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1. (a) Prove the vector differential identity:

∇× (fF) = (∇f)× F+ f(∇× F)

It is sufficient to prove the equality for the x-component of each side.

[10 marks]

(b) Demonstrate that the above identity holds for

f(x, y, z) = exy and F(x, y, z) = −xyî+ xyĵ+ z2k̂

[15 marks]

2. (a) Prove Green’s theorem:∮
∂R

Fxdx+ Fydy =
∫
R

(
∂Fy

∂x
− ∂Fx

∂y

)
dA

for the special case where Fy = 0 and R is a simple domain defined by

c ≤ x ≤ d and g(x) ≤ y ≤ h(x)

where the two functions satisfy g(c) = h(c) and g(d) = h(d).
You can assume the fundamental theorem of calculus:∫ b

a
f ′(x)dx = f(b)− f(a)

[12 marks]

(b) Demonstrate that Green’s theorem holds for

F(x, y) = −xyî+ xyĵ

where R is the triangle defined by

x ≥ 0, y ≥ 0 and x+ y ≤ 1.

Hint: it should be obvious that only one side of the triangle
contributes to the line integral.

[13 marks]

[End of Question Paper]
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