of Γ (see [137, p. 40]). If the manifold
is not smooth but only Lipschitz, this definition is well-posed for regular-
ity indices in the range −1 ≤ s ≤ 1 only (cf. [7, p. 825], [61, p. 614], [99,
Sect. 1.3.3], [141, p. 99 and Theorems 3.20 and 3.23], [152, Sect. 3.2.1], [159,
Chap. 2, Lemme 3.2] or [177, Definition 2.4.1]).

We adopt Definition 1.3.3.2 of [99] for Hs(∂Ω), with −1 ≤ s ≤ 1. If 0 ≤
s < 1, the local chart norm is equivalent to the Sobolev–Slobodeckij norm
defined via the double integral on ∂Ω in equation (1.3.3.3) of [99] (see also [152,
Sect. 3.2.1] and the equivalent formula [177, (2.85)]).

We will also need more regular function spaces; in order to define them we
will exploit the fact that our domain is a polyhedron, which allows definitions
in a piecewise sense that are not possible on general Lipschitz domains. Denot-
ing by Γj, j = 1, . . . ,m, the flat (open) faces of ∂Ω, and following [40, Sect. 2.3]
we set

Hs(∂Ω) :=
{
ϕ ∈ H1(∂Ω) : ϕ|Γj ∈ Hs(Γj) j = 1, . . . ,m

}
for s > 1 ,

(5.19)
and

Hs
T (∂Ω) :=

{
ϕ ∈ L2

T (∂Ω) : ϕ|Γj ∈ Hs(Γj)
2, j = 1, . . . ,m

}
∀ s ≥ 0 ,

where the faces Γj are considered as domains in R
2 in the definition of Hs(Γj)

and Hs(Γj)
2. Notice that in [40, eq. (16)] the space Hs

T (∂Ω) was denoted
Hs

−(∂Ω). For s > 1, the spaces Hs(∂Ω) are endowed with the norms

‖ϕ‖s,∂Ω :=

(
‖ϕ‖21,∂Ω +

m∑

j=1

‖ϕ‖2s,Γj
)1/2

s > 1 . (5.20)

Thanks to Corollary 1.4.4.5 of [99] for 0 < s < 1/2 the spaces Hs(∂Ω) can be
defined piecewise, i.e.,

Hs(∂Ω) =
{
ϕ ∈ L2(∂Ω) : ϕ|Γj ∈ Hs(Γj), j = 1, . . . ,m

}
0 < s < 1/2 ,

(5.21)
with an equivalence between the two intrinsic norms; therefore we can identify
the spaces

Hs
T (∂Ω) = Hs(∂Ω)3 ∩ L2

T (∂Ω) 0 < s < 1/2 . (5.22)

From [39, Theorem 3.9 and Theorem 3.10] (see also [41, Theorem 4.1]), we
learn that, if U ∈ H(curl; Ω), then

divT (U× n) ∈ H−1/2(∂Ω), curlT (UT ) ∈ H−1/2(∂Ω) , (5.23)

‖divT (U× n)‖−1/2,∂Ω ≤ C
(
‖U‖0,Ω + ‖∇ ×U‖0,Ω

)
,

‖curlT (UT )‖−1/2,∂Ω ≤ C
(
‖U‖0,Ω + ‖∇ ×U‖0,Ω

)
,
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5. Stability results for the time-harmonic Maxwell equations

where curlT and divT are the surface curl and the surface divergence on ∂Ω,
respectively, and the constant C > 0 is independent of U.

The identifications (5.22) and (5.21) imply the continuity of the surface
(scalar) differential operators:

divT , curlT : Hs
T (∂Ω) → Hs−1(∂Ω) , 0 < s < 1/2 . (5.24)

Eventually, the standard trace theorem for Sobolev spaces yields the conti-
nuity of the tangential traces (see [39, p. 11])

{
H1(Ω)3 → H

1/2
T (∂Ω)

U 7→ UT
,

{
H1(Ω)3 → H

1/2
T (∂Ω)

U 7→ U× n
; (5.25)

notice that these two trace operators are not surjective in H
1/2
T (∂Ω) and their

ranges are different (see Proposition 2.7 of [39]).
On a domain Ω with Lipschitz boundary ∂Ω, Theorem 1 of [69] provides

the continuity of the trace operator from Hs+1/2(Ω) to Hs(∂Ω) in the range
0 < s < 1 (see also Theorem 3.38 of [141]):

∥∥Φ|∂Ω
∥∥
s,∂Ω

≤ C ‖Φ‖s+1/2,Ω ∀ Φ ∈ Hs+1/2(Ω) , 0 < s < 1 . (5.26)

Moreover, the trace is surjective, thanks to Theorem 2.6.11 of [177] (see also
Theorem 3.37 of [141] for the case s ≤ 1/2):

Hs(∂Ω) =
{
ϕ ∈ L2(∂Ω) : ϕ = Φ|∂Ω for some Φ ∈ Hs+1/2(Ω)

}
0 < s < 1 ;

(5.27)
and the norm

ϕ 7→ inf
{
‖Φ‖s+1/2,Ω , Φ ∈ Hs+1/2(Ω) s. t. Φ|∂Ω = ϕ

}
0 < s < 1 (5.28)

is equivalent to the ‖·‖s,∂Ω norm. The trace operator is not continuous in

the case s = 1 (i.e., from H3/2(Ω) to H1(∂Ω)) for general Lipschitz or C1

domains, as a consequence of the counterexamples of [127, p. 176]; on the
other hand, it is continuous and surjective for domains with C1,1 boundary
(cf. [141, Theorem 3.37]). It is not clear whether this holds or not in the case
of Lipschitz polyhedra.

The following proposition shows that, for 1 < s ≤ 3/2, the spaces defined
in (5.19) correspond to the traces of the usual Sobolev spaces in Ω. This
is a consequence of the results of [29, 30] and [39] in the cases s < 3/2 and
s = 3/2, respectively. Due to (5.27), the analogous identification holds true
for 0 < s < 1 but it is not guaranteed for s = 1.

Proposition 5.5.1. Let Ω be a Lipschitz polyhedron. For 1 < s ≤ 3/2, it
holds

Hs(∂Ω) =
{
ϕ ∈ L2(∂Ω) : ϕ = Φ|∂Ω for some Φ ∈ Hs+1/2(Ω)

}
. (5.29)

The two corresponding intrinsic norms (5.20) and (5.28) are equivalent.
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5.5. Regularity of solutions in polyhedral domains

Proof. The case s = 3/2 corresponds to Corollary 3.7 of [39].
We consider the remaining case 1 < s < 3/2. The inclusion

{
ϕ ∈ L2(∂Ω) : ϕ = Φ|∂Ω for some Φ ∈ Hs+1/2(Ω)

}
⊆ Hs(∂Ω)

is a consequence of the trace theorem. Indeed, for Φ ∈ Hs+1/2(Ω), the trace
Φ|∂Ω belongs to H1(∂Ω) because of [69, p. 600]. Then Φ|Γj belongs to H

s(Γj)
because the faces Γj are flat, thus C

∞ instead of merely Lipschitz, therefore the
Hs(Γj)-norm can be controlled using the L2-norm and the tangential gradient
∇T which, in turn, is controlled by the volume norm of the gradient which
satisfies the vector analogue of the trace theorem (5.26) in a suitable range of
Sobolev regularity indices:1

‖Φ‖s,∂Ω
(5.20)
=

(
‖Φ‖21,∂Ω +

m∑

j=1

‖Φ‖2s,Γj
)1/2

Γj“⊂”R2

≤ C

(
‖Φ‖1,∂Ω +

m∑

j=1

‖∇TΦ‖s−1,Γj

)

(5.22)

≤ C
(
‖Φ‖1,∂Ω + ‖∇Φ‖s−1,∂Ω

)

[69, p. 600],
(5.26)

≤ C
(
‖Φ‖s+1/2,Ω + ‖∇Φ‖s−1/2,Ω

)

≤ C ‖Φ‖s+1/2,Ω ∀ Φ ∈ Hs+1/2(Ω) . (5.30)

In order to prove the inverse inclusion, we fix ϕ ∈ Hs(∂Ω). In particu-
lar ϕ ∈ H1(∂Ω), therefore, if two faces Γj and Γj′ meets on the edge ej,j′ ,
then ϕ|Γj = ϕ|Γj′ on ej,j′ for every ϕ ∈ H1(∂Ω) (which follows either from

Lemma 1.5.1.8 of [99] with a localization argument or from Green formula for
Lipschitz domains, see [99, Theorem 1.5.3.1] or [159, Théorème 1.1, Chap. 1]).
Moreover, ϕ|Γj ∈ Hs(Γj), j = 1, . . . ,m. Thus, Theorem 3.10 of [152], which
is a very special case of Theorem 6.9 on page 43 of [30] (or, equivalently [29,
Théorème 2]), states that ϕ is a trace of a function Φ ∈ Hs+1/2(Ω) and the
assertion follows.

In other words, the traces of Hs+1/2(Ω) functions are characterized by Hs

regularity on every face and by some compatibility conditions on edges and
vertices according to Theorem 6.9 of [30]; in particular, for 1 < s < 3/2
the compatibility conditions are the same as for H1(∂Ω), which are already
granted by our definition (5.19) of Hs(∂Ω).

The equivalence between the two norms follows from the bound (5.30)
and the open mapping theorem applied to the identity operator in Hs(∂Ω)
(see [205, p. 77]).

Thanks to Proposition 5.5.1, Corollary 5.5.2 provides a simple regularity
result for the Laplace equation in the context of the spaces defined in (5.19).

1 Alternatively, the continuity ‖Φ‖s,Γj
≤ C ‖Φ‖s+1/2,Ω could be proved by using the con-

tinuous extension operator Es+1/2 : Hs+1/2(Ω) → Hs+1/2(R3) (see [99, Theorem 1.4.3.1]
and [141, Theorem A.4]) and the trace on the affine plane that contains the face Γj .
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Corollary 5.5.2. Let Ω be a Lipschitz polyhedron. Then there exists sΩ de-
pending only on Ω, 0 < sΩ < 1/2, such that if ϕ satisfies

{
−∆ϕ ∈ L2(Ω) ,

ϕ|∂Ω ∈ Hs(∂Ω) ,

for some 1 < s ≤ 1+sΩ, then ϕ belongs to Hs+1/2(Ω). Moreover, the following
bound holds

‖ϕ‖s+1/2,Ω ≤ C
(
‖ϕ‖s,∂Ω + ‖∆ϕ‖0,Ω

)
. (5.31)

Proof. This is Theorem 3.18 of [152], since Proposition 5.5.1 identifies the
spaces Hs(∂Ω), for 1 < s < 3/2, defined piecewise in (5.19) and the ones
defined as global traces defined in equation (3.12) of [152].

The uniqueness of the solution of the boundary value problem and the con-
tinuity of the trace (5.30) and of the Laplacian operators provide a linear
continuous bijective operator

{
ϕ ∈ Hs+1/2(Ω), ∆ϕ ∈ L2(Ω)

}
−→ L2(Ω)×Hs(∂Ω) ,

thus the open mapping theorem (see [205, p. 77]) gives the bound (5.31).

Remark 5.5.3. The parameter sΩ in the previous corollary is described in
Corollary 18.15 of [67].

Whenever the domain Ω is convex, Corollary 18.18 of [67] applies and Corol-
lary 5.5.2 holds for every 1 < s < 3/2.

A last elliptic regularity result will be instrumental in the treatment of
Maxwell solutions: it concerns the Laplace–Beltrami operator ∆T = divT ∇T ,
where ∇T denotes the tangential gradient, and is stated in [40, Theorem 8];
we report it here, for the sake of completeness.

Lemma 5.5.4. For any bounded Lipschitz polyhedral domain, there is a 0 <
s∗ ≤ 1 depending only on the shape of ∂Ω in neighborhoods of vertices, such
that

∆Tψ ∈ H−1+s(∂Ω) for some s > 0

⇒ ψ ∈ H1+sLB (∂Ω) ∀ 0 < sLB ≤ s, sLB < s∗ .

The case sLB = s, when s < s∗, can be deduced from the proof of [40,
Theorem 8]. Moreover, formula (57) in [40] shows that, whenever Ω is convex,
it is possible to choose s∗ = 1.

We are now ready to prove the main theorem of this section, namely, a
regularity result for the solutions of the Maxwell equations.

Theorem 5.5.5. Let Ω ⊂ R
3 be a bounded polyhedral domain which is star-

shaped with respect to Bγ(x0). In addition to the assumptions made on J, g
and on the material coefficients in Section 5.2, we assume g ∈ H

sg
T (∂Ω), with

0 < sg < 1/2. Then the solution E to problem (5.4) satisfies

E ∈ H1/2+s(Ω)3 and ∇×E ∈ H1/2+s(Ω)3
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for all the real parameters s such that

0 < s ≤ min{sg, sΩ} and s < s∗ ,

where sΩ is defined in Corollary 5.5.2 (or in [67, Corollary 18.15]), and s∗ is
defined in Lemma 5.5.4 (or in [40, Theorem 8]).

Moreover, we have the following stability estimate: there is a positive con-
stant C independent of ω, but depending on s, Ω, γ, ϑ, ǫ and µ, such that

‖∇ ×E‖1/2+s,Ω + ω ‖E‖1/2+s,Ω ≤ C
(
(1 + ω)(‖J‖0,Ω + ‖g‖0,∂Ω) + ‖g‖sg,∂Ω

)
.

(5.32)

Proof. In this proof, we denote by C a positive constant independent of ω, but
depending on ϑ, Ω, ǫ and µ, whose value might change at each occurrence.

We start by by proving the regularity of E, following the reasoning of [68,
Sect. 4.5.d].

Decompose E as
E = Φ0 +∇ψ ,

where Φ0 ∈ H1(Ω)3 ∩H(div0; Ω), ψ ∈ H1(Ω) and

∥∥Φ0
∥∥
1,Ω

+ ‖ψ‖1,Ω ≤ C (‖E‖0,Ω + ‖∇ ×E‖0,Ω) (5.33)

(see [105, Lemma 2.4]); clearly, ∆ψ = 0 in Ω.
By using this decomposition, we can write the boundary condition in prob-

lem (5.1) by

(µ−1∇×E)× n− iωϑΦ0
T − iωϑ∇Tψ = g on ∂Ω , (5.34)

where ∇Tψ is the tangential gradient of ψ on ∂Ω, i.e., ∇Tψ := (n×∇ψ)×n.
Using (5.23), the tangential divergence divT of (µ−1∇×E)×n is well-defined,

belongs to H−1/2(∂Ω) and

∥∥divT
(
(µ−1∇×E)× n

)∥∥
−1/2,∂Ω

≤ C
(∥∥µ−1∇×E

∥∥
0,Ω

+
∥∥∇× (µ−1∇×E)

∥∥
0,Ω

)
.

(5.35)

Since g ∈ H
sg
T (∂Ω), (5.24) gives divT g ∈ Hsg−1(∂Ω). Moreover, (5.25)

and (5.24) imply divT Φ0
T ∈ H−1/2−η(∂Ω) for all η ∈ (0, 1/2], in particular,

divT Φ0
T ∈ Hsg−1(∂Ω); they also imply the bounds

∥∥divT Φ0
T

∥∥
sg−1,∂Ω

≤ C
∥∥Φ0

T

∥∥
sg−1,∂Ω

≤ C
∥∥Φ0

∥∥
1,∂Ω

.

From the regularities of the tangential divergence of the terms in (5.34), it
follows that

divT ϑ∇Tψ ∈ Hsg−1(∂Ω) .

Due to the smoothness of the solutions to the Laplace–Beltrami equation pro-
vided by Lemma 5.5.4, we have that ψ ∈ H1+sLB (∂Ω), for every 0 < sLB ≤ sg,
sLB < s∗, where s∗ is defined in Lemma 5.5.4. Corollary 5.5.2 ensures that
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ψ ∈ H3/2+s(Ω), for every 0 < s ≤ min{sg, sΩ}, s < s∗, where 0 < sΩ < 1/2 is
given in Corollary 5.5.22. Moreover, the previous steps give

‖ψ‖3/2+s,Ω
(5.31)

≤ C ‖ψ‖1+s,∂Ω
[111, eq. (2.2)]

≤ C ‖divT ϑ∇Tψ‖sg−1,∂Ω . (5.36)

From Φ0 ∈ H1(Ω)3 and ∇ψ ∈ H1/2+s(Ω)3, we have that E ∈ H1/2+s(Ω)3.
We proceed by bounding ‖E‖1/2+s,Ω. By the triangle inequality, we have

‖E‖1/2+s,Ω ≤
∥∥Φ0

∥∥
1/2+s,Ω

+ ‖∇ψ‖1/2+s,Ω ,

and we bound the two terms on the right-hand side separately.
From (5.33) and the stability bound (5.15), we obtain

∥∥Φ0
∥∥
1,Ω

≤ C (1 + ω−1) (C1 ‖J‖0,Ω + C2 ‖g‖0,∂Ω) . (5.37)

Collecting the bounds proved so far, we obtain

‖∇ψ‖1/2+s,Ω
(5.36)

≤ C ‖divT ϑ∇Tψ‖sg−1,∂Ω

(5.34)

≤ C
(
ω−1

∥∥divT
(
(µ−1∇×E)× n

)∥∥
sg−1,∂Ω

+
∥∥divT ϑΦ0

T

∥∥
sg−1,∂Ω

+ ω−1 ‖divT g‖sg−1,∂Ω

)

(5.24)

≤ C
(
ω−1

∥∥divT
(
(µ−1∇×E)× n

)∥∥
−1/2,∂Ω

+
∥∥Φ0

T

∥∥
sg,∂Ω

+ ω−1 ‖g‖sg,∂Ω
)

(5.35), (5.25)

≤ C
(
ω−1 ‖∇ ×E‖0,Ω + ω−1 ‖∇ ×∇×E‖0,Ω

+
∥∥Φ0

∥∥
1,Ω

+ ω−1 ‖g‖sg,∂Ω
)

(5.1), (5.37)

≤ C
(
ω−1 ‖∇ ×E‖0,Ω + ω ‖E‖0,Ω + ω−1 ‖J‖0,Ω

+ (1 + ω−1) (C1 ‖J‖0,Ω + C2 ‖g‖0,∂Ω) + ω−1 ‖g‖sg,∂Ω
)

(5.15)

≤ C
(
(C1 + ω−1C1 + ω−1) ‖J‖0,Ω
+ (1 + ω−1)C2 ‖g‖0,∂Ω + ω−1 ‖g‖sg,∂Ω

)
.

Therefore, we have the bound

ω ‖E‖1/2+s,Ω ≤ C
(
(1 + C1 + C1ω) ‖J‖0,Ω + (1 + ω)C2 ‖g‖0,∂Ω + ‖g‖sg,∂Ω

)
.

(5.38)
Similarly, we prove the smoothness of ∇×E. Decompose ∇×E as

∇×E = Ψ0 +∇φ ,
2Whenever Ω is convex, the parameter L in [40, Theorem 8] is equal to 2π, thus s∗ = 1.
Moreover, thanks to Remark 5.5.3, sΩ can be chosen equal to sg. Therefore, if Ω is
convex, the only condition on s is 0 < s ≤ sg.
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where Ψ0 ∈ H1(Ω)3 ∩H(div0; Ω), and φ ∈ H1(Ω); again, ∆φ = 0 in Ω and

∥∥Ψ0
∥∥
1,Ω

+ ‖φ‖1,Ω ≤ C
(
‖∇ ×E‖0,Ω + ‖∇ ×∇×E‖0,Ω

)

≤ C
(
‖∇ ×E‖0,Ω + ω2 ‖E‖0,Ω + ‖J‖0,Ω

)
, (5.39)

where the second inequality follows from the first equation in (5.1). The
boundary condition in problem (5.1) can be written as

µ−1Ψ0 × n+ µ−1∇φ× n− iωϑET = g on ∂Ω . (5.40)

Thanks to (5.23), the tangential curl curlT of ϑET is well-defined, belongs to
H−1/2(∂Ω) and

‖curlT ϑET‖−1/2,∂Ω ≤ C (‖E‖0,Ω + ‖∇ ×E‖0,Ω) . (5.41)

Since g ∈ H
sg
T (∂Ω)3, (5.24) gives curlT g ∈ Hsg−1(∂Ω). Moreover, Ψ0 ×

n ∈ H
1/2
T (∂Ω)3 by (5.25), then curlT (µ

−1Ψ0 × n) ∈ H−1/2−η(∂Ω), for every
0 < η < 1/2, by (5.24), in particular, curlT (µ

−1Ψ0 × n) ∈ Hsg−1(∂Ω). Thus,
since

curlT (µ
−1∇φ× n) = − divT

(
n× (µ−1∇φ× n)

)
= − divT µ

−1∇Tφ

(see [152, Formula (3.15), p. 49]), we have that

divT µ
−1∇Tφ ∈ Hsg−1(∂Ω) .

Proceeding exactly as we did to prove (5.36), corollary 5.5.2 and Lemma 5.5.4
ensure that the harmonic function φ belongs to H3/2+s(Ω) with the parameter
s in the same range as before (0 < s ≤ min{sg, sΩ}, s < s∗), and

‖φ‖3/2+s,Ω
(5.31)

≤ C ‖φ‖1+s,∂Ω
[111, eq. (2.2)]

≤ C ‖divT ϑ∇Tφ‖sg−1,∂Ω . (5.42)

From Ψ0 ∈ H1(Ω)3 and ∇φ ∈ H1/2+s(Ω)3, we have that ∇×E ∈ H1/2+s(Ω)3.
For the bound of ‖∇ ×E‖1/2+s,Ω, the triangle inequality gives

‖∇ ×E‖1/2+s,Ω ≤
∥∥Ψ0

∥∥
1/2+s,Ω

+ ‖∇φ‖1/2+s,Ω .

Again as in the first part of this proof, from (5.39) and (5.15), we have

∥∥Ψ0
∥∥
1,Ω

≤ C
(
(1 + C1 + C1ω) ‖J‖0,Ω + (1 + ω)C2 ‖g‖0,∂Ω

)
.

For ‖∇φ‖1/2+s,Ω, by proceeding as in the first part of this proof, using (5.42),
the boundary condition (5.40), the bound (5.41), the continuity (5.24), the
stability bound (5.39) and (5.15) we have

‖∇φ‖1/2+s,Ω ≤ C
(
(1 + C1 + C1ω) ‖J‖0,Ω + (1 + ω)C2 ‖g‖0,∂Ω + ‖g‖sg,∂Ω

)

and consequently

‖∇ ×E‖1/2+s,Ω ≤ C
(
(1+C1 +C1ω) ‖J‖0,Ω +(1+ω)C2 ‖g‖0,∂Ω + ‖g‖sg,∂Ω

)
.

(5.43)
The bounds (5.38) and (5.43) give the stability bound (5.32).
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Remark 5.5.6. In the case of convex polyhedral domains, the smoothness pa-
rameters s reaches the regularity of the boundary datum s = sg < 1/2, since
Corollary 5.5.2 holds true for all 0 < sΩ < 1/2, and s∗ = 1 in Lemma 5.5.4
(see footnote 2).

Remark 5.5.7. The regularity of solutions stated in Theorem 5.5.5 guarantees
that the tangential traces of E and ∇ × E are in L2

T (∂Ω). We will need this
regularity in Chapter 7 in order to define the TDG method and to carry out
its convergence analysis.

Remark 5.5.8. For C2-domains, under all the other assumptions made in The-
orem 5.5.5, the H1-regularity of both E and ∇ × E was already established
in [68, Sect. 4.5.d] (see also Lemma 5.2.2 above); the stability estimate

‖∇ ×E‖1,Ω + ω ‖E‖1,Ω ≤ C
(
(1 + ω)(‖J‖0,Ω + ‖g‖0,∂Ω) + ‖g‖1/2,∂Ω

)

can be obtained along the lines of the proof of Theorem 5.5.5.

Remark 5.5.9. Similar results to the one proved in this chapter, namely,
wavenumber-explicit stability and regularity bounds in star-shaped domains,
were already available in the simpler case of the Helmholtz equation. Since
we have generalized for the first time the Rellich identity to the context of
Maxwell equations, we can imagine many other results that could be trans-
lated from the scalar to the vectorial setting. In particular, several different
extensions of Theorem 5.4.5 might be interesting:

• to non-star shaped domains; in this case, in the definition of the multi-
plier ME = (∇×E)×x of the Rellich identity, x should be substituted
by a more general vector field Z as described in Remark 5.3.5;

• to domains containing a (star-shaped) hole and with mixed boundary
conditions, in order to extend to the Maxwell case the results proved
in [104] for the Helmholtz problem (see also the comments made in Re-
mark 5.4.8);

• to non-constant or anisotropic material coefficients ǫ and µ; the key tool
for this extension would be the use of more general Rellich identities,
as the one introduced by Payne and Weinberger in [163] (see also [159,
Sect. 5.1.1] and [141, Lemma 4.22]).

A smart modification of the Rellich-type identity proved in Section 5.3 might
also lead to

• wavenumber-explicit continuity bounds for boundary integral operators
(such as Dirichlet-to-Neumann map or combined field operators) and
their inverses (see [53,182]);

• well-posedness of boundary value problems (and corresponding varia-
tional formulations) for the scattering of electromagnetic waves by un-
bounded rough surfaces; in the scalar case the Rellich identities turned
out to be a key tool (see for example [51,52]) but, up to our knowledge,
in the Maxwell setting the only available result is the one of [101];
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5.5. Regularity of solutions in polyhedral domains

• pointwise and integral Rellich-type identities for differential forms (see
for instance [11,105] for an introduction to differential forms), this could
unify the treatment of Helmholtz and Maxwell’s problems.
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6. Approximation of Maxwell solutions

6.1. Introduction

The three Cartesian components of a solution of the time-harmonic homoge-
neous Maxwell equations are solutions of the homogeneous Helmholtz equa-
tion. Therefore, a trivial generalization to vector fields of the scalar approx-
imation estimates proved for spherical and plane waves in Chapter 3 applies
to any Maxwell solution. However, the approximating fields that are obtained
by this procedure do not, in general, solve the Maxwell equations. We have
seen in Chapter 4 that in order to formulate a Trefftz method it is crucial that
the basis functions are locally solutions of the PDE to be discretized. As a
consequence, in order to analyze the convergence of any Trefftz method for
the Maxwell equations, new best approximation estimates that involve only
divergence-free plane or spherical waves are necessary. This chapter is devoted
to tackle this problem.

If the electric field E is seen as the curl of the magnetic field H, the lat-
ter can be approximated as a vector Helmholtz solution. Then, it turns out
that the curls of the vector plane (or spherical) waves approximating H are
in turn divergence-free vector plane (or spherical, respectively) waves, thus
they are legitimate Maxwell–Trefftz fields, and they approximate E. We will
make precise this reasoning in Sections 6.2.1 and 6.2.2. However, the h- and
p-estimates obtained via this procedure are not sharp, since the use of the
curl operator reduces by one the orders of convergence. The same argument,
together with a special potential representation, will be used in Section 6.4 to
prove a similar result for solutions of the time-harmonic elastic wave equation
(Navier equation).

A possible way to improve the convergence rates is to follow the same lines
as in Chapter 3. In Section 6.3 we use vector harmonic polynomials and the
Vekua operators to prove better orders in h for spaces of spherical waves. An
idea for a similar proof for plane waves is sketched in Remark 6.3.5. On the
other hand, this approach apparently does not allow any p-estimate.

Throughout this chapter we will use extensively the vector spherical har-
monics, their definitions and all the needed properties are summarized in Ap-
pendix B.5.

6.2. Approximation estimates for Maxwell’s equations

In this section we observe that it is possible to prove approximation estimates
for solutions of Maxwell’s equations by plane and spherical waves in a very
simple fashion. This result is a consequence of the corresponding one proved
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for the Helmholtz equation in Chapter 3. On the other hand, since we ap-
proximate a vector field through an approximation of its curl, the orders of
convergence are not expected to be sharp, neither in h nor in p.

Let E ∈ Hk+1(curl;D), k ∈ N, be a solution of the homogeneous Maxwell
equations

∇× (µ−1∇×E)− ω2ǫE = 0 in D , (6.1)

where ǫ and µ are real, positive constants (see also Section 5.2) and D ⊂ R
3

is a bounded Lipschitz domain. Throughout this chapter we will denote with
κ the scaled wavenumber

κ := ω
√
ǫµ ,

and with H the magnetic field corresponding to E:

H := (iωµ)−1 ∇×E .

Since both E and H are divergence-free (∇ · E = ∇ · H = 0), ǫ and µ are
constant, and the curl–curl operator can be written as ∇×∇× = ∇(∇·)−∆,
where ∆ is the (componentwise) vector Laplacian, they are also solutions of
the homogeneous vector Helmholtz equation with wavenumber κ:

−∆u− κ2u = 0 in D , u = E , H . (6.2)

6.2.1. Approximation of Maxwell solutions by plane waves

The vector-valued plane waves are vector field defined as x 7→ a eiκx·d, where
a and d are constant unit vectors. They are solutions to the vector Helmholtz
equation (6.2) for every a, d ∈ S

2, and they are solution to the Maxwell
equations (6.1) if and only if a · d = 0, since

∇ ·
(
aeiκx·d

)
= iκ(d · a)eiκx·d , ∇×

(
eiκx·d

)
= iκ(d× a)eiκx·d . (6.3)

We define local plane wave approximation spaces in a slightly different way
than the one in [121]. Given an integer q ≥ 1, introduce a set of p = (q + 1)2

plane wave propagation directions

{dℓ}1≤ℓ≤p ⊂ S
2 , dℓ 6= dℓ′ if ℓ 6= ℓ′ ,

together with the associated set of 2p pairs of directions:

d2p :=
{
(dℓ,aν,ℓ) ∈ S

2 × S
2 , dℓ · a1,ℓ = 0 , a2,ℓ = a1,ℓ × dℓ

}
1≤ℓ≤p
ν=1,2

. (6.4)

Then, we define the Maxwell plane wave space PWω,2p(D) as

PWω,2p(D) :=





∑

1≤ℓ≤p
ν=1,2

αν,ℓ aν,ℓ e
iκx·dℓ , (dℓ,aν,ℓ)1≤ℓ≤p

ν=1,2
∈ d2p, αν,ℓ ∈ C





,

where aν,ℓ, i = 1, 2, represent the polarization directions of the plane wave
propagating along dℓ.

156



6.2. Approximation estimates for Maxwell’s equations

Figure 6.1.: The Maxwell vector plane waves with propagation direction dℓ
and polarization vectors aℓ and aℓ × dℓ.

aℓ × dℓ

aℓ

dℓ

The strategy we use in Theorem 6.2.1 to derive approximation estimates
of homogeneous Maxwell solutions E is to approximate E as the curl of H
(E = −(iωǫ)−1∇×H). We apply to H the best approximation estimates for
homogeneous Helmholtz solutions obtained in Section 3.5 in order to approx-
imate it in a larger space than the space of Maxwell’s plane waves. On the
other hand, one can find a basis for this larger space formed by three vector
functions: two of them generate PWω,2p(D), while the third one generates
a space of non divergence-free but curl-free functions; this allows us to find
approximation estimates for the curl of H, and thus for E, in PWω,2p(D).

Theorem 6.2.1. Let D be a domain satisfying Assumption 3.1.1. Assume
q, k ∈ N, q ≥ 2k + 1, q ≥ 2(1 + 21/λD ), with λD depending on the shape of
D as in Theorem 3.2.12; fix p directions {dℓ}1≤ℓ≤p ⊂ S

2 such that the matrix
M defined by (3.32) is invertible. Then, for every E ∈ Hk+1(curl;D) solution
of (6.1), there exists a divergence-free plane wave function ξE ∈ PWω,2p(D)
such that

‖E− ξE‖j−1,κ,D ≤ C κ−2
(
1 + (κh)j+6

)
e(

7
4
− 3

4
ρ)κh hk+1−j

·
[
q−λD(k+1−j) +

1 + (κh)q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]
‖∇ ×E‖k+1,κ,D

(6.5)
for every 1 ≤ j ≤ k + 1. Here, the constant C > 0 depends only on j, k and
the shape of D.

Proof. The field H = (iωµ)−1∇ × E is a solution of the vector Helmholtz
equation (6.2) and belongs to Hk+1(D)3. Thanks to Corollary 3.5.5 it can be
approximated in the space generated by

{
(1, 0, 0) eiκ x·dℓ , (0, 1, 0) eiκ x·dℓ , (0, 0, 1) eiκ x·dℓ

}
1≤ℓ≤p

(6.6)

with the same orders of convergence as in (3.62).
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For every ℓ, we fix a unit vector a1,ℓ such that a1,ℓ · dℓ = 0; we set a2,ℓ :=
a1,ℓ × dℓ and a⊥,ℓ := dℓ. Clearly, {aν,ℓ}ν=1,2,⊥ is an orthonormal basis of R3;
therefore, the basis

{
wν,ℓ(x) := aν,ℓe

iκx·dℓ
}

1≤ℓ≤p
ν=1,2,⊥

generates the same space as the basis in (6.6). Thus, there exist −→α ν ∈ C
p,

ν ∈ {1, 2,⊥}, such that, for every 0 ≤ j ≤ k + 1, (cf. (3.62))
∥∥∥∥∥∥∥∥
H−

∑

1≤ℓ≤p
ν=1,2,⊥

ανℓwν,ℓ

∥∥∥∥∥∥∥∥
j,κ,D

≤ C
(
1 + (κh)j+6

)
e(

7
4
− 3

4
ρ)κh hk+1−j

·
[
q−λD(k+1−j) +

1 + (κh)q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]
‖H‖k+1,κ,D .

(6.7)

Notice that, while w1,ℓ and w2,ℓ are Maxwell’s solutions, this is not true for
w⊥,ℓ; thus, we want to approximate E in the space generated by

{
wν,ℓ(x)

}
1≤ℓ≤p
ν=1,2

.

On the other hand, simple calculations (using (6.3)) give

∇×w1,ℓ = −iκw2,ℓ , ∇×w2,ℓ = iκw1,ℓ , ∇×w⊥,ℓ = 0 ;

these identities, together with (6.1), give (with the same coefficients −→α ν as
in (6.7)):
∥∥∥∥∥∥
E− µ1/2ǫ−1/2

∑

1≤ℓ≤p
(−α2

ℓw1,ℓ + α1
ℓw2,ℓ)

∥∥∥∥∥∥
j−1,κ,D

=

∥∥∥∥∥∥∥∥
κ−2∇×∇×E+ µ1/2ǫ−1/2(iκ)−1

∑

1≤ℓ≤p
ν=1,2,⊥

ανℓ∇×wν,ℓ

∥∥∥∥∥∥∥∥
j−1,κ,D

=

∥∥∥∥∥∥∥∥

i

ωǫ
∇×

[
(iωµ)−1∇×E−

∑

1≤ℓ≤p
ν=1,2,ν

ανℓwν,ℓ

]
∥∥∥∥∥∥∥∥
j−1,κ,D

≤ (ωǫ)−1

∥∥∥∥∥∥∥∥
(iωµ)−1∇×E−

∑

1≤ℓ≤p
ν=1,2,ν

ανℓwν,ℓ

∥∥∥∥∥∥∥∥
j,κ,D

def. of H
= (ωǫ)−1

∥∥∥∥∥∥∥∥
H−

∑

1≤ℓ≤p
ν=1,2,⊥

ανℓwν,ℓ

∥∥∥∥∥∥∥∥
j,κ,D
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(6.7)

≤ (ωǫ)−1 C
(
1 + (κh)j+6

)
e(

7
4
− 3

4
ρ)κh hk+1−j

·
[
q−λD(k+1−j) +

1 + (κh)q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]
‖H‖k+1,κ,D

def. of H
= κ−2 C

(
1 + (κh)j+6

)
e(

7
4
− 3

4
ρ)κh hk+1−j

·
[
q−λD(k+1−j) +

1 + (κh)q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]
‖∇ ×E‖k+1,κ,D .

This correspond to the assertion with the choice

ξE :=
∑

1≤ℓ≤p
(−α2

ℓw1,ℓ + α1
ℓw2,ℓ) .

Notice that the value of
∥∥M−1

∥∥
1
which shows up in the bound has already

been commented in Lemma 3.4.6 and in Remark 3.4.7. Many of the comments
already made for the Helmholtz approximation problem carry over to the
vector setting: if the vector field E can be extended smoothly outside D
then the order of convergence in q is exponential (see Remark 3.5.8); if only
convergence with respect to h is considered then the assumptions on D and q
can be weakened (see Remark 3.5.6); the bound can be adapted to complex
parameters (ω, ǫ and µ) as in Remark 3.5.9.

Remark 6.2.2. The fact that the order of convergence proved in Theorem 6.2.1
is expected to be one order lower than the sharp one can be seen from the
comparison of the bound (6.5) with (3.62), the corresponding one in the scalar
case. We have the same algebraic order of convergence both in h and q, namely
k + 1 − j, but here the error on the left-hand side side is measured in the
Hj−1(D)3-norm instead of the Hj(D) one. Moreover, the norm on the right-
hand side is the Hk+1(D)3-norm of ∇ × E instead of the same norm of E
itself.

This is due to the fact that E is approximated as a mere first order derivative
of H, not using further properties of the curl (∇×) operator.

6.2.2. Approximation of Maxwell solutions by spherical waves

In Section 6.2.1 we have seen how to approximate a solution of the Maxwell
equations using plane waves that are solutions of the same equations. This was
a corollary of a Helmholtz approximation result. Now we want to repeat the
same procedure for generalized harmonic polynomials, i.e., vector spherical
waves (see Section 2.4), by using the corresponding scalar result proved in
Theorem 3.3.1.

From the proof of Theorem 6.2.1, we know how to show (suboptimal) error
estimates for the space defined as the image of the finite dimensional approx-
imating space for the vector Helmholtz equation under the action of the curl
operator. Therefore, we will define carefully the vector spherical waves and
prove a few simple relations between them. The main tools we will rely on are
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the vector spherical harmonics; we will follow the definitions and the notation
introduced in Appendix B.5.

We say that a vector field u : R3 → C
3 is a vector generalized harmonic

polynomial of degree L if its three Cartesian components u1, u2 and u3 are gen-
eralized harmonic polynomial of degree L, according to Definition 2.4.1. We
call u a Maxwell generalized harmonic polynomial of degree L if, in addition,
it is solution of the Maxwell equations (or, equivalently, it is divergence-free).
We write a basis for the space of these fields that takes into account the vector
structure.

We know from (2.50)–(2.51) that a scalar function which can be written in
the separable form u(x) = jl(κ|x|)g(x/|x|) (with l ∈ N and jl a spherical Bessel
function as in (B.18)) is a solution of the Helmholtz equation with wavenum-
ber κ > 0 if |x|lg(x/|x|) is harmonic. In particular, |x|lg(x/|x|) will be a
homogeneous harmonic polynomial of degree l and u(x) = jl(κ|x|)g(x/|x|) a
homogeneous generalized harmonic polynomial of degree l. In Appendix B.5
we define a basis, denoted by {Iml ,T m

l ,N
m
l }, of the space of the vector-valued

homogeneous harmonic polynomials of degree l (see (B.44), pay attention to
the range of the coefficients l and m). Their angular dependence is denoted
by {Iml ,Tm

l ,N
m
l } (see (B.45)). Therefore, any vector generalized harmonic

polynomial of degree at most L can be written as

QL(x) =
∑

0≤l≤L
|m|≤l+1

AmI,l jl(κ|x|) Iml (x)

+
∑

1≤l≤L
|m|≤l

AmT ,l jl(κ|x|) Tm
l (x) +

∑

1≤l≤L
|m|≤l−1

AmN ,l jl(κ|x|) Nm
l (x) (6.8)

for some complex coefficients AmI,l, A
m
T ,l, A

m
N ,l.

Theorem 3.3.1 states that a vector field u ∈ Hk+1(D)3, solution of (6.2)
in D, where D is a domain that satisfies Assumption 3.1.1 and k ∈ N, can
be approximated by a vector generalized harmonic polynomial of degree L.
However, we want to define a different set of basis functions to deal better
with Maxwell’s equations.

We define the three following families of C∞ vector fields:

bm1,l , b
m
2,l , b

m
⊥,l : R

3 −→ C
3 l ≥ 1 , |m| ≤ l ,

bm1,l(x) := −jl(κ|x|) Tm
l (x) ,

bm2,l(x) :=
l + 1

2l + 1
jl−1(κ|x|) Iml−1(x) +

l

2l + 1
jl+1 (κ|x|) Nm

l+1(x) ,

bm⊥,l(x) :=
1

2l + 1

(
jl−1(κ|x|) Iml−1(x)− jl+1(κ|x|) Nm

l+1(x)
)
.

(6.9)

Moreover we define
b0
⊥,0(x) := −j1(κ|x|)N0

1(x)

and we use the convention b0
1,0 = b0

2,0 = I0−1 = 0. In [160, Theorem 5.3.1] the
fields bm1,l’s are called transverse electric multipoles and the bm2,l’s transverse
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magnetic multipoles. Formulas (6.9) can easily be inverted:

jl(κ|x|) Iml (x) = bm2,l+1(x) + (l + 1) bm⊥,l+1(x) l ≥ 0 , |m| ≤ l + 1 ,

jl(κ|x|) Tm
l (x) = −bm1,l(x) l ≥ 1 , |m| ≤ l ,

jl(κ|x|) Nm
l (x) = bm2,l−1(x)− l bm⊥,l−1(x) l ≥ 1 , |m| ≤ l − 1 .

(6.10)

Using the results shown in the appendix we can prove the following identi-
ties:

∇
(
jl(κ|x|) Y m

l (x)
)

(B.41)
= κ j ′l (κ|x|) Ym

l (x) +
(
l(l + 1)

)1/2 jl(κ|x|)
|x| Um

l (x)

(B.49)
(B.19)
= κ

l jl−1(κ|x|) − (l + 1) jl+1(κ|x|)
2l + 1

Iml−1(x) +Nm
l+1

2l + 1

+ κ
jl−1(κ|x|) + jl+1(κ|x|)

2l + 1

(
l(l + 1)

)1/2

2l + 1

·
((

l + 1

l

)1/2

Iml−1(x)−
(

l

l + 1

)1/2

Nm
l+1(x)

)

(6.9)
= κ bm⊥,l(x) , (6.11)

∇×
(
− x jl(κ|x|) Y m

l (x)
)

(B.37)
= ∇×

(
− |x| jl(κ|x|) Ym

l (x)
)

(B.42)
=

(
l(l + 1)

)1/2
jl(κ|x|) Vm

l (x)

(B.45)
= −jl(κ|x|) Tm

l (x)

(6.9)
= bm1,l(x) , (6.12)

∇× bm1,l(x) = ∇×
((
l(l + 1)

)1/2
jl(κ|x|) Vm

l (x)
)

(B.42)
= −l(l + 1)

jl(κ|x|)
|x| Ym

l (|x|) −
(
l(l + 1)

)1/2(jl(κ|x|)
|x| + κ j′l(κ|x|)

)
Um
l (x)

(B.19)
(B.49)
= −l(l + 1) κ

jl−1(κ|x|) + jl+1(κ|x|)
2l + 1

Iml−1(x) +Nm
l+1(x)

2l + 1

−
(
l(l + 1)

)1/2
κ
jl−1(κ|x|) + jl+1(κ|x|) +

(
l jl−1(κ|x|) − (l + 1)jl+1(κ|x|)

)

2l + 1

·
(
l+1
l

)1/2
Iml−1(x)−

(
l
l+1

)1/2
Nm
l+1(x)

2l + 1
(6.9)
= −κ bm2,l(x) , (6.13)

∇× bm2,l(x)
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(6.9)
(B.45)
=

1

2l + 1
∇×

[
(l + 1) jl−1(κ|x|)

(
l Ym

l (x) +
(
l(l + 1)

)1/2
Um
l (x)

)

+ l jl+1(κ|x|)
(
(l + 1) Ym

l (x)−
(
l(l + 1)

)1/2
Um
l (x)

)]

(B.42)
=

(
l(l + 1)

)1/2

2l + 1

[
− l(l + 1)

jl+1(κ|x|) + jl−1(κ|x|)
|x|

+ (l + 1)
(jl−1(κ|x|)

|x| + κj′l−1(κ|x|)
)
− l
(jl+1(κ|x|)

|x| + κj′l+1(κ|x|)
)]

Vm
l (x)

(B.19)
=

(
l(l + 1)

)1/2

2l + 1

[
− l(l + 1)

jl+1(κ|x|) + jl−1(κ|x|)
|x|

+ (l + 1)
(
− κ jl(κ|x|) +

l jl−1(κ|x|)
|x|

)

− l
(
κ jl(κ|x|) −

(l + 1) jl+1(κ|x|)
|x|

)]
Vm
l (x)

= − κ
(
l(l + 1)

)1/2
jl(κ|x|) Vm

l (x) = −κ bm1,l(x) . (6.14)

These identities may also be proved in a different way using the vector Herglotz
representation of the fields involved and the vector Funk–Hecke formula, see
Remark 6.2.4.

From these relations we notice that the bm1,l’s and the bm2,l’s are divergence-
free while the bm⊥,l’s are curl-free. Since their components are solutions of
the Helmholtz equation with wavenumber κ, the bm1,l’s and the bm2,l’s are also
solutions of the Maxwell’s equation with the same wavenumber.

Equations (6.12) and (6.13) show that these vector fields coincide with the
ones called interior vector spherical harmonics in [152, eq. (9.62)], denoted by

M̃m
l = −bm1,l , Ñm

l = −i bm2,l ,

and with ones introduced in [55, eq. (7.2.42–43)]:

Mlm = −bm1,l , Nlm = bm2,l , Llm = bm⊥,l .

Since the bm⊥,l’s are curl-free, from (6.10), (6.13) and (6.14) we have

∇×
(
jl(κ|x|)Iml (x)

)
= ∇× bm2,l+1(x) = −κbm1,l+1(x) l ≥ 0 , |m| ≤ l + 1 ,

∇×
(
jl(κ|x|)Tm

l (x)
)
= −∇× bm1,l(x) = κbm2,l(x) l ≥ 1 , |m| ≤ l ,

∇×
(
jl(κ|x|)Nm

l (x)
)
= ∇× bm2,l−1(x) = −κbm1,l−1(x) l ≥ 1 , |m| ≤ l − 1 .

(6.15)
Therefore, if QL is a vector generalized harmonic polynomial of degree at most
L as (6.8), its curl can be written as

∇×QL =
∑

1≤l≤L+1
−l≤m≤l

Am1,l b
m
1,l(x) +

∑

1≤l≤L
−l≤m≤l

Am2,l b
m
2,l(x) , (6.16)
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for some complex coefficients Am1,l and A
m
2,l. Notice the different ranges of the

indices in the two sums.
All the vector fields in the form (6.16) are vector generalized harmonic

polynomials of degree at most L+1; indeed, from (6.9) we see that the bm1,L+1’s
have radial dependence equal to jL+1(κ|x|) and the bm2,L’s contain the terms
jL−1(κ|x|) and jL+1(κ|x|), thus both of them are the Vekua transforms of
harmonic polynomials of degree L+ 1.

Theorem 6.2.3. Let D ⊂ R
3 be a domain satisfying Assumption 3.1.1, k ∈ N

and E ∈ Hk+1(curl;D) be a solution of (6.1). Then the following results hold.

(i) h-estimate:
For every L ≤ k there exists a Maxwell vector generalized harmonic
polynomial QE

L+1 of degree at most L + 1 such that, for every 1 ≤ j ≤
L+ 1, it holds

∥∥E−QE
L+1

∥∥
j−1,κ,D

≤ C κ−2 ρ
− 3

2
0 ρ−2 (1 + L)

27
2 ej+L

·
(
1 + (κh)j+6

)
e

3
4
(1−ρ)κh hL+1−j ‖∇ ×E‖L+1,κ,D ,

(6.17)
where ρ and ρ0 are defined in Assumption 3.1.1 and the constant C is
independent of h, ω, ǫ, µ, κ, k, L, j, E, and D.

(ii) hp-estimate:
For every L ≥ max{k, 21/λD}, where λD is the geometric parameter
defined in Theorem 3.2.12, there exists a Maxwell generalized harmonic
polynomial Q′E

L+1 of degree at most L + 1 such that, for every 1 ≤ j ≤
k + 1, it holds

∥∥∥E−Q′E
L+1

∥∥∥
j−1,κ,D

≤ C κ−2
(
1 + (κh)j+6

)
e

3
4
(1−ρ)κh L−λD(k+1−j) hk+1−j ‖∇ ×E‖k+1,κ,D ,

(6.18)
where the constant C depends only on the shape of D, j, and k, but is
independent of h, ω, ǫ, µ, κ, L, and E.

Both QE
L+1 and Q′E

L+1 can be expanded in the bmν,l basis as

∑

1≤l≤L+1
−l≤m≤l

Am1,l b
m
1,l(x) +

∑

1≤l≤L
−l≤m≤l

Am2,l b
m
2,l(x) ,

for suitable complex coefficients Amν,l.

Proof. The field H = (iωµ)−1∇×E is solution of the vector Helmholtz equa-
tion (6.2) with wavenumber κ. Thus, part (ii) of Theorem 3.3.1 provides a
vector generalized harmonic polynomial QH

L of degree L that approximates H
with the error bound (3.23):

∥∥H−QH
L

∥∥
j,κ,D
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≤ C ρ
− 3

2
0 ρ−2(1 + L)

27
2 ej+L

(
1 + (κh)j+6

)
e

3
4
(1−ρ)κhhL+1−j ‖H‖L+1,κ,D

= Cρ
− 3

2
0 ρ−2(1 + L)

27
2 ej+L

(
1 + (κh)j+6

)
e

3
4
(1−ρ)κhhL+1−j ‖∇ ×E‖L+1,κ,D

ωµ
.

(6.19)

QH
L can be written in the form given in equation (6.8), thus we fix

QE
L+1(x) := −(iωǫ)−1∇×QH

L

(6.15)
=

κ

iωǫ

[ ∑

0≤l≤L
|m|≤l+1

AmI,lb
m
1,l+1(x)−

∑

1≤l≤L
|m|≤l

AmT ,lb
m
2,l(x) +

∑

1≤l≤L
|m|≤l−1

AmN ,lb
m
1,l−1(x)

]
.

From (6.9) and the previous discussion, this is a divergence-free vector gener-
alized harmonic polynomial of degree at most L+ 1. We have the bound:

∥∥E−QE
L+1

∥∥
j−1,κ,D

=
∥∥−(iωǫ)−1 ∇× (H−QH

L )
∥∥
j−1,κ,D

≤ (ωǫ)−1
∥∥H−QH

L

∥∥
j,κ,D

,

which, together with (6.19) and ω2ǫµ = κ2, give the assertion (6.17).
Part (ii) follows precisely in the same way by using (3.25) instead of (3.23).

Since the technique adopted to prove Theorem 6.2.3 is the same as the one
used in Theorem 6.2.1, the obtained algebraic convergence rate is equal to
k + 1 − j, which is lower than (k + 1)− (j − 1), namely, the difference of the
orders of the Sobolev norms involved in the bounds (6.17) and (6.18).

The same comments made in the scalar case can be translated to this set-
ting: it is possible to discuss more general h-estimates (see Remark 3.3.2),
exponential convergence in L (see Proposition 3.3.3) and complex wavenum-
ber or material parameters (see Remark 3.3.4).

Remark 6.2.4. Following Definition 2.4.3, we define the Herglotz field wg with
kernel g ∈ L2(S2)3 as the C∞ vector field

wg : R3 → C
3 , wg(x) :=

∫

S2

eiκx·y g(y) dS(y) .

We have the formulas

∇ ·wg(x) = iκ

∫

S2

eiκx·y y · g(y) dS(y) = iκ wy 7→y·g(y)(x) (6.20)

and

∇×wg(x) = iκ

∫

S2

eiκx·y y × g(y) dS(y) = iκ wy 7→y×g(y)(x) . (6.21)

Every Herglotz field is a solution of the vector Helmholtz equation (6.2) with
wavenumber κ; if g ∈ L2

T (S
2) then, by (6.20), wg is divergence-free and thus

a solution of the Maxwell equation (6.1) in R
3.
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Using the vector Funk–Hecke formulas (B.54), (B.55) and (B.56) proved
in the appendix, we write the bmν,l basis functions of the vector generalized
harmonic polynomials as Herglotz fields:

bm1,l =
1

4π il
(
l(l + 1)

)1/2
wVm

l
= − 1

4π il
wTml

,

bm2,l =
1

4π il−1

(
l(l + 1)

)1/2
wUm

l
,

bm⊥,l(x) =
1

4π il−1
wYm

l
(x) ,

jl(κ|x|) Iml (x) =
1

4π il
wIml

,

jl(κ|x|)Nm
l (x) =

1

4π il
wNm

l
. (6.22)

These expressions may be used to prove in a simpler fashion some of the
identities shown in this section, namely, (6.11), (6.13) and (6.14):

∇
(
jl(κ|x|) Y m

l (x)
)

(2.54)
=

∇wYml (x)

4π il
=

wy 7→iκyYml
(x)

4π il

=
κ wYm

l
(x)

4π il−1
= κ bm⊥,l(x) ,

∇× bm1,l =
1

4π il
(
l(l + 1)

)1/2 ∇×wVm
l

(6.21)
=

κ

4π il−1

(
l(l + 1)

)1/2
wy 7→y×Vm

l

(B.39)
=

−κ
4π il−1

(
l(l + 1)

)1/2
wUm

l
= −κ bm2,l ,

∇× bm2,l =
1

4π il−1

(
l(l + 1)

)1/2 ∇×wUm
l

(6.21)
=

−κ
4π il

(
l(l + 1)

)1/2
wy 7→y×Um

l

(B.37)
=

−κ
4π il

(
l(l + 1)

)1/2
wVm

l
= −κ bm1,l .

In [202, Theorem 2, Remark 2] it is proved that the Maxwell–Herglotz fields
(i.e., divergence-free Herglotz fields) are dense in the space of the solutions
of homogeneous Maxwell’s equations with respect to the Hk(D)3-norm, 1 ≤
k ∈ N, if the domain is of class Ck,1. Part (ii) of Theorem 6.2.3 extends this
result to Lipschitz domains that are star-shaped with respect to a ball (see
also Remark 3.3.5 for the analogous scalar case).

6.3. Improved h-estimates for the Maxwell equations

In Section 6.2 we approximated a solution E of Maxwell’s equations by ap-
proximating its curl. This led to estimates whose orders were not sharp. Here
we pursue a different policy to obtain better rates of convergence with respect
to the size of the domain h. We will prove error bounds only for Maxwell
generalized harmonic polynomials, the corresponding problem for plane waves
is briefly addressed in Remark 6.3.5.
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6. Approximation of Maxwell solutions

The rationale is the same as the one followed in Chapter 3: using Vekua’s
theory we reduce the approximation problem to a harmonic one. Theo-
rem 3.2.3 gives error estimates for the Taylor polynomial, here we have to
modify it a bit in order to find an approximant which is solution of the Max-
well equations. As before, we will use extensively the properties of vector
spherical harmonics described in the Appendix B.5.

From now on we assume D ⊂ R
3 to be a domain that satisfies Assump-

tion 2.2.1 (notice that this is weaker than Assumption 3.1.1 used in Sec-
tion 6.2).

We define the vector Vekua operators V1 and V2 = (V1)
−1 as the operators

acting on continuous vector fields u : D 7→ C
3, such that on each component

they agree with their scalar counterparts V1 and V2 from Definition 2.2.4. The
properties of V1 and V2 described in Chapter 2 clearly carry over toV1 andV2.
Maxwell vector fields are mapped by V2 into a proper subspace of the space
of vector valued harmonic functions; this subspace depends on the considered
wavenumber.

Equation (2.51) states that

V2

[
(2l + 1)!

l!
(2κ)−l jl(κ|x|) Y m

l (x)

]
= |x|l Y m

l (x) .

We use this scalar identity and the vector Helmholtz solutions bmν,l from (6.9)
to define the following harmonic vector fields

for l ≥ 1 , |m| ≤ l :

b̂m1,l(x) : = −(2l + 1)!

l! (2κ)l
V2[b

m
1,l](x)

= |x|l Tm
l (x) = T m

l (x)
(B.44)
= −x×∇Hm

l (x) ,

b̂m2,l(x) : =
(2l + 1)!

l! (2κ)l
V2[b

m
2,l](x)

=
(l + 1)

κ
Iml−1(x) +

l κ

(2l + 1)(2l + 3)
Nm

l+1(x)

(B.44)
=

1

κ

(
l + 1− l (κ|x|)2

(2l + 1)(2l + 3)

)
∇Hm

l (x) +
l κ

2l + 3
Hm
l (x) x ,

for l ≥ 0 , |m| ≤ l :

b̂m⊥,l(x) : =
(2l + 1)!

l! (2κ)l
V2[b

m
⊥,l](x)

=
1

κ
Iml−1(x)−

κ

(2l + 1)(2l + 3)
Nm

l+1(x)

(B.44)
=

1

κ

(
1 +

(κ|x|)2
(2l + 1)(2l + 3)

)
∇Hm

l (x) − κ

2l + 3
Hm
l (x) x . (6.23)

Notice that these are complex vector-valued harmonic polynomials but only
the b̂m1,l’s are homogeneous of degree l, while the b̂m2,l’s and the b̂m⊥,l’s are sums
of two homogeneous polynomials of degree l + 1 and l − 1.
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We can easily invert these expressions:

T m
l = b̂m1,l ,

Iml =
κ

2l + 3

(
b̂m2,l+1 + (l + 1) b̂m⊥,l+1

)
,

Nm
l =

2l + 1

κ

(
b̂m2,l−1 − l b̂m⊥,l−1

)
. (6.24)

Let φ be any harmonic vector field φ : D → C
3, ∆φ = 0. Since D is open

and bounded, φ is analytic in it (cf. [77, Theorem 10, Sect. 2.2.3]) and can
be represented as a Taylor series centered at the point 0 (which belongs to D,
thanks to Assumption 3.1.1):

φ =
∑

l≥1
|m|≤l

amT ,l T
m
l +

∑

l≥0
|m|≤l+1

amI,l I
m
l +

∑

l≥1
|m|≤l−1

amN ,l N
m
l , (6.25)

for some complex coefficients amν,l, where the series converges absolutely and
uniformly on every ball contained in D and centered at the origin. This is a
legitimate Taylor series because, for every l ∈ N, the term

∑

|m|≤l
amT ,l T

m
l +

∑

|m|≤l+1

amI,l I
m
l +

∑

|m|≤l−1

amN ,l N
m
l

is a homogeneous harmonic polynomial of degree l, thus the Taylor polynomial
of φ centered in the origin, with order L+1 and degree L (see Section 3.2.1),
reads

TL+1
0 [φ] =

∑

1≤l≤L
|m|≤l

amT ,l T
m
l +

∑

0≤l≤L
|m|≤l+1

amI,l I
m
l +

∑

1≤l≤L
|m|≤l−1

amN ,l N
m
l .

Notice that if the polynomials T m
l , I

m
l and Nm

l were not homogeneous, or if
the Taylor expansion with respect to a point x0 6= 0 was taken into account,
then the coefficients amT ,l, a

m
I,l, and amN ,l would depend on the degree L of

the Taylor polynomial and the expression (6.25) would be meaningless. The
expansion (6.25) can be written in the b̂mν,l basis:

φ =
∑

l≥1
|m|≤l

(
am1,l b̂

m
1,l + am2,l b̂

m
2,l

)
+
∑

l≥0
|m|≤l

am⊥,l b̂
m
⊥,l , (6.26)

where the two sets of coefficients are related by

amT ,l = am1,l

amI,l−1 I
m
l−1 + amN ,l+1 N

m
l+1 = am2,l b̂

m
2,l + am⊥,l b̂

m
⊥,l , (6.27)

that can be made explicit (using (6.24) and (6.23)) as:




am2,l =
κ

2l + 1
amI,l−1 +

2l + 3

κ
amN ,l+1 ,

am⊥,l =
κ l

2l + 1
amI,l−1 −

(l + 1) (2l + 3)

κ
amN ,l+1 ,
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



amI,l =
1

κ

(
(l + 2)am2,l+1 + am⊥,l+1

)
,

amN ,l =
κ

(2l + 1)(2l − 1)

(
(l − 1)am2,l−1 − am⊥,l−1

)
.

Now we assume thatV1[φ] is a Maxwell solution (or equivalently ∇·V1[φ] =
0). Then am⊥,l = 0 for all the possible indices 0 ≤ |m| ≤ l because the inverse

vector Vekua operator V2 maps every vector bmν,l into b̂mν,l (up to a multiplica-
tive constant, see (6.23)). However, the Taylor polynomial of φ may contain
some b̂m⊥,l term because the Taylor truncation respects homogeneous polyno-

mials while the b̂m⊥,l’s are inhomogeneous for every l ≥ 1. Now we want to

write explicitly those terms in TL+1
0 [φ]:

TL+1
0 [φ]

=
∑

1≤l≤L
|m|≤l

amT ,l T
m
l +

∑

0≤l≤L
|m|≤l+1

amI,l I
m
l +

∑

1≤l≤L
|m|≤l−1

amN ,l N
m
l

=
∑

1≤l≤L
|m|≤l

amT ,lT
m
l +

∑

1≤l≤L+1
|m|≤l

(
amI,l−1I

m
l−1 + amN ,l+1N

m
l+1

)
−

∑

L+1≤l≤L+2
|m|≤l−1

amN ,lN
m
l

(6.27)
=

∑

1≤l≤L
|m|≤l

am1,l b̂
m
1,l +

∑

1≤l≤L+1
|m|≤l

am2,l b̂
m
2,l −

∑

L+1≤l≤L+2
|m|≤l−1

amN ,lN
m
l . (6.28)

Notice that the term N 0
1 vanishes because the coefficient a0N ,1 is zero.

In Theorem (3.2.3) (a special version of the Bramble–Hilbert theorem) we
have proved an error estimate in h for harmonic functions approximated by
their Taylor polynomials. Here we want to use as approximant only the
b̂m1,l/b̂

m
2,l part of T

L+1
0 [φ], so we have to estimate the difference, given in (6.28)

by the terms containing amN ,l N
m
l for l = L+ 1 and l = L+ 2.

We recall that the Nm
l ’s are homogeneous vector harmonic polynomials

of degree l. Thus we can compute their L2-norm in a ball. Using interior
estimates for harmonic functions and d(D, ∂Bh) ≥ ρh, we have, for every
admissible l, m and j ∈ N, and for X ∈ {T ,I ,N }:

j > l : |Xm
l |j,D = 0 ,

0 ≤ j ≤ l : |Xm
l |j,D

(2.30)

≤ Cj (hρ)
−j |Xm

l |0,Bh

= Cj (hρ)
−j
(∫ h

0
r2r2l

∫

S2

|Xm
l (y)|2 dS(y) dr

)1/2

(B.46)
= Cj (hρ)

−j
(
h2l+3

2l + 3
(l + 1)(2l + 3)

)1/2

= Cj (l + 1)1/2 ρ−j hl+
3
2
−j , (6.29)

where the constant Cj depends only on j. The estimates (6.29) might be
modified by using the ball B2h instead of Bh: with this choice the factor ρ−j

on the right-hand side must be substituted by 2l.
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We use a technique similar to the one used in the proof of Lemma 3.4.8: we
bound from below the k-th Sobolev seminorm of φ in D with the L2-norm of
its radial derivative of order k in a small ball. Given φ as in (6.25), r := |x|,

|φ|2k,D ≥
∥∥∥∥
∂kφ

∂rk

∥∥∥∥
2

Bρh

=

∫ ρh

0

∫

S2

r2
∣∣∣∣
∑

l≥k
rl−k

l!

(l − k)!

( ∑

0≤|m|≤l
amT ,l T

m
l (y)

+
∑

0≤|m|≤l+1

amI,l I
m
l (y) +

∑

0≤|m|≤l−1

amN ,l N
m
l (y)

)∣∣∣∣
2

dS(y) dr

(B.46)
=

∑

l≥k
(ρh)2l−2k+3 1

2l − 2k + 3

l!2

(l − k)!2

( ∑

0≤|m|≤l
|amT ,l|2 l (l + 1)

+
∑

0≤|m|≤l+1

|amI,l|2 (l + 1)(2l + 3) +
∑

0≤|m|≤l−1

|amN ,l|2 l (2l − 1)

)
;

notice that the last step relies on the orthogonality in L2(S2)3 of the considered
fields. Since all the summands in the last expression are positive, for every
admissible l and m and for 0 ≤ k ≤ l,

|amT ,l| ≤
1

(ρh)l−k+
3
2

(l − k)!

l!

(
2l − 2k + 3

l (l + 1)

)1/2

|φ|k,D ,

|amI,l| ≤
1

(ρh)l−k+
3
2

(l − k)!

l!

(
2l − 2k + 3

(l + 1)(2l + 3)

)1/2

|φ|k,D ,

|amN ,l| ≤
1

(ρh)l−k+
3
2

(l − k)!

l!

(
2l − 2k + 3

l (2l − 1)

)1/2

|φ|k,D . (6.30)

We have collected all the ingredients to prove an error bound for the ap-
proximation of φ by a linear combination of b̂m1,l’s and b̂m2,l’s.

Lemma 6.3.1. Let D be a domain as in Assumption 2.2.1, L ≥ 1 and φ ∈
HL+1(D)3 be a harmonic vector field. Moreover, we assume that φ is the
image under V2 of a Maxwell solution, namely, we can write it as in (6.26)
with all the coefficients am⊥,l equal to zero. We define a truncation of φ:

PL+2 :=
∑

1≤l≤L
0≤|m|≤l

am1,l b̂
m
1,l +

∑

1≤l≤L+1
0≤|m|≤l

am2,l b̂
m
2,l,

which is a vector harmonic polynomials of degree at most L + 2. Then, for
every j ≤ L, PL+2 approximates φ with the estimate

|φ−PL+2|j,D ≤ C (3
√
2)L−j ρ−max{(L+1−j)/2,j+5/2} hL+1−j |φ|L+1,D ,

(6.31)
where the constant C depends only on j.
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Proof. In Theorem 3.2.3 we proved an estimate for Φ−TL+1
0 [φ] and in (6.28)

we have shown an explicit expansion of TL+1
0 [φ] − PL+2. We join the two

results via the triangular inequality:

|φ−PL+2|j,D ≤
∣∣∣φ−TL+1

0 [φ]
∣∣∣
j,D

+
∣∣∣TL+1

0 [φ]−PL+2

∣∣∣
j,D

(3.9)
(6.28)

≤
(
2(1 − ρ)/ρ

)(L+1−j)/2 1 + j

2π
⌈L+1−j

3

⌉ 3L−j+5/2 hL+1−j |φ|L+1,D

+

∣∣∣∣∣∣∣∣

∑

L+1≤l≤L+2
|m|≤l−1

amN ,lN
m
l

∣∣∣∣∣∣∣∣
j,D

(6.29)
(6.30)

≤ Cj (3
√
2)L−j ρ−(L+1−j)/2 hL+1−j |φ|L+1,D

+ Cj ρ
−L+k−j−7/2 hk−j |φ|k,D (0 ≤ k ≤ L+ 1)

k=L+1
≤ Cj (3

√
2)L−j ρ−max{(L+1−j)/2,j+5/2} hL+1−j |φ|L+1,D .

The continuity of the Vekua operators gives the final h-estimate for Maxwell
generalized harmonic polynomials.

Theorem 6.3.2. Let D be a domain as in Assumption 2.2.1, L ≥ 1 and
E ∈ HL+1(D)3 be a solution of the Maxwell equations (6.1). Then there exists
a Maxwell generalized harmonic polynomial QL+2 of degree at most L+2, that
can be written in the form

QL+2 =
∑

1≤l≤L
0≤|m|≤l

Am1,l b
m
1,l +

∑

1≤l≤L+1
0≤|m|≤l

Am2,l b
m
2,l , (6.32)

such that it approximates E with the error bound

‖E−QL+2‖j,κ,D ≤ C ρ−max{L/2,j+2}−5/2 (3
√
2 e)L (L+ 2)5

·
(
1 + (κh)j+6

)
e

3
4
(1−ρ)κh hL+1−j ‖E‖L+1,κ,D ,

(6.33)

for every 0 ≤ j ≤ L. The constant C depends only on j.

Proof. The Vekua transform Φ := V2[E] is a harmonic vector field in D,
therefore it can be written as (6.26); moreover am⊥,l = 0 because E is a Maxwell
solution. We define QL+2 := V1[PL+2], where PL+2 is the vector harmonic
polynomial provided by Lemma 6.3.1. Clearly, QL+2 can be written as (6.32).
The assertion easily follows:

‖E−QL+2‖j,κ,D
(2.9)

≤ C ρ−1
(
1 + (κh)2

)
‖V2[E]−PL+2‖j,κ,D
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(6.31)

≤ C ρ−1
(
1 + (κh)2

)
(3
√
2)L ρ−max{L/2,j+2}−1/2

·
( j∑

j0=0

κ2(j−j0) h2(L+1−j0) |V2[E]|2L+1,D

)1/2

≤ C ρ−max{L/2,j+2}−3/2
(
1 + (κh)2+j

)
(3
√
2)L hL+1−j |V2[E]|L+1,D

(2.12)

≤ C ρ−max{L/2,j+2}−5/2
(
1 + (κh)j+6

)
e

3
4
(1−ρ)κh (3

√
2 e)L (L+ 2)5

· hL+1−j ‖E‖L+1,κ,D .

We can easily see that the bound (6.33) compares favorably with (6.17), the
analogous one proved using the potential representation technique developed
in Section 6.2.2. The two bounds provide algebraic orders of convergence in h
equal to L+ 1− j but the error is measured in Hj−1(D)3 and Hj(D)3-norm
in (6.17) and in (6.33), respectively. The norm that appears at the right-hand
side is the HL+1(D)3-norm of ∇ × E and E, respectively. Notice that the
approximating spaces used in the two theorems are slightly different, even if
they have the same dimension: in the first case only the bm1,l’s terms are allowed
to reach l = L+1, in the second case, only the bm2,l’s can reach l = L+1. This
also implies that the degrees of the vector generalized harmonic polynomials
in the two cases are at most L+ 1 and L+ 2, respectively.

We note that the vector fields in the form (6.32) do not represent all the
Maxwell generalized harmonic polynomials of degree at most L+2: for instance
the bm1,L+1’s have only degree L + 1 and are not part of this set. However,
every Maxwell generalized harmonic polynomials of degree at most L can be
written in this way.

Remark 6.3.3. From the discussion made in this section it should be clear
why this approach is not viable for p-estimates, i.e., to prove convergence with
respect to L as the bound (6.18). Indeed, a crucial step here was the explicit
knowledge of the harmonic polynomial that approximates V2[E], namely, the
Taylor polynomial. The p-estimates proved in Chapter 3 (e.g., the ones in
Theorem 3.2.12) rely on the abstract results of [19], where the existence of the
approximating functions is proved via a complicated Hahn–Banach argument
(see [19, p. 79]), so we have no concrete grasp on the polynomial.

Remark 6.3.4. The choice of accepting more bm2,l’s than bm1,l’s in the approx-
imating field may look arbitrary but is needed to prove the desired order in
h. For instance, if we used a Maxwell generalized harmonic polynomial in the
more natural form

Q̃L+1 =
∑

1≤l≤L
0≤|m|≤l

Am1,l b
m
1,l +Am2,l b

m
2,l ,

then formula (6.28) would read

TL+1
0 [φ]
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(6.27)
=

∑

1≤l≤L
|m|≤l

am1,l b̂
m
1,l +

∑

1≤l≤L
|m|≤l

am2,l b̂
m
2,l +

∑

|m|≤L+1

amI,L I
m
L −

∑

|m|≤L
amN ,L+1N

m
L+1

and, in the proof of Lemma 6.3.1, we would be forced to choose k = L because
of the conditions on (6.30). The final estimate would read

∥∥∥E− Q̃L+1

∥∥∥
j,κ,D

≤ C(j, ρ, L)
(
1 + (κh)j+6

)
e

3
4
(1−ρ)κh

·
(
hL−j ‖E‖L,κ,D + hL+1−j ‖E‖L+1,κ,D

)
,

that is less satisfactory than (6.33).

Remark 6.3.5. In Section 3.4 we studied how to transfer approximation prop-
erties of scalar generalized harmonic polynomials to plane waves. It might be
possible to repeat the same procedure in the Maxwell setting. Here we give
an idea about how this proof could be accomplished.

The link between spherical and plane waves is given by the Jacobi–Anger
expansion (B.35) that has been generalized to the vector case in the iden-
tity (B.53). Here we show a modified Jacobi–Anger expansion that couples
tangential spherical harmonics (Um

l and Vm
l ) with Maxwell fields (bm1,l and

bm2,l) and radial spherical harmonics (Ym
l ) with curl-free fields (bm⊥,l):

eirx·y Id3
(B.53)
= 4π

∑

l≥0

il jl(r)
∑

ν∈{−1,0,1}

∑

|m|≤l−ν
Ym
ν,l−ν(x)⊗Ym

ν,l−ν(y)

= 4π
∑

ν∈{−1,0,1}

∑

l≥−ν
il+ν jl+ν(r)

∑

|m|≤l
Ym
ν,l(x)⊗Ym

ν,l(y)

(B.47)
(6.9)
= 4π

∑

l≥1

∑

|m|≤l
il
(
l(l + 1)

)−1/2
bm1,l(rx) ⊗Vm

l (y)

− 4π
∑

l≥1

∑

|m|≤l
il

i

l(2l + 1)
jl−1(r) I

m
l−1(x) ⊗ Iml−1(y)

+ 4π
∑

l≥0

∑

|m|≤l
il

i

(l + 1)(2l + 1)
jl+1(r) N

m
l+1(x) ⊗Nm

l+1(y)

(B.49)
(6.9)
= 4π

∑

l≥1

∑

|m|≤l
il
(
l(l + 1)

)−1/2
(
bm1,l(rx) ⊗Vm

l (y)− i bm2,l(rx) ⊗Um
l (y)

)

− 4π
∑

l≥0

∑

|m|≤l
il+1 bm⊥,l(rx) ⊗Ym

l (y)

r > 0 , x ,y ∈ S
2 ; (6.34)

the last step can be easily verified backwards. When multiplied with a unit
constant vector a such that a · y = 0 (or a = y), the identity (6.34) implies
that a Maxwell (or a curl-free) vector plane wave can be expanded in a series
of Maxwell (or curl-free, respectively) generalized harmonic polynomials; in a
sense we need the other way round.
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As in the proof of Theorem 6.2.1, for every q ∈ N we fix p = (q + 1)2 prop-
agation directions {dℓ}1≤ℓ≤p ⊂ S

2 (chosen such that the matrix M of (3.32)
is invertible) and 3p corresponding vector plane waves:

{
wν,ℓ(x) := aν,ℓ e

iκx·dℓ
}

1≤ℓ≤p
ν=1,2,⊥

,

where aν,ℓ ∈ S
2, a1,ℓ · dℓ = 0, a2,ℓ = a1,ℓ ×dℓ, and a⊥,ℓ = dℓ. If we proceed as

in the proof of Lemma 3.4.8 and we use a linear combination of these plane
waves to approximate a vector generalized harmonic polynomial

QL =
∑

1≤l≤L
0≤|m|≤l

(
Am1,l b

m
1,l +Am2,l b

m
2,l

)
+

∑

0≤l≤L
0≤|m|≤l

Am⊥,l b
m
⊥,l ,

we obtain

QL(x)−
∑

ℓ′=0,...,p
ν′∈{1,2,⊥}

αν′,ℓ′ wν′,ℓ′(x)

= QL(x)−
∑

ℓ′=0,...,p
ν′∈{1,2,⊥}

αν′,ℓ′ (e
iκx·dℓ′ Id3) · aν′,ℓ′

(6.34)
= QL(x) − 4π

∑

l≥0
|m|≤l

il
∑

ℓ′=0,...,p
ν′∈{1,2,⊥}

αν′,l′

[(
l(l + 1)

)−1/2
bm1,l(x)⊗Vm

l (dℓ′)

− i
(
l(l + 1)

)−1/2
bm2,l(x)⊗Um

l (dℓ′)− i bm⊥,l(x)⊗Ym
l (dℓ′)

]
· aν′,ℓ′

=
∑

1≤l≤L
0≤|m|≤l

(
Am1,l b

m
1,l +Am2,l b

m
2,l

)

− 4π
∑

l≥0
|m|≤l

il
∑

ℓ′=0,...,p
ν′∈{1,2}

αν′,ℓ′

[(
l(l + 1)

)−1/2(
Vm
l (dℓ′) · aν′,l′

)
bm1,l(x)

− i
(
l(l + 1)

)−1/2 (
Um
l (dℓ′) · aν′,l′

)
bm2,l(x)

]

+
∑

0≤l≤L
0≤|m|≤l

Am⊥,l b
m
⊥,l + 4π

∑

l≥0
|m|≤l

il
∑

ℓ′=0,...,p

α⊥,ℓ′ i
(
Ym
l (dℓ′) · a⊥,ℓ′

)
bm⊥,l(x)

using Vm
l (d) · d = Um

l (d) · d = 0 and the fact that Ym
l (d) is parallel to

d. The relevant point of this identity is that the coefficients α1,ℓ and α2,ℓ

(and α⊥,ℓ) of the Maxwell (and curl-free) plane waves are multiplied with the
Maxwell (and curl-free) generalized harmonic polynomials bm1,l and bm2,l (and
bm⊥,l, respectively) only. Thus, in order to approximate a Maxwell (or curl-free)
generalized harmonic polynomial, only the Maxwell (or curl-free, respectively)
plane waves give a contribution in the basis bmν,l.

Lemma 3.4.8 provides coefficients αν,ℓ such that all the lower order terms
(in l) of the previous expansion vanish; this is a main step in the proof of an
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error estimate. What is left to prove, is that the non-Maxwell plane waves
w⊥,ℓ can be dropped (i.e., the α⊥,ℓ’s set to zero) if the coefficients Am⊥,l are
zero, i.e., QL is a Maxwell generalized harmonic polynomial, for instance that
one given by Theorem 6.3.2. For this purpose the identity shown above might
be useful because the non-Maxwell plane waves are put in relation with the
non-Maxwell spherical waves only, thanks to (6.34).

6.4. Plane wave approximation in linear elasticity

The time-harmonic elastic wave equation (Navier equation) that arises nat-
urally in linear elasticity theory, is an example of a vector wave propagation
PDE and shares many properties with Maxwell’s equations. Several non-
polynomial finite element methods have been designed for its discretization;
see for instance the schemes described in [123,130,138,139,207].

Best approximation estimates for elastic plane wave spaces seem not to
be available. Here, using a balanced choice of pressure and shear waves, we
obtain an approximation error bound with algebraic orders of convergence
both in the diameter h of the considered domain and in the dimension p of
the approximating space.

The proof follows closely the corresponding one for the Maxwell problem
described in Theorem 6.2.1. It is based on a potential representation of time-
harmonic elastic solutions (see Section 6.4.1 below), in particular it relies on
the approximation of the scalar and vector potentials using Helmholtz- and
Maxwell-type plane waves, respectively. The final convergence estimate is not
expected to be sharp since one order of convergence is lost through the repre-
sentation formula. Error bounds for vector generalized harmonic polynomials
are not considered here but they might be proved following the ideas used in
Section 6.2.2. The results of this section are also presented in [149].

6.4.1. Potential representation in linear elasticity

In this section we define Navier’s equation and we briefly study a special
Helmholtz decomposition of the displacement field, sometimes called Lamé’s
solution. For a more comprehensive treatment of potential representations in
(time-dependent) elasticity problems we refer to Sections 1 and 2 of [185]. A
different representation through a single vector potential that is solution of
the iterated Helmholtz equation can be found in [162]; a similar one (for the
static case) is described in [76].

Time-harmonic elastic wave propagation in a homogeneous medium and in
absence of body forces is described in frequency domain by Navier’s equation
(cf. [98, Sect. 5.1.1]):

(λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) + ω2ρu = 0 in D , (6.35)

supplemented by appropriate boundary conditions (for example the general-
ized impedance b. c. in [123, eq. (2.4)] which includes the traction and dis-
placement ones, see Section 1.1.3); here

D ⊂ R
3 is an open bounded Lipschitz domain,
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u : D → R
3 is the displacement vector field,

ω > 0 is the angular frequency,

λ, µ > 0 are the Lamé constants, and

ρ > 0 is the density of the medium.

We assume λ, µ, ρ and ω to be constant in D, and define the wavenumber of
pressure (longitudinal) and shear (transverse) waves, respectively, as:

ωP := ω

(
ρ

λ+ 2µ

) 1
2

, ωS := ω

(
ρ

µ

) 1
2

.

Remark 6.4.1. Thanks to the identity ∇(∇·) = ∆ +∇× (∇×), ∆ being the
vector Laplacian, equation (6.35) can be written as

(λ+ µ)∇(∇ · u) + µ∆u+ ω2ρu = 0 in D .

We denote by Dv the Jacobian of the vector field v, by DSv = 1
2 (Dv+D⊤v)

the symmetric gradient (or Cauchy’s strain tensor), by div the (row-wise)
vector divergence of matrix fields, and by Id3 the 3× 3 identity matrix. Using
the identity 2divDS = ∇(∇·) + ∆ = 2∇(∇·) − ∇ × (∇×), equation (6.35)
can be written in the form

divσ + ω2ρu = 0 ,

where σ := 2µDSu+ λ Id3 ∇× u is the Cauchy stress tensor.

In this section we assume u to be a solution of (6.35) in the sense of distri-
butions; we define the scalar and vector potential, respectively, as

χ := −λ+ 2µ

ω2ρ
∇ · u = −∇ · u

ω2
P

, ψ :=
µ

ω2ρ
∇× u =

∇× u

ω2
S

. (6.36)

From (6.35), we can use these potentials to represent u:

u = −λ+ 2µ

ω2ρ
∇(∇ · u) + µ

ω2ρ
∇× (∇× u) = ∇χ+∇×ψ , (6.37)

which is a Helmholtz decomposition of the displacement field. Moreover, the
scalar and the vector potentials satisfy Helmholtz’s and Maxwell’s equations,
respectively:

−∆χ− ω2
Pχ

(6.36),∆=∇·∇
= ∇ · ∇∇ · u

ω2
P

+∇ · u

(6.35)
=

1

ω2
P

∇ ·
( µ

λ+ 2µ
∇× (∇× u)− ω2

Pu
)
+∇ · u

∇·(∇×)=0
= 0 ,

∇× (∇×ψ)− ω2
Sψ

(6.36)
= ∇× (∇× ∇× u

ω2
S

)−∇× u

(6.35)
=

1

ω2
S

∇×
(λ+ 2µ

µ
∇(∇ · u) + ω2

Su
)
−∇× u
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∇×∇=0
= 0 . (6.38)

As a consequence, the vector potential ψ satisfies also ∇·ψ = 0 and the vector
Helmholtz equation −∆ψ − ω2

Sψ = 0.

Remark 6.4.2. The potentials χ and ψ defined in (6.36) are the only couple
of scalar and vector fields such that: (i) they are solution of Helmholtz’s
equation with wavenumber ωP and Maxwell’s equations with wavenumber
ωS, respectively; (ii) they constitute a Helmholtz decomposition (6.37) of u.
Indeed, if χ̃ and ψ̃ satisfy conditions (i) and (ii), then

χ̃ = −ω−2
P ∆χ̃ = −ω−2

P ∇ · (∇χ̃) = −ω−2
P ∇ · (u−∇× ψ̃) = −ω−2

P ∇ · u = χ ,

ψ̃ = ω−2
S ∇× (∇× ψ̃) = ω−2

S ∇× (u−∇χ̃) = ω−2
S ∇× u = ψ .

6.4.2. Approximation estimates by elastic plane waves

Our policy is to apply Corollary 3.5.5 to the potentials χ and ψ. Thus we
use two kinds of plane wave functions to approximate the solutions of Navier’s
equation (6.35): pressure (longitudinal) waves

wP
d : x 7→ d eiωPx·d d ∈ S

2 ,

and shear (transverse) waves

wS
d,a : x 7→ a eiωSx·d d,a ∈ S

2, a · d = 0 .

Given d ∈ S
2, there exist two linearly independent shear waves propagating

along d (wS
d,a and wS

d,d×a) and only one pressure wave (wP
d ). They satisfy

the relations

∇ ·wP
d = iωP e

iωPx·d , ∇ ·wS
d,a = 0 ,

∇×wP
d = 0 , ∇×wS

d,a = iωSd× a eiωSx·d = iωSw
S
d,d×a ,

∇(∇ ·wP
d ) = −ω2

Pw
P
d , ∇× (∇×wS

d,a) = −ω2
Sw

S
d,a ,

iωP wP
d = ∇

(
eiωPx·d

)
. (6.39)

It is intuitive to guess that the two components of u, namely, ∇χ and ∇×ψ,
can be approximated separately by pressure and shear waves, respectively.
This is the basic idea we will exploit in the proof of Theorem 6.4.3.

Given p ∈ N distinct unit propagation directions {dℓ}1≤ℓ≤p ⊂ S
2, we as-

sociate p unit amplitude vectors {aℓ}1≤ℓ≤p ⊂ S
2 such that dℓ · aℓ = 0 for

1 ≤ ℓ ≤ p. We use them to define the linear space

W3p(D) : =

{ p∑

ℓ=1

αPℓ dℓ e
iωPx·dℓ + αS,1ℓ aℓ e

iωSx·dℓ + αS,2ℓ (dℓ × aℓ) e
iωSx·dℓ ,

αPℓ , α
S,1
ℓ , αS,2ℓ ∈ C

}

= span
{
wP

dℓ
, wS

dℓ,aℓ
, wS

dℓ,dℓ×aℓ

}
ℓ=1,...,p

.

Notice that W3p(D) depends on the choice of dℓ’s but not on aℓ’s, and that
dim(W3p(D)) = 3p.
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6.4. Plane wave approximation in linear elasticity

Theorem 6.4.3. Let D ⊂ R
3 be a domain satisfying Assumption 3.1.1, k and

q ∈ N, q ≥ 2k + 1, q ≥ 2(1 + 21/λD ), where λD is the positive parameter that
depends only on the shape of D as described in Theorem 3.2.12. Then, there
exists a set of p = (q + 1)2 propagation directions {dℓ}1≤ℓ≤p ⊂ S

2, such that,
for every solution u of Navier’s equation (6.35) that belongs to Hk+1(div;D)∩
Hk+1(curl;D) there exists ξ ∈ W3p(D), namely, a linear combination of p
pressure and 2p shear plane waves, such that, for 1 ≤ j ≤ k + 1,

‖u− ξ‖j−1,ωS,D
≤ C

(
1 + (ωSh)

j+6
)
e(

7
4
− 3

4
ρ)ωSh hk+1−j

·
[
q−λD(k+1−j) +

1 + (ωSh)
q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]

·
(
ω−2
P ‖∇ · u‖k+1,ωP ,D

+ ω−2
S ‖∇ × u‖k+1,ωS ,D

)
.

(6.40)

Here, the constant C > 0 depends only on j, k and on the shape of D; the
matrix M is the one defined in (3.32), depending only on the dℓ’s.

Proof. This proof follows the lines of the one of Theorem 6.2.1.
We fix the directions {dℓ}1≤ℓ≤p to be the ones provided by Lemma 3.4.6,

and separately approximate the two potentials χ and ψ.
In (6.38) we have seen that the scalar potential χ is solution of the Helm-

holtz equation with wavenumber ωP ; Corollary 3.5.5 provides a combination
of scalar plane waves ξχ =

∑p
ℓ=1 α

χ
ℓ e
iωPx·dℓ such that, for 0 ≤ j ≤ k + 1,

|χ− ξχ|j,D ≤ C
(
1 + (ωPh)

j+6
)
e(

7
4
− 3

4
ρ)ωP h hk+1−j

·
[
q−λD(k+1−j) +

1 + (ωPh)
q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]
‖χ‖k+1,ωP ,D

.

(6.41)

The three Cartesian components of the vector potential ψ are solutions of
the Helmholtz equation with wavenumber ωS. For every ℓ ∈ {1, . . . , p}, the
three vectors dℓ, aℓ and dℓ × aℓ constitute an orthonormal basis of R3. Thus,
according to Corollary 3.5.5, ψ can be approximated by a linear combination
of 3p vector Helmholtz plane waves

ξψ =

p∑

l=1

αψ,1ℓ dℓe
iωSx·dℓ + αψ,2ℓ aℓe

iωSx·dℓ + αψ,3ℓ dℓ × aℓe
iωSx·dℓ

with the error bound, for 0 ≤ j ≤ k + 1,

∣∣ψ − ξψ
∣∣
j,D

≤C
(
1 + (ωSh)

j+6
)
e(

7
4
− 3

4
ρ)ωSh hk+1−j

·
[
q−λD(k+1−j) +

1 + (ωSh)
q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]
‖ψ‖k+1,ωS ,D

.

(6.42)
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6. Approximation of Maxwell solutions

Now we define

ξ := ∇ξχ +∇× ξψ
(6.39)
= i

p∑

l=1

(
ωPdℓα

χ
ℓ e
iωPx·dℓ + ωSα

ψ,2
ℓ dℓ × aℓe

iωSx·dℓ − ωSα
ψ,3
ℓ aℓe

iωSx·dℓ
)

which clearly belongs to W3p(D). This vector field provides the desired ap-
proximation of the displacement u:

‖u− ξ‖j−1,ωS,D
=
∥∥∇χ+∇×ψ −∇ξχ −∇× ξψ

∥∥
j−1,ωS ,D

≤
j−1∑

j0=0

ωj−1−j0
S

∣∣∇(χ− ξχ) +∇× (ψ − ξψ)
∣∣
j0,D

≤
j∑

j1=1

ωj−j1S

(
|χ− ξχ|j1,D +

∣∣ψ − ξψ
∣∣
j1,D

)

(6.41),(6.42)
ωP<ωS≤ C

( j∑

j1=1

ωj−j1S

(
1 + (ωSh)

j1+6
)
hk+1−j1

)
e(

7
4
− 3

4
ρ)ωSh

·
[
q−λD(k+1−j) +

1 + (ωSh)
q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

] (
‖χ‖k+1,ωP ,D

+ ‖ψ‖k+1,ωS,D

)

(6.36)

≤ C
(
1 + (ωSh)

j+6
)
e(

7
4
− 3

4
ρ)ωSh hk+1−j

·
[
q−λD(k+1−j) +

1 + (ωSh)
q−k+2

(
√
2 ρ q)

q−3
2

∥∥M−1
∥∥
1

]

·
(
ω−2
P ‖∇ · u‖k+1,ωP ,D

+ ω−2
S ‖∇× u‖k+1,ωS ,D

)
.

Notice that, in order to have convergence in the bound (6.40), either in h
or p, the potentials ∇ · u and ∇× u have to belong to H2(D).

Since ωP < ωS, the bound (6.40) holds true also in the case where the norm
on the left-hand side is substituted by ‖u− ξ‖j−1,ωP ,D

; on the contrary we can
not substitute the algebraic and exponential terms in ωSh on the right-hand
side with the analogous ones containing ωPh.

The bound proven in Theorem 6.4.3 shows algebraic orders of convergence
both with respect to the size h of the domain and to the dimension p of the
approximating space. If the solution u can be analitically extended outside
D, the order in p is exponential, see Remark 3.5.8. The constant C depends
on the problem parameters ω, λ, µ and ρ only through ωP and ωS , with the
dependence shown in the bound.

In the nearly incompressible case, i.e., for very large values of λ, both ωP and
∇·u go to zero. Therefore, estimate (6.40) is useful only if ω−2

P ‖∇ · u‖k+1,ωP ,D

remains bounded. In the limit case we recover Maxwell’s equations and The-
orem 6.4.3 reduces to Theorem 6.2.1.
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7. Trefftz-discontinuous Galerkin
methods for the Maxwell equations

7.1. Introduction

In this chapter, we extend to the time-harmonic Maxwell equations the p-
version analysis technique developed in Chapter 4 for Trefftz-discontinuous
Galerkin (TDG) approximations of the Helmholtz problem. While error es-
timates in a mesh-skeleton norm are derived parallel to the Helmholtz case,
the derivation of estimates in a mesh-independent norm requires new twists
in the duality argument. The particular case where the local Trefftz approx-
imation spaces are built of vector-valued plane wave functions is considered,
and convergence rates are derived.

The ultra weak variational formulation (UWVF) for the Maxwell problem
has been introduced in [46, 48], see also [18, 121] for more work on it; for dif-
ferent Trefftz-based approaches, we mention [60, 191]. As in the Helmholtz
case, the UWVF can be regarded as a DG method with Trefftz basis func-
tions (see [42, 85, 96] for the scalar case), thus we briefly review some litera-
ture on standard (i.e., polynomial-based) DG methods for the time-harmonic
Maxwell equations. Some of them are based on the primal curl-curl formu-
lation of the problem, neglecting the divergence-free condition. For consis-
tent DG-discretizations, these methods are spurious-free (see [43, Sect. 6],
[65,103,114,199]). Other DG methods are based on “regularized” primal curl-
curl formulations, with penalization of the divergence-free constraint. With
constant weights in the penalty term, the divergence is controlled but these
methods are haunted by so-called spurious solutions in case of strongly sin-
gular problems, see [116, 166]. This is avoided by using weighted regularized
formulations, with penalty weights depending on the distance from singular-
ities, see [36, 37] and their references. Alternative approaches to control the
divergence of the numerical solutions are based on mixed-DG formulations,
see [115,167].

Taking cue from the UWVF and following [121], we study a class of Trefftz
methods that rely on a DG formulation of the electric field-based Maxwell
problem, where the divergence-free constraint is not imposed; the discrete
solutions will be elementwise divergence-free, but not globally. Our analysis
applies to all these methods, independently of the choice of the particular
Trefftz approximation space.

Our focus here is on the theoretical analysis of the p-version of the methods,
which is immune to the pollution effect, an advantage also shared by spectral
polynomial approximations, see [3–5]). The complete analysis framework pre-
sented here follows very closely that one already seen in Chapter 4 for the
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7. Trefftz-discontinuous Galerkin methods for the Maxwell equations

Helmholtz equation. The first step consists in identifying a mesh skeleton
norm on the Trefftz function space for which the bilinear form defining the
method is coercive. This allows us to prove well-posedness and error estimates
in this norm.

We derive error estimates in a mesh-independent norm by using a duality
argument introduced for the Helmholtz case in [154] and used in [42] and in
Section 4.3.1. In order to extend this argument to electromagnetic wave prob-
lems, we use the stability and regularity results for the Maxwell equations with
impedance boundary conditions and divergence-free right-hand sides, with ex-
plicit dependence of the bounding constants on the problem frequency, that
we proved in Chapter 5. In addition to that, an essential modification in the
duality argument of [154] is required; the outcome is an estimate in a norm
which is slightly weaker than L2, this is the main difference with the scalar
case. Due to the assumptions on the regularity of the solution required in the
duality argument, our analysis is restricted to the case of globally constant
material coefficients, even thought the formulation of the Trefftz-DG methods
allows for piecewise constant coefficients.

As already mentioned, this analysis framework applies to any Trefftz ap-
proximation space. As an example, we consider particular plane wave spaces,
for which we prove explicit p-convergence rates using the approximation prop-
erties proved in Section 6.2.1. Similar results for vector spherical waves could
follow easily from Theorem 6.2.3.

The outline of this chapter is the following. The family of Trefftz-DG meth-
ods we are considering is described in Section 7.2. Section 7.3 is devoted to
the a-priori error analysis (well-posedness of the discrete formulation, error
estimates in a mesh-skeleton norm and in a mesh independent norm). Then,
in Section 7.4, we consider the Trefftz-DG method based on particular plane
wave spaces; we prove approximation properties of these spaces and derive con-
vergence rates for the corresponding methods. All the results are presented
also in the report [107].

7.2. The Trefftz-DG method

We consider the same boundary value problem studied in Section 5.2. Let Ω ⊂
R
3 be an open, bounded polyhedral domain that is star-shaped with respect

to all the points of the ball Bγ(x0), x0 ∈ Ω and γ > 0. The homogeneous
Maxwell impedance problem (5.2) is:

{
∇× (µ−1∇×E)− ω2ǫ E = 0 in Ω ,

(µ−1∇×E)× n− iωϑ(n×E)× n = g on ∂Ω ,

where ǫ > 0, µ > 0, ω > 0 and ϑ > 0 are constant real parameters, g ∈
L2
T (∂Ω). Its variational formulation (5.4) reads: find E ∈ Himp(curl; Ω) such

that, for all ξ ∈ Himp(curl; Ω), it holds

AM(E, ξ) =

∫

∂Ω
g · ξT dS , (7.1)
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7.2. The Trefftz-DG method

where Himp(curl; Ω) has been defined in (5.3) and

AM(E, ξ) :=

∫

Ω

[
(µ−1∇×E) · (∇× ξ)− ω2(ǫE) · ξ

]
dV−iω

∫

∂Ω
ϑET ·ξT dS.

Notice that we take into account only the homogeneous PDE, i.e., there is no
volume source term (J = 0 in (5.2) and (5.4)).

Let Th be a finite element partition of Ω, with possible hanging nodes, of
mesh width h (i.e, h = maxK∈Th hK , with hK := diam(K)) on which we will
define our Trefftz-DG method; we denote by Fh =

⋃
K∈Th ∂K the skeleton of

the mesh, and set FB
h = Fh ∩ ∂Ω and FI

h = Fh \ FB
h .

We recall some standard DG notation. Write n+, n− for the exterior unit
normals on ∂K+ and ∂K−, respectively. Let u and σ be a piecewise smooth
function and vector field on Th, respectively. On ∂K− ∩ ∂K+, we define

the averages: {{u}} := 1
2 (u

+ + u−) , {{σ}} := 1
2(σ

+ + σ−) ,

the tangential jumps: [[σ]]T := n+ × σ+ + n− × σ− .

If D is a Lipschitz domain in R
3, the following integration by parts formula

holds true for functions F,G ∈ H(curl;D):

∫

D
∇× F ·G dV =

∫

D
F · ∇ ×G dV +

∫

∂D
n× F ·G dS ,

provided that the second integral on the right-hand side is read as a duality
product between the appropriate trace spaces (see [39]). From this, the vector
“DG magic formula” follows:

∑

K∈Th

∫

∂K
nK × F ·G dS =

∫

FIh

(
[[F]]T · {{G}} − {{F}} · [[G]]T

)
dS

+

∫

FBh
n× F ·G dS ; (7.2)

thus, if F̂ is a single-valued function on ∂K, we have

∑

K∈Th

∫

∂K
nK × F̂ ·G dS = −

∫

FIh
F̂ · [[G]]T dS +

∫

FBh
n× F̂ ·G dS .

Now we are ready to start the derivation of our Trefftz-DG method. Set

V(K) :=
{
v ∈ H(curl;K), n× v ∈ L2

T (∂K)
}
.

Integrating by parts equation (5.2), for every K ∈ Th we look for (E,H) ∈
V(K)×V(K) such that

iω

∫

K
ǫ E · ξ dV +

∫

K
H · ∇ × ξ dV +

∫

∂K
n×H · ξ dS = 0

iω

∫

K
H · ψ dV −

∫

K
E · ∇ × (µ−1ψ) dV −

∫

∂K
n×E · (µ−1ψ) dS = 0
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7. Trefftz-discontinuous Galerkin methods for the Maxwell equations

for every (ξ,ψ) ∈ V(K)×V(K).
Now we discretize the problem: for every K ∈ Th we look for (Ep,Hp) ∈

VE
p (K)×VH

p (K) such that

iω

∫

K
ǫ Ep · ξp dV +

∫

K
Hp · ∇ × ξp dV +

∫

∂K
n× Ĥp · ξp dS = 0 (7.3)

iω

∫

K
Hp ·ψp dV −

∫

K
Ep · ∇ × (µ−1ψp) dV

−
∫

∂K
n× Êp · (µ−1ψp) dS = 0

for every (ξp,ψp) ∈ VE
p (K) × VH

p (K), where VE
p (K),VH

p (K) ⊂ V(K) are

finite dimensional spaces, and Ĥp and Êp on Fh are the numerical fluxes to be
defined. The particular case of Trefftz-DG method which makes use of plane
wave basis functions (see [121]) will be discussed in Section 7.4 below.

Assuming that ∇×VE
p (K) ⊆ VH

p (K), we can choose ψp = ∇ × ξp in the
second equation of (7.3) and obtain

iω

∫

K
Hp · ∇ × ξp dV

=

∫

K
Ep · ∇ × (µ−1∇× ξp) dV +

∫

∂K
n× Êp · (µ−1∇× ξp) dS .

Substituting this expression for
∫
K Hp · ∇ × ξp dV into the first equation

of (7.3) and multiplying by iω give a problem in the Ep variable only: find
Ep ∈ VE

p (K) such that

∫

K
Ep ·

(
∇× (µ−1∇× ξp)− ω2ǫ ξp

)
dV

+

∫

∂K
n× Êp ·

(
µ−1∇× ξp

)
dS + iω

∫

∂K
n× Ĥp · ξp dS = 0

for every ξp ∈ VE
p (K).

The key idea of Trefftz methods is to choose VE
p (K) which satisfies the

Trefftz property:

∇× (µ−1∇× ξp)− ω2ǫ ξp = 0 ∀ ξp ∈ VE
p (K) .

Using the Trefftz property of the test functions, the elemental equation
defining the Trefftz-DG method is

∫

∂K
n× Êp ·

(
µ−1∇× ξp

)
dS + iω

∫

∂K
n× Ĥp · ξp dS = 0 , (7.4)

with numerical fluxes to be defined.
Motivated by the classical UWVF [47], and in analogy to the Helmholtz

case (see [42] and Section 4.2), we define the numerical fluxes as functions on
FI
h :

Êp := {{Ep}} −
β

iω
[[µ−1∇h ×Ep]]T ,
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7.2. The Trefftz-DG method

Ĥp :=
1

iω
{{µ−1∇h ×Ep}}+ α [[Ep]]T ,

and on FB
h :

Êp := Ep − δϑ−1

(
1

iω
n× (µ−1∇h ×Ep) + ϑ(n×Ep)× n+

1

iω
g

)
,

Ĥp :=
1

iωµ
∇h ×Ep − (1− δ)

(
1

iωµ
∇h ×Ep − ϑ(n×Ep)−

1

iω
n× g

)
,

where ∇h×· denotes the elementwise application of the ∇×· operator, α, β, δ
are real, strictly positive, bounded functions, bounded away from zero, inde-
pendent of h, p and ω, with 0 < δ ≤ 1/2.

Remark 7.2.1. This choice of fluxes with the parameters α, β and δ indepen-
dent of the mesh size, in analogy to [42] and Section 4.2, is due to the fact that
our focus is on the p-version of the method. With a mesh-dependent choice
of the flux parameters like the one made in [96] for the Helmholtz problem,
one could use the same analysis technique as in [96] and possibly derive better
h-version estimates also in the Maxwell case (see also Remark 7.3.10 below).

Other numerical fluxes could also be defined by adapting to the time-
harmonic Maxwell problem the DG-elliptic fluxes listed in [10] (for an example
of “mixed fluxes” in the case of the Helmholtz problem, see [110]).

The above defined fluxes are single-valued on the mesh skeleton; moreover,
they are consistent, i.e., replacing Ep and Hp by E and H, the analytical so-

lutions to (5.2), respectively, we have that Ê coincides with E and Ĥ coincides
with H.

Defining

VE
p (Th) :=

{
ξp ∈ L2(Ω) : ξp|K ∈ VE

p (K) ∀ K ∈ Th
}
,

inserting the numerical fluxes into (7.4) and adding over all elements complete
the definition of the Trefftz-DG method: find Ep ∈ VE

p (Th) such that, for all

ξp ∈ VE
p (Th),

AM,h(Ep, ξp) = ℓM,h(ξp) , (7.5)

where

AM,h(E, ξ) := −
∫

FIh
{{E}} · [[µ−1∇h × ξ]]T dS −

∫

FIh
{{µ−1∇h ×E}} · [[ξ]]T dS

+

∫

FBh
(n×E) · (µ−1∇h × ξ) dS

−
∫

FBh
δ(n ×E) · (µ−1∇h × ξ) dS −

∫

FBh
δ(µ−1∇h ×E) · (n× ξ) dS

− iω−1

∫

FIh
β [[µ−1∇h ×E]]T · [[µ−1∇h × ξ]]T dS − iω

∫

FIh
α [[E]]T · [[ξ]]T dS

− iω−1

∫

FBh
δϑ−1[n× (µ−1∇h ×E)] · [n× (µ−1∇h × ξ)] dS
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− iω

∫

FBh
(1− δ)ϑ(n×E) · (n× ξ) dS , (7.6)

and

ℓM,h(ξ) :=
1

iω

∫

FBh
δϑ−1(n×g)·(µ−1∇h × ξ) dS+

∫

FBh
(1−δ)(n×g)·(n × ξ) dS .

The consistency of the Trefftz-DG method is a consequence of the consistency
of the numerical fluxes, thus, if E is the analytical solution of (5.2), then

AM,h(E, ξp) = ℓM,h(ξp) ∀ ξp ∈ VE
p (Th) .

Remark 7.2.2. The formulation of the Trefftz-DG method introduced in this
section would remain unchanged if the material coefficients were piecewise
constant on Th. The assumption on these coefficients to be constant in the
whole domain is only required in our error analysis.

7.3. Theoretical analysis

In this section, we closely follow the analysis developed in Chapter 4 for the
Helmholtz problem. Well-posedness and error estimates in a mesh-skeleton
norm are derived exactly as in Section 4.3 (see Sections 7.3.1 and 7.3.2 be-
low). For the derivation of error estimates in a mesh-independent norm, we
modify the duality argument developed in [154] and used in Section 4.3.1 (see
Section 7.3.3 below).

Define the broken Sobolev space:

Hs(curl;Th) :=
{
w ∈ L2(Ω)3 : w|K ∈ Hs(curl;K) ∀ K ∈ Th

}
.

Let T(Th) be the piecewise Trefftz space defined on Th by

T(Th) :=
{
w ∈ L2(Ω)3 : ∃ s > 0 s.t. w ∈ H1/2+s(curl;Th),

and ∇× (µ−1∇×w)− ω2ǫ w = 0 in each K ∈ Th
}
.

Notice that, since T(Th) ⊂ H1/2+s(curl;Th), s > 0, if w ∈ T(Th), then both
n×w and n× (∇h ×w) belong to L2(Fh)2 (see (5.27)).

We endow T(Th) with the mesh-skeleton norm

|||w|||2FM,h
:=ω−1

∥∥∥β1/2[[µ−1∇h ×w]]T

∥∥∥
2

0,FIh
+ ω

∥∥∥α1/2[[w]]T

∥∥∥
2

0,FIh

+ ω−1
∥∥∥δ1/2ϑ−1/2n× (µ−1∇h ×w)

∥∥∥
2

0,FBh

+ ω
∥∥∥(1− δ)1/2ϑ1/2(n×w)

∥∥∥
2

0,FBh
.

If w ∈ T(Th) and |||w|||FM,h
= 0, then it satisfies w ∈ H0(curl; Ω), µ

−1∇×
w ∈ H0(curl; Ω), and ∇ × (µ−1∇ × w) − ω2ǫ w = 0, thus w = 0, as a
consequence of well-posedness of problem (5.2). This proves that ||| · |||FM,h

is
actually a norm on T(Th).
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7.3.1. Well-posedness

We prove existence, uniqueness and continuous dependence on the data of
solutions to Trefftz-DG methods.

Proposition 7.3.1. There exists a unique Ep solution to (7.5); moreover, we
have continuous dependence of Ep on g:

|||Ep|||FM,h
≤
∥∥∥(1− δ)1/2ϑ−1/2(n× g)

∥∥∥
0,FBh

.

Proof. We rewrite the bilinear form AM,h(E, ξ) defined in (7.6), for all E, ξ ∈
T(Th) as follows: by the Trefftz property of ξ, using the “DG magic for-
mula” (7.2), for all E, ξ ∈ T(Th), we have

0 =
∑

K∈Th

∫

K
E ·
(
∇× (µ−1∇× ξ)− ω2ǫ ξ

)
dV

=
∑

K∈Th

∫

K

(
µ−1∇×E · ∇ × ξ − ω2ǫ E · ξ

)
dV

−
∫

FIh
[[E]]T · {{µ−1∇h × ξ}} dS +

∫

FIh
{{E}} · [[µ−1∇h × ξ]]T dS

−
∫

FBh
(n×E) · (µ−1∇h × ξ) dS ;

adding this expression of 0 to AM,h(E, ξ) gives

AM,h(E, ξ) =
∑

K∈Th

∫

K

(
µ−1∇×E · ∇ × ξ − ω2ǫ E · ξ

)
dV

−
∫

FIh
[[E]]T · {{µ−1∇h × ξ}} dS −

∫

FIh
{{µ−1∇h ×E}} · [[ξ]]T dS

−
∫

FBh
δ(n ×E) · (µ−1∇h × ξ) dS −

∫

FBh
δ(µ−1∇h ×E) · (n× ξ) dS

− iω−1

∫

FIh
β [[µ−1∇h ×E]]T · [[µ−1∇h × ξ]]T dS − iω

∫

FIh
α [[E]]T · [[ξ]]T dS

− iω−1

∫

FBh
δϑ−1[n× (µ−1∇h ×E)] · [n× (µ−1∇h × ξ)] dS

− iω

∫

FBh
(1− δ)ϑ(n×E) · (n× ξ) dS ∀ E , ξ ∈ T(Th) .

It is immediate so see that

Im[AM,h(ξ, ξ)] = −|||ξ|||2FM,h
∀ ξ ∈ T(Th) . (7.7)

Existence and uniqueness of solutions to (7.5) readily follow.
By using the weighted Cauchy–Schwarz inequality and bounding δ by 1− δ,

we obtain the following continuity property for the functional ℓM,h(·):

|ℓM,h(ξ)| ≤
∥∥∥(1− δ)1/2ϑ−1/2(n× g)

∥∥∥
0,FBh

|||ξ|||FM,h
∀ ξ ∈ T(Th) . (7.8)

Combining (7.7) and (7.8) gives the continuous dependence of Ep on g.
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7.3.2. Error estimates in mesh-skeleton norm

By proceeding as in [96] and in Chapter 4, in order to prove continuity of the
bilinear form AM,h(·, ·), we define the following augmented norm on T(Th):

|||w|||2F+
M,h

:= |||w|||2FM,h
+ ω

∥∥∥β−1/2{{wT }}
∥∥∥
2

0,FIh

+ ω−1
∥∥∥α−1/2{{(µ−1∇h ×w)T }}

∥∥∥
2

0,FIh
+ ω

∥∥∥δ−1/2ϑ1/2(n×w)
∥∥∥
2

0,FBh
.

Proposition 7.3.2. We have

|AM,h(E, ξ)| ≤ 2 |||E|||F+
M,h

|||ξ|||FM,h
∀ E, ξ ∈ T(Th) .

Proof. The result can be readily obtained from the expression (7.6) by using
the weighted Cauchy–Schwarz inequality and bounding δ ≤ 1− δ < 1.

It is immediate to derive the following abstract error estimate in the energy
||| · |||FM,h

-norm.

Theorem 7.3.3. Assume that the analytical solution E to the Maxwell prob-
lem (5.2) belongs to T(Th).1 We have

|||E −Ep|||FM,h
≤ 3 inf

ξp∈VE
p (Th)

|||E − ξp|||F+
M,h

.

Proof. By the triangle inequality, we can write

|||E −Ep|||FM,h
≤ |||E− ξp|||FM,h

+ |||ξp −Ep|||FM,h
∀ ξp ∈ VE

p (Th) ;

we only need to prove that |||ξp −Ep|||FM,h
≤ 3 |||E − ξp|||F+

M,h
.

Since ξp −Ep ∈ T(Th), then

|||ξp −Ep|||2FM,h
= − Im[AM,h(ξp −Ep, ξp −Ep)] ;

by the Galerkin orthogonality and the continuity stated in Proposition 7.3.2
we obtain

|||ξp −Ep|||2FM,h
≤ 2 |||E − ξp|||F+

M,h
|||ξp −Ep|||FM,h

,

which allows to conclude.

Remark 7.3.4. The error bounds in Theorem 7.3.3 and Theorem 7.3.9 below
are proved under minimal regularity assumptions on the analytical solutions,
namely, H1/2+s, s > 0. This indicates that the considered methods are not
affected by so-called spurious solutions (i.e., numerical solutions which con-
verge to non-physical solutions; for discretizations to the Maxwell problem,
this might occur in case of singularities).

1As a consequence of Theorem 5.5.5, whenever g|Γj
∈ Hsg(Γj) with sg > 0, j = 1, . . . ,m,

where Γ1, . . . ,Γm are the flat faces of ∂Ω, then E ∈ H1/2+s(Ω)3 and ∇×E ∈ H1/2+s(Ω)3,
for some s > 0 which depends on sg and Ω.
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On the other hand, Theorem 7.3.3 guarantees p-convergence of Trefftz-DG
methods of the type considered in this paper only provided that the spaces
VE
p (Th) are such that

lim
p→+∞

inf
ξp∈VE

p (Th)
|||E − ξp|||F+

M,h
= 0 .

Thus possible restrictions on the solution smoothness to prove convergence of
a given Trefftz-DG method are not due to the analysis framework, but would
only depend on the choice of the approximation spaces.

7.3.3. Error estimates in a mesh-independent norm

For the Helmholtz problem, error estimates in the L2-norm were derived in
Section 4.3.1 and in [42] from error estimates in mesh skeleton norms, by
proving the same bound for every Trefftz function. This was carried out by
using a modified duality argument developed in [154].

The first issue in repeating that argument for the time-harmonic Maxwell
problem consists in the lack of stability estimates for the dual problem with
a generic (non divergence-free) w ∈ T(Th) on the right-hand side (see Chap-
ter 5). In order to overcome this problem, we will consider the L2-orthogonal
Helmholtz decomposition of w

w = w0 +∇p , (7.9)

with w0 ∈ H(div0; Ω) and p ∈ H1
0 (Ω) (see, e.g., [152, Theorem 3.45]), and

estimate w0 and ∇p separately.
An estimate of w0 in the L2-norm can be obtained by proceeding like in

Lemma 4.3.7, while the poor regularity of p, and here comes the second prob-
lem, does not allow to obtain an L2-norm estimate of ∇p (and thus of w).

For this reason, we introduce the following weaker norm: for every u ∈
L2(Ω)3, we define

‖u‖H(div;Ω)′ := sup
v∈H(div;Ω)

∫
Ω u · v dV

‖v‖H(div;Ω)

,

where ‖v‖2H(div;Ω) = ‖v‖20,Ω + diam(Ω)2 ‖∇ · v‖20,Ω. Notice that, for every

u ∈ H(div0; Ω), ‖u‖H(div;Ω)′ = ‖u‖0,Ω.
In the following, we bound the L2-norm of w0 and the H(div; Ω)′-norm

of ∇p by the ||| · |||FM,h
-norm of w (see Propositions 7.3.5 and 7.3.7 below).

Then, error estimates of the Trefftz-DG methods presented in this paper in
the H(div; Ω)′-norm will follow from error estimates in the ||| · |||FM,h

-norm.
These final estimates are reported in Theorem 7.3.9 below.

From now on, the shape regularity measure s.r.(Th) and the quasi-uniformity
measure q.u.(Th), defined in Section 4.3.1 will enter the constants in the error
estimates.

As mentioned before, in the next proposition we bound ‖w0‖0,Ω by a mod-
ified duality argument.
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7. Trefftz-discontinuous Galerkin methods for the Maxwell equations

Proposition 7.3.5. Let w ∈ T(Th) and let w0 ∈ H(div0; Ω) be its first
component in decomposition (7.9). Then, there exists a positive constant C
independent of w, h, p and ω such that

‖w0‖0,Ω ≤ C
[
ω−1/2h−1/2 + ω−1/2hs + ω1/2hs

]
|||w|||FM,h

for all real parameters s > 0 satisfying the upper bound in Theorem 5.5.5.
The constant C depends on Ω, s, s.r.(Th), q.u.(Th), ϑ, µ, and on the flux
parameters.

Proof. Consider the Maxwell adjoint problem with source term w0

{
∇× (µ−1∇×Φ)− ω2ǫ Φ = w0 in Ω ,

(µ−1∇×Φ)× n+ iωϑ(n×Φ)× n = 0 on ∂Ω ,
(7.10)

and let Φ be its solution. Since, due to the L2-orthogonality of decomposi-
tion (7.9),

‖w0‖20,Ω =

∫

Ω
w0 ·w dV ,

by multiplying the first equation of problem (7.10) by w, integrating by parts
twice and taking into account that w is a Trefftz’ function, we have
∫

Ω
w0 ·w dV =

∑

K∈Th

∫

∂K
n×Φ · (µ−1∇×w) dS

+
∑

K∈Th

∫

∂K
n× (µ−1∇×Φ) ·w dS

=−
∫

FIh

(
Φ · [[µ−1∇h ×w]]T + (µ−1∇×Φ) · [[w]]T

)
dS

+

∫

FBh

(
n×Φ · (µ−1∇h ×w) + n× (µ−1∇×Φ) ·w

)
dS .

The boundary condition in the second equation of (7.10) implies that

n× (µ−1∇×Φ) ·w = iωϑ(n×Φ) · (n×w) ;

using this and the weighted Cauchy–Schwarz inequality, together with (1 −
δ)−1/2 ≤ δ−1/2, and the definition of the ||| · |||FM,h

-norm, we get

∣∣∣∣
∫

Ω
w0 ·w dV

∣∣∣∣

≤
[
∑

f∈FIh

(
ω
∥∥∥β−1/2n×Φ

∥∥∥
2

0,f
+ ω−1

∥∥∥α−1/2n× (µ−1∇×Φ)
∥∥∥
2

0,f

)

+
∑

f∈FBh

ω
∥∥∥δ−1/2ϑ1/2n×Φ

∥∥∥
2

0,f

]1/2
|||w|||FM,h

=: G(Φ)1/2|||w|||FM,h
.
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Defining ζ on Fh by ζ = β if f ∈ FI
h and ζ = δϑ−1 if f ∈ FB

h , we can write

G(Φ) ≤
∑

K∈Th

(
ω
∥∥∥ζ−1/2n×Φ

∥∥∥
2

0,∂K
+ ω−1

∥∥∥α−1/2n× (µ−1∇×Φ)
∥∥∥
2

0,∂K

)
.

For any K ∈ Th, the trace inequality

‖u‖20,∂K ≤ C
(
h−1
K ‖u‖20,K + h2ηK |u|21/2+η,K

)
∀ u ∈ H1/2+η(K) (7.11)

holds provided that η > 0, with C > 0 depending only on the shape of K
and on η (see [145, Theorem A.2]). Since, from Theorem 5.5.5, Φ belongs to
H1/2+s(curl; Ω) for all s > 0 satisfying the upper bound in Theorem 5.5.5,
using the previous trace inequality and taking into account that the material
coefficients are constant, we get

G(Φ) ≤ C
[
ωh−1 ‖Φ‖20,Ω + ωh2s ‖Φ‖21/2+s,Ω
+ ω−1h−1 ‖∇ ×Φ‖20,Ω + ω−1h2s ‖∇ ×Φ‖21/2+s,Ω

]
,

with the constant C > 0 independent of h, p and ω, but depending on s, µ,
s.r.(Th), q.u.(Th), and on the flux parameters. Using the stability estimates in
Theorem 5.5.5, we obtain

G(Φ) ≤ C
[
ω−1h−1 + ω−1h2s + ωh2s

]
‖w0‖20,Ω ,

which gives the result.

Before deriving an estimate for the component ∇p of decomposition (7.9),
we recall the following regularity result (cf. Corollary (5.5.2)).

Lemma 7.3.6. [100, Corollaries 2.6.7, 2.6.8] Under our assumptions on Ω,
there exists η∗, 0 < η∗ ≤ 1/2, depending only on Ω such that, for all q ∈ H1

0 (Ω)
satisfying ∆q ∈ L2(Ω), we have that q belongs to H3/2+η(Ω) for all η < η∗ and

|q|3/2+η,Ω ≤ C ‖∆q‖20,Ω ,

with a positive constant C depending only on Ω and on η. If Ω is convex, this
holds true for all 0 < η ≤ 1/2.

Proposition 7.3.7. Let w ∈ T(Th) and let p ∈ H1
0 (Ω) be the second com-

ponent of its decomposition (7.9). Then, there exists a positive constant C
independent of w, h, p and ω, but depending on Ω, ǫ, and on the flux param-
eter β, such that

‖∇p‖H(div;Ω)′ ≤ C ω−3/2(h−1/2 + hη)|||w|||FM,h

for all η > 0 satisfying the upper bounds in Lemma 7.3.6.
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Proof. Let w ∈ T(Th) and let q ∈ H1
0 (Ω) be as in Lemma 7.3.6, i.e., ∆q ∈

L2(Ω); we have

∣∣∣∣
∫

Ω
w · ∇q dV

∣∣∣∣ =

∣∣∣∣∣∣

∑

K∈Th

∫

K

1

ω2ǫ
∇h × (µ−1∇h ×w) · ∇q dV

∣∣∣∣∣∣

=
1

ω2ǫ

∣∣∣∣∣∣

∑

K∈Th

∫

∂K
n× (µ−1∇h ×w) · ∇q dS

∣∣∣∣∣∣
∇q∈H(curl;Ω),
q∈H1

0 (Ω)
=

1

ω2ǫ

∣∣∣∣∣

∫

FIh
[[µ−1∇h ×w]]T · ∇q dS

∣∣∣∣∣

≤ 1

ω3/2ǫβ
1/2
min

|||w|||FM,h
‖∇q‖0,FIh

(7.11)

≤ C

ω3/2ǫβ
1/2
min

|||w|||FM,h

(
h−1/2 |q|1,Ω + hη |q|3/2+η,Ω

)

≤ C (h−
1
2 + hη)

ω3/2 ǫβ
1/2
min

|||w|||FM,h
‖∆q‖0,Ω , (7.12)

with βmin := minx∈FIh β, and the positive constant C depending only on Ω.

Given a function v ∈ H(div; Ω), consider its L2-orthogonal Helmholtz de-
composition v = v0 + ∇qv with v0 ∈ H(div0; Ω) and qv ∈ H1

0 (Ω); then,
∆qv = ∇ ·v and (∇q′,v0) = 0 for every q′ ∈ H1

0 (Ω). This allows to derive the
desired bound:

‖∇p‖H(div,Ω)′ = sup
v∈H(div,Ω)

∫
Ω∇p · v dV

‖v‖H(div,Ω)

(7.9)
= sup

v∈H(div,Ω)

∫
Ω∇p · v0 dV +

∫
Ω(w −w0) · ∇qv dV

‖v‖H(div,Ω)
∫
Ω ∇q′·v0 dV=(w0,∇q′)=0,

∀ q′∈H1
0 (Ω)

= sup
v∈H(div,Ω)

∫
Ω w · ∇qv dV
‖v‖H(div,Ω)

(7.12)

≤ C (h−
1
2 + hη)

ω3/2 ǫβ
1/2
min

|||w|||FM,h
sup

v∈H(div,Ω)

‖∆qv‖0,Ω
‖v‖H(div,Ω)

∆qv=∇·v
=

C (h−
1
2 + hη)

ω3/2 ǫβ
1/2
min

|||w|||FM,h
sup

v∈H(div,Ω)

‖∇ · v‖0,Ω
‖v‖H(div,Ω)

≤ C (h−
1
2 + hη)

ω3/2 ǫβ
1/2
min

|||w|||FM,h
.

We have the following result.
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Proposition 7.3.8. Let w ∈ T(Th). Under our assumptions on Ω and on the
material coefficients, there exists a positive constant C independent of w, h,
p and ω such that

‖w‖H(div;Ω)′ ≤ C f(ω, h) |||w|||FM,h
,

with

f(ω, h) :=
[
ω−1/2h−1/2 + ω−1/2hs + ω1/2hs + ω−3/2(h−1/2 + hη)

]
, (7.13)

for all s > 0 and η > 0 satisfying the upper bounds in Theorem 5.5.5 and
Lemma 7.3.6, respectively. The constant C depends on Ω, s, η, s.r.(Th),
q.u.(Th), ϑ, ǫ, µ, and on the flux parameters.

Proof. By using the properties of the Helmholtz decomposition (7.9), we have

‖w‖H(div,Ω)′ ≤ ‖w0‖0,Ω + ‖∇p‖H(div,Ω)′ .

The result follows from Proposition 7.3.5 and Proposition 7.3.7.

The main result of this section directly follows from Theorem 7.3.3 and
Proposition 7.3.8.

Theorem 7.3.9. In addition to our assumptions on Ω, g and on the material
coefficients, assume that the analytical solution E to the Maxwell problem (5.2)
belongs to T(Th). Then there exists a positive constant C independent of h, p
and ω such that

‖E−Ep‖H(div;Ω)′ ≤ C f(ω, h) inf
ξp∈VE

p (Th)
|||E − ξp|||F+

M,h
,

with f(ω, h) given by (7.13), for all s > 0 and η > 0 satisfying the upper bounds
in Theorem 5.5.5 and Lemma 7.3.6, respectively. The constant C depends on
Ω, s, η, s.r.(Th), q.u.(Th), ϑ, ǫ, µ, and on the flux parameters,

Remark 7.3.10. The error estimate given in Theorem 7.3.9 should not be con-
sidered as an h-version error estimate. Indeed, as already mentioned in Re-
mark 7.2.1, one could adapt to the Maxwell problem the mesh size dependent
numerical fluxes and the analysis framework developed in [96] for the Helm-
holtz equation. In this way, one should obtain better estimates, namely, with
no negative powers of h in the expression of f(ω, h), provided that a threshold
condition is satisfied.

7.4. The PWDG method

We denote by Plane Wave Discontinuous Galerkin (PWDG) method the par-
ticular Trefftz-DG method which makes use of plane wave basis functions.
Vector-valued plane waves are vector field defined as x 7→ aeiκ x·d, where a

and d are constant unit vectors and κ := ω
√
ǫµ. They are componentwise

solutions to the Helmholtz equation and they are solution to the Maxwell
equation if and only if a · d = 0.
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We define local plane wave approximation spaces in a slightly different way
than the one in [121], we follow instead Section 6.2.1. Given an integer q ≥ 1,
introduce a set of p = (q + 1)2 plane wave propagation directions {dℓ}1≤ℓ≤p,
together with the associated set of 2p pairs of directions:

d2p(K) :=
{
(dℓ,aν,ℓ)1≤ℓ≤p

ν=1,2
∈ S

2× S
2 , dℓ ·a1,ℓ = 0 , a2,ℓ = a1,ℓ×dℓ

}
. (7.14)

Then, we define PWE
ω,2p(K) as

PWE
ω,2p(K) :=

{
∑

1≤ℓ≤p
ν=1,2

αν,ℓ aν,ℓ e
iκ x·dℓ , (dℓ,aν,ℓ)1≤ℓ≤p

ν=1,2
∈ d2p(K) , αν,ℓ ∈ C

}
,

where aν,ℓ, ν = 1, 2, represent the polarization directions of the plane wave
propagating along dℓ. Finally, we define the discrete Maxwell–Trefftz spaces
PWE

ω,2p(Th) ⊂ T(Th):

PWE
ω,2p(Th) :=

{
ξ2p ∈ L2(Ω)3 : ξ2p|K ∈ PWE

ω,2p(K) ∀ K ∈ Th
}
.

Of course, a different set of directions could be chosen for each mesh element.
We also make the following assumptions on the mesh and the plane wave

propagation directions in order to use the approximation estimates of Corol-
lary 3.5.5 in every element:

• for every element K ∈ Th, the matrix M defined in (3.32) depending on
the propagation directions is invertible and the norm

∥∥M−1
∥∥
1
grows less

than exponentially with respect to its size p (e.g., the directions are the
optimal ones of Lemma 3.4.6 or Sloan’s directions of Remark 3.4.7);

• there exist two parameters 0 < ρ0 ≤ ρ ≤ 1/2 such that all the ele-
ments K ∈ Th (after a suitable translation) satisfy Assumption 3.1.1.
For example, a shape-regular mesh with convex elements satisfies this
condition with ρ = ρ0 = (2s.r.(Th))−1;

• we have q ≥ 2(1 + 21/λTh ) where λTh is the geometric parameter defined
in (4.19).

In Lemma 7.4.1 we use Theorem 6.2.1 and the trace inequality to derive ap-
proximation estimates in PWE

ω,2p(Th) in the mesh-dependent ||| · |||F+
M,h

-norm.

Then, in Theorem 7.4.3, we will insert these estimates into Theorem 7.3.3 and
Theorem 7.3.9 in order to derive convergence rates of the PWDG method for
problem (7.1).

Lemma 7.4.1. We fix q, k ∈ N, k ≥ 2, q ≥ 2k + 1, p = (q + 1)2, and
assume Th and d2p(K) to satisfy the assumptions stated in this section. Then,
for every E ∈ Hk+1(curl;Th) solution of (5.2), there exists ξ2p ∈ PWE

ω,2p(Th)
such that

|||E− ξ2p|||2F+
M,h
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≤ C κ−4
(
ω h−1ε21 + ω ε1 ε2 + ω−1µ−2h−1ε22 + ω−1µ−2ε2 ε3

)
‖∇ ×E‖2k+1,κ,K .

where the terms εj were defined in (4.20) (now ω is substituted by κ) and
C > 0 is independent of p, h, ω, ǫ, µ, κ, E, but depends on the shape of the
elements K ∈ Th, k, ϑ, and on the flux parameters α, β and δ.

Proof. For every element K ∈ Th and for every 1 ≤ j ≤ k+1, the bound (6.5)
reads: ∣∣E− ξ2p

∣∣
j−1,K

≤ C κ−2 εj ‖∇ ×E‖k+1,κ,K , (7.15)

which, together with the trace inequality, gives

∥∥E− ξ2p
∥∥2
0,∂K

(4.17)

≤ C
(
h−1
K

∥∥E− ξ2p
∥∥2
0,K

+
∥∥E− ξ2p

∥∥
0,K

∣∣E− ξ2p
∣∣
1,K

)

(7.15)

≤ C κ−4ε1
(
ε1 h

−1 + ε2
)
‖∇ ×E‖2k+1,κ,K ,

and

∥∥∇× (E− ξ2p)
∥∥2
0,∂K

(4.17)

≤ C
(
h−1
K

∣∣E− ξ2p
∣∣2
1,K

+
∣∣E− ξ2p

∣∣
1,K

∣∣E− ξ2p
∣∣
2,K

)

(7.15)

≤ C κ−4ε2
(
ε2 h

−1 + ε3
)
‖∇ ×E‖2k+1,κ,K .

The assertion follows from the definition of the ||| · |||F+
M,h

-norm:

|||E− ξ2p|||2F+
M,h

≤ 2
∑

K∈Th

[
ω
(
α+ β−1 + (1− δ + δ−1)ϑ

) ∥∥(E− ξ2p)T
∥∥2
0,∂K

+ ω−1
(
α−1 + β + ϑ−1

) ∥∥µ−1
(
∇× (E− ξ2p)

)
T

∥∥2
0,∂K

]

≤ C κ−4
(
ω h−1ε21 + ω ε1 ε2 + ω−1µ−2h−1ε22 + ω−1µ−2ε2 ε3

)
‖∇ ×E‖2k+1,κ,K .

Remark 7.4.2. Asymptotically, the coefficients εj behave, for increasing q and
decreasing h, as (h q−λTh )k+1−j. Therefore, for large q, the estimates of Lem-
ma 7.4.1 can be written as

|||E − ξ2p|||F+
M,h

≤ C ω−5/2

(
h

qλ

)k−3/2

‖∇ ×E‖k+1,ω,Ω , (7.16)

where the constant C depends also on ǫ and µ and is an increasing function
of the product ωh.

Inserting the estimates (7.16) within Theorem 7.3.3 and Theorem 7.3.9, we
have the following convergence rates.

Theorem 7.4.3. Assume that the analytical solution E to the Maxwell prob-
lem (5.2) belongs to Hk+1(curl; Ω), with k ≥ 2. Assume that the mesh Th and
the directions d2p(K), for every K ∈ Th, satisfy the assumptions stated in this
section and let Ep ∈ PWE

ω,2p(Th), p = (q + 1)2 ∈ N, with q ≥ 2k + 1, be the
PWDG numerical solution.
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7. Trefftz-discontinuous Galerkin methods for the Maxwell equations

Then, there exist two constants C1, C2 > 0 independent of p but depending
on ω and h only through the product ωh as an increasing function, such that,
for large p,

|||E −Ep|||FM,h
≤ C1 ω

−5/2

(
h

qλ

)k−3/2

‖∇ ×E‖k+1,ω,Ω ,

‖E−Ep‖H(div;Ω)′ ≤ C2 (ω
−5/2 + ω−4)

hk−2

qλ(k−3/2)
‖∇ ×E‖k+1,ω,Ω . (7.17)

Here, C1 = C1(ωh) and C2 = C2(ωh) depend on the shape of the elements
K ∈ Th, r, ϑ, ǫ, µ, and on the flux parameters; C2 also depends on Ω, s.r.(Th),
and q.u.(Th).
Proof. The first bound is straightforward. To derive the second bound, we
simply notice that, for f(ω, h) defined by (7.13) we have

f(ω, h) ≤ C h−1/2(1 + ω−3/2) ,

where C > 0 depends only on Ω and on the product ωh as an increasing
function.

Remark 7.4.4. If the solution E admits an analytic extension outside Ω, the
convergence of the estimates in Lemma 7.4.1, Remark 7.4.2 and thus in The-
orem 7.4.3 is exponential in p (see the Remarks 3.5.8 and 4.4.9).

Remark 7.4.5. Using part (ii) of Theorem 6.2.3 it is straightforward to prove
that E can be approximated by a Maxwell generalized harmonic polynomial
QL+1 (i.e., a divergence-free vector spherical wave, see Section 6.2.2) of degree
at most L+ 1, with L ≥ max{k, 21/λTh }, with the bounds

|||E −QL+1|||FM,h
≤ C1 ω

−5/2

(
h

Lλ

)k−3/2

‖∇ ×E‖k+1,ω,Ω ,

‖E−QL+1‖H(div;Ω)′ ≤ C2 (ω
−5/2 + ω−4)

hk−2

Lλ(k−3/2)
‖∇ ×E‖k+1,ω,Ω .

The order of convergence in h can be increased by one with the use of Theo-
rem 6.3.2; in this case the Hk+1(Ω)3-norm of ∇×E on the right-hand side of
the bounds has to be substituted by the same norm of E.

Numerical results that shows the effectiveness of the UWVF discretization
by vector spherical waves are presented in [18]. Of course, plane and spherical
waves can be used together in the same or in different elements.

Remark 7.4.6. The final bounds (7.17) are not sharp because the procedure
used in Section 6.2.1 to transfer the best approximation properties from scalar
to Maxwell plane waves sacrifices one order of convergence both in h and q
(see Remark 6.2.2). This also implies that, in order to guarantee h- or p-
convergence in Theorem 7.4.3, E must belong to H3(curl; Ω) (because in the
proof of Lemma 7.4.1 we used ε3 which is defined only for vector fields with this
regularity); on the other hand, Remark 7.3.4 indicates that this requirement
does not depend on the formulation of the TDG method (cf. the Helmholtz
case in Remark 4.4.11).
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A. Vector calculus identities

Here we write for reference some well-known vector identities. We use them
for the analysis of Maxwell and elasticity problems, so we focus on the three-
dimensional case only.

For every A, B and C in C
3, it holds

A · (B×C) = B · (C×A) = C · (A×B) , (A.1)

A× (B×C) = (A ·C)B− (A ·B)C . (A.2)

For every continuously differentiable scalar function ψ ∈ C1(Ω,C) and for
every continuously differentiable vector field A,B ∈ C1(Ω,C3), where Ω ⊂ R

3

is an open domain, we have

∇ · (ψA) = ψ∇ ·A+A · ∇ψ , (A.3)

∇× (ψA) = ψ∇×A+ (∇ψ)×A , (A.4)

∇ · (A×B) = B · ∇ ×A−A · ∇ ×B , (A.5)

∇× (A×B) = A ∇ ·B−B ∇ ·A+ (B · ∇)A− (A · ∇)B , (A.6)

∇(A ·B) = (A · ∇)B+ (B · ∇)A+B× (∇×A) +A× (∇×B) .
(A.7)

The symbols ∇· and ∇× denote the usual divergence and curl operators of a
vector field, respectively; the expression (A · ∇)B represents the vector with
components

∑3
k=1AkD

kBj, j = 1, 2, 3. The above identities can be found
in [90, p. 157] or in [157, p. 114-115, vol. I].

The (componentwise) vector Laplacian ∆ is equal to

∆A = ∇(∇ ·A)−∇× (∇×A) . (A.8)

A formula that is useful, for example, in the stability analysis of the Helm-
holtz equation (cf. [142, Prop. 8.1.4]) is

∇(|ψ|2) = ψ∇ψ + ψ∇ψ = 2Re[ψ∇ψ] . (A.9)

Given a complex-valued vector field A ∈ C1(Ω,C3) and a real-valued one
z ∈ C1(Ω,R3), it holds

2Re
[
A · (z · ∇)A

]
= z · ∇(|A|2) (A.3)

= ∇ · (z|A|2)− (∇ · z)|A|2 , (A.10)

where | · | denotes the Euclidean norm of a vector in C
N . The position vector

field x satisfies

∇ · x = 3 , ∇× x = 0 , Dx = Id3 , (A · ∇)x = A , (A.11)
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where (DA)i,j =
∂
∂xj

Ai(x) the Jacobian of the vector field A and Id3 the 3×3

identity matrix. The formulas (A.10) and (A.11) give

2Re
[
A · (x · ∇)A

]
= ∇ · (x|A|2)− 3|A|2 . (A.12)

We denote byDSA = 1
2(DA+(DA)⊤) the symmetric gradient (or Cauchy’s

strain tensor) of A and div the (row-wise) vector divergence of matrix fields.
If A ∈ C2(Ω,C3), it holds

2divDSA = ∇ divA+∆A
(A.8)
= 2∇(∇ ·A)−∇× (∇×A) . (A.13)

The definition of the curl operator gives also

(
(DA)⊤ −DA

)
B = B× (∇×A) . (A.14)
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B. Special functions

We define several special functions and their properties that are used through-
out this thesis. Most of them are well-known results but we always quote
sources where proofs and further properties can be found. In Section B.5,
the notation is not completely standard since there is no common agreement
regarding vector spherical harmonics; we tried to follow the notation of the
most common books. Some of the proofs in this section are new.

B.1. Factorial, double factorial and gamma function

For every natural number n, the factorial n! and the double factorial n!! are
defined as

n! :=

{
n(n− 1)(n − 2) · · · 1 n > 0 ,

1 n = 0 .

n!! :=





n(n− 2) · · · 3 · 1 n odd,

n(n− 2) · · · 4 · 2 n > 0 even,

1 n = 0 .

The factorial function satisfies the Stirling inequalities (cf. [173])

√
2π

√
n nne−ne

1
12n+1 < n! <

√
2π

√
n nne−ne

1
12n n ≥ 1 . (B.1)

Using the Stirling inequalities, we notice that for every k,N ∈ N, k,N ≥ 1, it
holds

k!

(⌈ kN ⌉!)N
≤ (⌈ kN ⌉N)!

(⌈ kN ⌉!)N
(B.1)

≤ (⌈ kN ⌉N)⌈
k
N
⌉N+ 1

2 e−(⌈ k
N
⌉N)e

1

12⌈ k
N

⌉N

√
2π

N−1
(⌈ kN ⌉)(⌈ kN ⌉+ 1

2
)Ne−(⌈ k

N
⌉N)e

N

12⌈ k
N

⌉+1

≤
(
2π
⌈ k
N

⌉) 1−N
2
N ⌈ k

N
⌉N+ 1

2

≤
(
2π
⌈ k
N

⌉) 1−N
2
Nk+ 3

2 ,

(B.2)

where ⌈·⌉ is the ceil operator:

⌈x⌉ := min{k ∈ Z, k ≥ x} , ⌊x⌋ := max{k ∈ Z, k ≤ x} ∀ x ∈ R .
(B.3)

For z ∈ C, Re(z) > 0, the gamma function can be defined as

Γ(z) :=

∫ ∞

0
tz−1e−t dt .
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B. Special functions

The restriction of the gamma function to natural numbers coincides with the
factorial:

Γ(n+ 1) = n! n ∈ N ; (B.4)

the values for a semi-integer variable are (cf. [135, (1.2.3)])

Γ
(
n+

1

2

)
=

√
π (2n − 1)!

22n−1 (n − 1)!
n ∈ N , n > 0 . (B.5)

The gamma function can also be used to express the beta integral (cf. [135,
(1.5.2), (1.5.6)]):

∫ 1

0
ta(1− t)b dt = B(a+ 1, b+ 1) =

Γ(a+ 1) Γ(b+ 1)

Γ(a+ b+ 2)
Re a,Re b > −1 .

(B.6)
The double factorial is related to the factorial and to the gamma function by
the following relations (cf. [9, (10.33c)]):

(2n)!! = 2nn! , (2n+ 1)!! =
(2n + 1)!

2n n!

(B.5)
=

Γ
(
n+ 3

2

)
2n+1

√
π

n ∈ N .

(B.7)
The gamma function can be used to measure the (N -dimensional) volume of
the ball BR ⊂ R

N of radius R > 0 and the ((N − 1)-dimensional) surface of
the unit sphere S

N−1 = {x ∈ R
N , |x| = 1} (cf. [158, (2)]):

|BR| =
π
N
2

Γ
(
1 + N

2

) RN , |SN−1| = N |B1| =
2 π

N
2

Γ
(
N
2

) . (B.8)

For multi-indices α = (α1, . . . , αN ) ∈ N
N , the factorial is defined as

α! :=
N∏

j=1

αj! .

The multinomial theorem states that

(x1 + · · · + xN )
k =

∑

α∈NN , |α|=k

k!

α!
xα ∀ x ∈ R

N , N, k ∈ N , N, k ≥ 1.

By choosing x = (1, . . . , 1), we obtain

∑

α∈NN , |α|=k

1

α!
=
Nk

k!

and the bound ∑

α∈NN , |α|=k

1

(α!)2
≤ N2k

(k!)2
. (B.9)
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We use the factorial expression of a binomial coefficient to count the multi-
indices with length j and dimension N ≥ 2:

#
{
α ∈ N

N , |α| = j
}
=

(
N + j − 1

N − 1

)
=

(N + j − 1)!

j! (N − 1)!

=
N + j − 1

N − 1

N + j − 2

N − 2
· · · 1 + j

1
≤ (1 + j)N−1

(B.10)
(in the case N = 1 the above statement is trivially true).

B.2. Bessel functions

We denote the Bessel functions of the first kind by Jν(z) and the spherical
Bessel functions of the first kind by jν(z). The first ones are defined, for every
ν, z ∈ C, as

Jν(z) :=
∞∑

t=0

(−1)t

t! Γ(t+ ν + 1)

(z
2

)2t+ν
, (B.11)

where Γ is the gamma function. When ν /∈ Z and z belongs to the segment
[−∞, 0], Jν(z) is not single-valued. When ν ∈ Z, Jν is an entire function.

We list some properties of these functions (references can be found in [135,
200]):

J−k(z) = (−1)kJk(z) ∀ k ∈ Z , (B.12)

Im
(
Jk(t)

)
= 0 , Re

(
Jk(it)

)
= 0 ∀ k ∈ Z , t ∈ R ,

|Jk(t)| ≤ 1 ∀ k ∈ Z , t ∈ R , (B.13)

|Jν(z)| ≤
e| Im z|

Γ(ν + 1)

( |z|
2

)ν
∀ ν > −1

2
, z ∈ C , (B.14)

J0(0) = 1 , Jk(0) = 0 ∀ k ∈ Z \ {0} ,
∂

∂z
Jν(z) =

1

2
(Jν−1(z)− Jν+1(z)) , (B.15)

∂

∂z

(
zkJk(z)

)
= zkJk−1(z) ,

∂

∂z
J0(z) = −J1(z) ,

∂

∂z
(zJ1(z)) = zJ0(z) , (B.16)

∂l

∂zl
Jk(z) =

1

2l

l∑

m=0

(−1)m
(
l

m

)
J2m−l+k(z) . (B.17)

The last equality can be easily proved by induction from (B.15).
The spherical Bessel functions are defined as

jν(z) :=

√
π

2z
Jν+ 1

2
(z) . (B.18)

They satisfy the following differential relations [1, eq. (10.1.19–22)]:

jl(z)

z
=
jl−1(z) + jl+1(z)

2l + 1
,
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∂

∂z
jl(z) =

l jl−1(z) − (l + 1) jl+1(z)

2l + 1
,

jl(z)

z
+

∂

∂z
jl(z) = jl−1(z)−

l jl(z)

z
= −jl+1(z) +

(l + 1) jl(z)

z
. (B.19)

These functions are a particular case of the so-called hyperspherical Bessel
functions (see [13] p. 52):

jNk (z) :=

∞∑

t=0

(−1)t z2t+k

(2t)!! (N + 2t+ 2k − 2)!!
=




z1−

N
2 Jk+N

2
−1(z) N even,

√
π
2 z

1−N
2 Jk+N

2
−1(z) N odd;

(B.20)

the last equality is proved using (B.11) and (B.7). The cases N = 2 and N = 3
correspond to the Bessel and spherical Bessel functions, respectively:

Jk(z) = j2k(z) , jk(z) = j3k(z) .

Using (B.11), (B.18), (B.4) and (B.5) it is straightforward to see that the
asymptotic forms of the Bessel functions for small arguments are:

Jk(z) ≈
1

k!

(z
2

)k
, jk(z) ≈

2k k!

(2k + 1)!
zk |z| ≪ 1 , k ∈ N . (B.21)

B.3. Legendre polynomials and functions

For every natural l, the Legendre polynomial of degree l (cf. [135, (4.2.1)]
and [1, (8.6.18)]) is defined as

Pl(t) :=
1

2l l!

∂l

∂tl
[
(t2 − 1)l

]
. (B.22)

They are orthogonal in L2([−1, 1]) (cf. [135, (4.5.1–2)]):

∫ 1

−1
Pl(t) Pl′(t) dt =

2

2l + 1
δl,l′ ∀ l , l′ ∈ N . (B.23)

For every natural l and m, 0 ≤ m ≤ l, the (associated) Legendre functions
(cf. [59, (2.26)], [83, (3.376)], [25, (3.36-37)], [63, p. 505], [160, (2.4.79-80)], [152,
Sect. 9.3.1]) are

Pml (t) := (1− t2)
m
2
∂m

∂tm
Pl(t) ,

P−m
l (t) := (−1)m

(l −m)!

(l +m)!
Pml (t) .

(B.24)

For l ∈ N and for every m ∈ {−l, . . . , l}, they can be written as (cf. [25, p. 65])

Pml (t) =
1

2l l!
(1− t2)

m
2
∂l+m

∂tl+m
[
(t2 − 1)l

]
. (B.25)

The expressions for m = ±l are:

P ll (t) =
(2l)!

2l l!
(1− t2)

l
2 , P−l

l (t) = (−1)l
1

2l l!
(1− t2)

l
2 ∀ l ∈ N . (B.26)
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Some authors use a slightly different definition, for example, [135, (7.12.3)]
reads

P̃ml (t) = (t2 − 1)
m
2
∂m

∂tm
Pl(t) = (−1)mPml (t) .

B.4. Spherical harmonics

For every N ∈ N, N ≥ 2, the N -dimensional spherical harmonics are de-
fined as a set of complex-valued functions {Y m

l }l≥0,m=1,...,n(N,l) defined on

S
N−1 that constitutes an orthonormal basis of L2(SN−1) and such that the set

{|x|lY m
l ( x

|x|)}m=1,...,n(N,l) is a basis of the space of the homogeneous harmonic
polynomials of degree l in N variables, for every l ∈ N. This definition allows
different choices of the basis.

The dimensions of these spaces (see [158, eq. (11)] and [14, Prop. 5.8]) are:

n(N, l) :

= dim
{
homogeneous harmonic polynomials of degree l in N variables

}

=




1 if l = 0 ,
(2l +N − 2)(l +N − 3)!

l! (N − 2)!
if l ≥ 1 ,

(B.27)

=





1 if l = 0 ,

N if l = 1 ,(N+l−1
N−1

)
−
(N+l−3
N−1

)
if l ≥ 2 .

Consequently, the dimension of the space of the (non homogeneous) harmonic
polynomials of degree at most q ∈ N in N variables is

ñ(N, q) : =

q∑

l=0

n(N, l) =

(
N + q − 1

N − 1

)
+

(
N + q − 2

N − 1

)
. (B.28)

The spherical harmonics satisfy the addition formula (cf. [158, Theorem 2]):

n(N,l)∑

m=1

Y m
l (ξ) Y ml (η) =

n(N, l)

|SN−1| Pl(ξ · η) l ∈ N , ξ,η ∈ S
N−1 . (B.29)

In two space dimensions (N = 2), the number n(2, l) of linearly independent
spherical harmonics of degree l is equal to 1, if l = 0, and equal to 2, if l ≥ 1;
we will use only one index l running over Z and define

Yl(e
iθ) :=

1√
2π

eilθ ∀ l ∈ Z ,

where R
2 is identified with C and the points on the unit circle S

1 are repre-
sented in polar coordinate as eiθ for θ ∈ [0, 2π).

If N = 3, the number of linearly independent spherical harmonics of degree
l is n(3, l) = 2l + 1, so the index m runs in the set {−l, . . . , l}. We use the
definition given in [59, (2.27)] and in [152, (9.37)]:

Y m
l (d) :=

√
(2l + 1)(l − |m|)!

4π(l + |m|)! P
|m|
l (cos θ) eimϕ (B.30)
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B. Special functions

l ∈ N , m = −l, . . . , l , d = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ S
2 ,

where Pml is a Legendre function as defined in (B.24). Notice that many
authors (cf. [160, 2.4.78], [25, 3.61]) use the alternative definition

Ỹ m
l (d) :=(−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ) eimϕ

l ∈ N , m = −l, . . . , l , d ∈ S
2 , (B.31)

that differs from (B.30) only in the sign for odd, positive indices m. In three
dimensions, the addition formula (B.29) reads (cf. [59, Theorem 2.8], [160,
(2.4.104)])

l∑

m=−l
Y m
l (ξ) Y m

l (η) =
2l + 1

4π
Pl(ξ · η) l ∈ N , ξ,η ∈ S

2 . (B.32)

The three dimensional Funk–Hecke formula (cf. [59, (2.44)]) states that

∫

S2

e−itξ·η Y m
l (ξ) dS(ξ) =

4π

il
jl(t) Y

m
l (η) η ∈ S

2 , t > 0 , 0 ≤ |m| ≤ l .

(B.33)
Equations (B.32) and (B.33) hold true also if Y m

l is replaced by Ỹ m
l .

Other useful identities are the Jacobi–Anger expansions which expand plane
waves in series of (hyper)spherical waves, namely, generalized harmonic poly-
nomials (see [59, (2.45)] and [13, (4-30)]):

eit cos θ =
∑

l∈Z
ilJl(t) e

ilθ ∀ t, θ ∈ R , (B.34)

eirξ·η =
∑

l≥0

(2l + 1) il jl(r) Pl(ξ · η) (B.35)

= 4π
∑

l≥0

il jl(r)

l∑

m=−l
Y m
l (ξ)Y m

l (η) ∀ ξ, η ∈ S
2 , r ≥ 0 ,

eirξ·η = (N − 2)!! |SN−1|
∑

l≥0

il jNl (r)

n(N,l)∑

m=1

Y m
l (ξ)Y m

l (η) (B.36)

∀ ξ, η ∈ S
N−1 , r ≥ 0 , N ≥ 3 .

All these series converge absolutely and uniformly on compact subsets of RN .

B.5. Vector spherical harmonics

In this section, we study the vector-valued counterpart of the spherical har-
monics introduced before; we only consider the case of space dimension N = 3.
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B.5. Vector spherical harmonics

B.5.1. Definitions and basic identities

We want to build an explicit basis for the space L2(S2)3 of the vector fields on
the sphere and for the subspace of the tangent vector fields

L2
T (S

2) :=
{
u : S2 7→ C

3, u ∈ L2(S2)3, u(x) · x = 0 ∀ x ∈ S
2
}
,

(denoted by T 2(Ω) in [59, page 177], TL2(S) in [160], L2
t (∂B1) in [152]). In

the literature, there exist plenty of definitions of bases for these two spaces.
Moreover, there is no established agreement concerning the notation: we will
follow that of [59, Sect. 6.5], [152, Sect. 9.3.3], [160, Sect. 2.4.4], [24, Sect. 3]
and [203, eq. (62)].

We need to use at least two different bases because we want to exploit
various properties: their relation with the harmonic polynomials and Herglotz
functions, the “tangentiality”, the orthonormality.

As a convention, every time we encounter one of the functions or vector
fields defined in the following with indices outside the range specified in the
definition, we assume that this function/vector field is equal to zero. We
consider all the functions and vector fields defined on S

2 as 0-homogeneous
functions of R3 \ {0}, i.e., f(x) = f

(
x
|x|
)
∀ x ∈ R

3 \ {0}. For a 0-homogeneous

function f , we have ∇f(x) = |x|−1 ∇Sf
(

x
|x|
)
and x · ∇f(x) = 0 where ∇S is

the surfacic gradient (see (B.38) below for its definition).
On the sphere, in the usual spherical coordinates (θ, ϕ), a vector d ∈ S

2 is
represented as d = (sin θ cosϕ, sin θ sinϕ, cos θ). The two unit vectors eθ and
eϕ are tangent to S

2 in the increasing direction of θ and ϕ, respectively.
The definitions presented in this section rely on the definition of three-

dimensional scalar spherical harmonics made in (B.30). However, they are
independent of the special choice of the basis: any orthonormal basis {Y m

l }
of the space of the traces on S

2 of the homogeneous harmonic polynomials
of degree l can be taken; this would not affect the definitions and the results
presented in the following; for instance all the Y m

l ’s might be substituted with

the Ỹ m
l defined in (B.31).

The first basis we consider allows an easy decomposition of the vector fields
defined on the sphere in their tangential and normal parts. It is defined as

Ym
l (x) := Y m

l (x)
x

|x| ∀ l ≥ 0 , |m| ≤ l ,

Um
l (x) :=

|x| ∇Y m
l (x)

(
l(l + 1)

)1/2 =
∇SY

m
l

(
x
|x|
)

(
l(l + 1)

)1/2 ∀ l ≥ 1 , |m| ≤ l ,

Vm
l (x) :=

x×∇Y m
l (x)

(
l(l + 1)

)1/2 =

x
|x| ×∇SY

m
l

(
x
|x|
)

(
l(l + 1)

)1/2

=
x

|x| ×Um
l (x) =

−|x|−1 −−→curlSY m
l

(
x
|x|
)

(
l(l + 1)

)1/2 ∀ l ≥ 1 , |m| ≤ l , (B.37)
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where we used the definition of surfacic gradient and rotational on S
2 from [160,

2.4.181-182]:

∇Su =
1

sin θ

∂u

∂ϕ
eϕ +

∂u

∂θ
eθ ,

−−→
curlSu = ∇Su× x = −∂u

∂θ
eϕ +

1

sin θ

∂u

∂ϕ
eθ .

(B.38)

It is clear that, for every l,m, we have Um
l , Vm

l ∈ L2
T (S

2), while Ym
l (x) is

orthogonal to S
2 at x. A useful formula is

x

|x| ×Vm
l (x) =

x

|x| ×
(

x

|x| ×Um
l (x)

)
(A.2)
= −Um

l (x) . (B.39)

The notation Um
l and Vm

l is used in [59, eq. (6.53)] and [152, eq. (9.56)].
In [24], Ym

l is defined together with the scaled basis

Ψl,m(x) : =
(
l(l + 1)

)1/2
Um
l (x) ,

Φl,m(x) : =
(
l(l + 1)

)1/2
Vm
l (x) ∀ l ≥ 1, |m| ≤ l . (B.40)

The set {Um
l ,V

m
l }l≥1, |m|≤l is an orthonormal basis of L2

T (S
2); together with

{Ym
l }l∈N, |m|≤l it constitutes a orthonormal basis of L2(S2)3 (see Theorem 6.23

of [59], Theorem 2.4.8 of [160], Lemma 9.15 of [152] and [24, (3.21)]).
In Chapter 13 of [157] (pages 1898-1899) a similar basis is defined as:

Pml = (Nl,m)
−1 Ym

l , Bml = (Nl,m)
−1 Um

l , Cml = −(Nl,m)
−1 Vm

l ,

where the coefficients Nl,m :=
√

(2l + 1)(l − |m|)!/(4π(l + |m|)!) come from
the normalization of the scalar spherical harmonics (B.30).

This set of functions can be used to compute the gradient of a scalar func-
tion that is separable in spherical coordinates (using [24, eq. (3.13)] and the
relations (B.40)):

∇
(
F (|x|) Y m

l

(
x
|x|
))

= F ′(|x|) Ym
l

(
x
|x|
)
+
F (|x|)
|x|

(
l(l+1)

)1/2
Um
l (x) ; (B.41)

the curl of a vector field (see [24, (3.12a–c)]):

∇×
(
FY (|x|) Ym

l (x) + FU (|x|) Um
l (x) + FV (|x|) Vm

l (x)
)

= −
(
l(l + 1)

)1/2 |x|−1FV (|x|) Ym
l (x)−

(
|x|−1FV (|x|) + F ′

V (|x|)
)
Um
l (x)

+
(
|x|−1 FU (|x|) + F ′

U (|x|) −
(
l(l + 1)

)1/2 |x|−1 FY (|x|)
)
Vm
l (x) ; (B.42)

and its divergence (see [24, (3.11a–c)]):

∇ ·
(
FY (|x|) Ym

l (x) + FU (|x|) Um
l (x) + FV (|x|) Vm

l (x)
)

=
(
F ′
Y (|x|) + 2 |x|−1 FY (|x|) −

(
l(l + 1)

)1/2 |x|−1 FU (x)
)
Y m
l (x) . (B.43)
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Notice that ∇ · [F (|x|)Vm
l (x)] = 0.

It is possible to define a different basis of L2(S2)3 from the traces of the
harmonic polynomials. From the definition of Y m

l (see Section B.4), for every
l ∈ N the set {

Hm
l (x) := |x|l Y m

l (x)
}
|m|≤l

is a basis of Hl, namely, the space of (scalar) homogeneous harmonic poly-
nomials of degree l in three variables. Theorem 2.4.7 of [160] states that the
vector fields

Iml (x) : = ∇Hm
l+1(x)

= (l + 1) |x|l Ym
l+1(x) + |x|l

(
(l + 1)(l + 2)

)1/2
Um
l+1(x)

l ≥ 0 , |m| ≤ l + 1 ,

T m
l (x) : = ∇Hm

l (x)× x

= −|x|l
(
l(l + 1)

)1/2
Vm
l (x)

l ≥ 1 , |m| ≤ l ,

Nm
l (x) : = (2l − 1) Hm

l−1(x) x− |x|2 ∇Hm
l−1(x)

= l |x|l Ym
l−1(x) − |x|l

(
(l − 1)l

)1/2
Um
l−1(x)

l ≥ 1 , |m| ≤ l − 1

(B.44)

constitute a basis of (Hl)3, when collected for fixed values of l and all the
possiblem. Notice the different ranges of the indices l andm in the three cases.
The above equalities are proved using (B.37) and (B.41). Following [160], we
will denote the traces on S

2 of these polynomials by

Iml (x) : = (l + 1) Ym
l+1(x) +

(
(l + 1)(l + 2)

)1/2
Um
l+1(x)

l ≥ 0 , |m| ≤ l + 1 ,

Tm
l (x) : = −

(
l(l + 1)

)1/2
Vm
l (x) l ≥ 1 , |m| ≤ l ,

Nm
l (x) : = l Ym

l−1(x)−
(
(l − 1)l

)1/2
Um
l−1(x) l ≥ 1 , |m| ≤ l − 1 .

(B.45)

Theorem 2.4.7 of [160] provides the L2(S2)3-norms of these fields:
∫

S2

|Iml (x)|2 dS(x) = (l + 1)(2l + 3) ,

∫

S2

|Tm
l (x)|2 dS(x) = l (l + 1) , (B.46)

∫

S2

|Nm
l (x)|2 dS(x) = l (2l − 1) ,

which hold for the same range of indices of (B.45). In order to prove a vector
Jacobi–Anger expansion, we need a special normalization of this basis accord-
ing to [203, eq. (62)]:

Ym
1,l(x) : =

|x|l+2 ∇[|x|−l−1 Y ml (x)]
(
(l + 1)(2l + 1

)
)
1
2
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(B.45),(B.41)
=

−1
(
(l + 1)(2l + 1)

) 1
2

Nm
l+1(x) l ≥ 0 , |m| ≤ l ,

Ym
0,l(x) :

(B.37)
= −iVm

l (x)
(B.45)
=

i Tm
l (x)

(l(l + 1))
1
2

l ≥ 1 , |m| ≤ l ,

Ym
−1,l(x) : =

|x|1−l ∇Hm
l (x)

(
l(2l + 1)

) 1
2

(B.44)
=

Iml−1(x)
(
l(2l + 1)

) 1
2

l ≥ 1 , |m| ≤ l .

(B.47)

Theorem 2.4.7 of [160] (or equation (71) of [203]) states that this set is an
orthonormal basis of L2(S2)3.

In [83, (5.36), (5.305–5.308)], the following notation is introduced:

y
(1)
l,m(x) := Ym

l (x) , y
(2)
l,m(x) := Um

l (x) , y
(3)
l,m(x) := Vm

l (x) ,

ỹ
(1)
l,m(x) := −Ym

1,l(x) , ỹ
(2)
l,m(x) := Ym

−1,l(x) , ỹ
(3)
l,m(x) := i Ym

0,l(x) , (B.48)

for l ∈ N and |m| ≤ l; see also table 2.1 and the equations (2.136–137), (5.17–
19) and (5.37) in [83].

From (B.44) and (B.45), we can easily derive a few other formulas:

Ym
l (x) =

1

2l + 1

(
Iml−1(x) +Nm

l+1(x)
)
,

Um
l (x) =

1

2l + 1

((
l + 1

l

)1/2

Iml−1(x)−
(

l

l + 1

)1/2

Nm
l+1(x)

)
,

Vm
l (x) = −

(
l(l + 1)

)−1/2
Tm
l (x) . (B.49)

We can compute the divergence and the curl of the vector harmonic poly-
nomials:

∇ · Iml (x) = ∆Hm
l+1(x) = 0 ,

∇ · T m
l (x)

(A.5)
= x · ∇ ×∇Hm

l (x)−∇Hm
l (x) · ∇ × x = 0 ,

∇ ·Nm
l (x)

(B.43)
=

(
l(l + 2) + l(l − 1)

)
|x|l−1 Y m

l−1(x)

= l (2l + 1) Hm
l−1(x) ,

∇× Iml (x)
(B.44)
= ∇×∇Hm

l+1(x) = 0 ,

∇× T m
l (x)

(B.42)
= l(l + 1) |x|l−1Ym

l (x) + (l + 1)
(
l(l + 1)

)1/2 |x|l−1Um
l (x)

(B.44)
= (l + 1) Iml−1 ,

∇×Nm
l (x)

(B.42)
= −(2l + 1)

(
(l − 1)l

)1/2 |x|l−1 Vm
l−1(x)

(B.44)
= (2l + 1) T m

l−1(x) . (B.50)

Finally, it is important to notice that the two orthonormal sets

{
{Ym

l }l≥0, |m|≤l , {Um
l }l≥1, |m|≤l , {Vm

l }l≥1, |m|≤l
}
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and {
{Ym

1,l}l≥0, |m|≤l , {Ym
0,l}l≥1, |m|≤l , {Ym

−1,l}l≥1, |m|≤l
}
,

generate the same space (L2(S2)3), but this is no longer true if we fix l to be
constant. The first basis is useful in order to split the fields in a tangent and a
radial part (and we need this to deal with the Maxwell–Herglotz functions, see
Remark 6.2.4); the second one has the advantage that it contains the traces
of homogeneous harmonic polynomials, thus it is useful in the approximation
theory.

B.5.2. Addition, Jacobi–Anger and Funk–Hecke formulas for
vector spherical harmonics

We want to prove the vector equivalent of formulas (B.32), (B.33), and (B.35);
different results are possible. The starting point is Equation (70) of [203] that
expands the vector spherical harmonic basis {Ym

ν,l} in scalar harmonics by
using the Wigner 3-j coefficient. This is a function of six variables denoted
with the symbol

( j1 j2 j3
m1 m2 m3

)
, frequently encountered in quantum mechanics;

its definition and description can be found, for example, in Section 3.7 of [72].
It satisfies the following orthogonality formula (see [72, (3.7.7)]):

∑

j3,m3

(2j3 + 1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′

1 m′
2 m3

)
= δm1,m′

1
δm2,m′

2

∀ j1 , j2 ∈ N , m1 , m2 , m
′
1 , m

′
2 ∈ Z ,

(B.51)

where the sum is taken over all the pairs of integers (j3,m3) such that the
Wigner coefficients are different from zero, i.e.:

{
(j3,m3) ∈ N× Z, |j1 − j2| ≤ j3 ≤ j1 + j2,

|m1|, |m′
1| ≤ j1, |m2|, |m′

2| ≤ j2, m1 +m2 +m3 = m′
1 +m′

2 +m3 = 0
}
.

If ex, ey, ez are the cartesian reference vectors of R3, following [203, (64)]
we define the complex reference vectors

e1 = − 1√
2
(ex + iey), e0 = ez, e−1 =

1√
2
(ex − iey) ,

that satisfy the orthogonality relation eµ ·eµ′ = δµ,µ′ , for µ and µ′ ∈ {−1, 0, 1}.
Given two vectors ξ,η ∈ C

3, we denote their coordinates in this reference
system with ξ = (ξ−1, ξ0, ξ1) and η = (η−1, η0, η1) and the tensor (dyadic)
product matrix with M = ξ ⊗ η, whose entries are Mµ;µ′ = ξµηµ′ , for µ, µ

′ ∈
{−1, 0, 1}. Thus, using the convention Y m

l (·) = 0 whenever |m| > l, we
consider the following expression:
( ∑

ν∈{−1,0,1}

∑

|m|≤l−ν
Ym
ν,l−ν(x)⊗Ym

ν,l−ν(y)
)

µ;µ′

[203, (70), n = l − ν]
=

∑

|m|≤l+1

Y m−µ
l (x)Y m−µ′

l (y)

207



B. Special functions

∑

ν∈{−1,0,1}
s.t. |m|≤l−ν

(
2(l − ν) + 1

) (l − ν l 1
m µ−m −µ

)(
l − ν l 1
m µ′ −m −µ′

)

j=l−ν
[72, (3.7.4)]

=
∑

|m|≤l+1

Y m−µ
l (x)Y m−µ′

l (y)

∑

j∈{l−1,l,l+1}
s.t. |m|≤j

(2j + 1)

(
l 1 j

µ−m −µ m

)(
l 1 j

µ′ −m −µ′ m

)

(B.51)
=

∑

|m|≤l+1

Y m−µ
l (x)Y m−µ′

l (y) δµ,µ′

(B.32)
=

2l + 1

4π
Pl(x · y) δµ,µ′ ∀ l ∈ N , µ , µ′ ∈ {−1, 0, 1} , x,y ∈ S

2 .

Notice that, in the previous formula, the case l = 0 has to be treated separately
by using |Ym

−1,0| = (2
√
π)−1 for m ∈ {−1, 0, 1} and the convention Y0

0,0 = 0.
We write this addition formula in matrix form:

∑

ν∈{−1,0,1}

∑

|m|≤l−ν
Ym
ν,l−ν(x) ⊗Ym

ν,l−ν(y) =
2l + 1

4π
Pl(x · y) Id3

∀ l ∈ N , x ,y ∈ S
2 ,

(B.52)

where Id3 is the 3× 3 identity matrix.
We can combine the summation formula above with the Jacobi–Anger for-

mula (B.35):

eirx·y Id3
(B.35)
=

∑

l≥0

(2l + 1) il jl(r) Pl(x · y) Id3

(B.52)
= 4π

∑

l≥0

il jl(r)
∑

ν∈{−1,0,1}

∑

|m|≤l−ν
Ym
ν,l−ν(x)⊗Ym

ν,l−ν(y)

∀ r ≥ 0 , x,y ∈ S
2 . (B.53)

Formula (B.53) gives a vectorial Funk–Hecke formula analogous to (B.33),
using the orthonormality of the basis {Ym

ν,l} in L2(S2)3:

∫

S2

eirx·y Ym
ν,l(y) dS(y) =

∫

S2

eirx·y Id3 ·Ym
ν,l(y) dS(y)

(B.53)
= 4π

∑

l′≥0

il
′
jl′(r)

∑

ν′∈{−1,0,1}

∑

|m′|≤l′−ν′
Ym′

ν′,l′−ν′(x)

·
∫

S2

Ym′

ν′,l′−ν′(y) ·Ym
ν,l(y) dS(y)

= 4π
∑

l′≥0

il
′
jl′(r)

∑

ν′∈{−1,0,1}

∑

|m′|≤l′−ν′
Ym′

ν′,l′−ν′(x) δl′−ν′,l δm′,m δν′,ν

= 4π il+ν jl+ν(r) Y
m
ν,l(x)
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∀ r ≥ 0 , x ∈ S
2 , l ∈ N , m ∈ Z , |m| ≤ l , ν ∈ {−1, 0, 1} .

(B.54)

This formula is useful to write the expression of a vectorial Herglotz function
given its kernel. Notice that, for the vector fields Um

l and Ym
l , formula (B.54)

can not be used directly because they are traces of non-homogeneous vector
harmonic polynomials. A slightly more involved formula is needed:

∫

S2

eirx·y Um
l (y) dS(y)

(B.49)
=

1

2l + 1

∫

S2

eirx·y
(( l + 1

l

)1/2
Iml−1(x)−

( l

l + 1

)1/2
Nm
l+1(x)

)
dS(y)

(B.47)
=

1

(2l + 1)1/2

∫

S2

eirx·y
(
(l + 1)1/2 Ym

−1,l(x) + l1/2 Ym
1,l(x)

)
dS(y)

(B.54)
=

4π il−1

(2l + 1)1/2

(
(l + 1)1/2 jl−1(r) Y

m
−1,l(x)− l1/2 jl+1 (r) Y

m
1,l(x)

)

(B.47)
=

4πil−1

2l + 1

(( l + 1

l

)1/2
jl−1(r) I

m
l−1(x) +

( l

l + 1

)1/2
jl+1 (r)N

m
l+1(x)

)

∀ r ≥ 0 , x ∈ S
2 , l ≥ 1 , |m| ≤ l , (B.55)

∫

S2

eirx·y Ym
l (y) dS(y)

(B.49)
=

∫

S2

eirx·y
(

1

2l + 1
Iml−1(x) +

1

2l + 1
Nm
l+1(x)

)
dS(y)

(B.47)
= (2l + 1)−1/2

∫

S2

eirx·y
(
l1/2 Ym

−1,l(x)− (l + 1)1/2 Ym
1,l(x)

)
dS(y)

(B.54)
=

4π il−1

(2l + 1)1/2

(
l1/2 jl−1(r) Y

m
−1,l(x) + (l + 1)

1
2 jl+1 (r) Y

m
1,l(x)

)

(B.47)
=

4π il−1

2l + 1

(
jl−1(r) I

m
l−1(x)− jl+1 (r) N

m
l+1(x)

)

∀ r ≥ 0 , x ∈ S
2 , l ≥ 0 , |m| ≤ l . (B.56)

The identities (B.54) (with ν = 0), (B.55) and (B.56) correspond to the
assertion of Theorem 5.42 of [83]. In order to verify the equivalence of the
formulas written in the different notation, we have to use the relations [83,
(2.136–137), (5.17–19)], (B.48), (B.45), and the fact that the coefficients G∧(l)
defined in [83, (3.321)] for the special function G(t) := eirt, t ∈ [−1, 1], r > 0,
satisfy:

G∧(l) : = 2π

∫ 1

−1
G(t) Pl(t) dt

(B.35)
= 2π

∑

l′≥0

(2l′ + 1) il
′
jl′(r)

∫ 1

−1
Pl′ (t)Pl(t) dt

(B.23)
= 4π

∑

l′≥0

2l′ + 1

2l + 1
il

′
jl′(r) δl,l′ = 4π il jl(r) .
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[16] I. Babuška and J. M. Melenk, The partition of unity method, Inter-
nat. J. Numer. Methods Engrg., 40 (1997), pp. 727–758.
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in Proceedings of 18eme Congrés Français de Mécanique. Grenoble, Aug
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||| · |||F+
M,h

, 186

Numerical dispersion, 5
Numerical flux

Helmholtz, 106
Maxwell, 182

ωP , 175
ωS, 175

Ψm
l , 204

ψ, elastic vector potential, 175
P, H1(Th)-projection, 121
Pl, Legendre polynomial, 200
Pml , Legendre function, 200
Pollution effect, 5
PUFEM, partition of unity FEM, 11
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Trefftz method, 6
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ûp, numerical flux, 107
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