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You may use the following identities in the solution of the exercises:

~∇(fg) = f ~∇g + g~∇f,

~∇(~F · ~G) = (~F · ~∇)~G+ (~G · ~∇)~F+ ~G× (~∇× ~F) + ~F× (~∇× ~G),

~∇ · (f ~G) = (~∇f) · ~G+ f ~∇ · ~G,

~∇ · (~F× ~G) = (~∇× ~F) · ~G− ~F · (~∇× ~G),

~∇× (f ~G) = (~∇f)× ~G+ f ~∇× ~G,

~∇× (~F× ~G) = (~∇ · ~G)~F− (~∇ · ~F)~G+ (~G · ~∇)~F− (~F · ~∇)~G,

∆(fg) = (∆f)g + 2~∇f · ~∇g + f(∆g).

1. (a) Letf andg be two smooth scalar fields. Prove the following identity:

~∇× (f ~∇g) + ~∇× (g~∇f) = ~0.

You can use the vector differential identities proved in class; otherwise
it is sufficient to prove the equality for thex-component only.

[7 marks]

(b) Demonstrate the above identity for the following choiceof the fields:

f(~r) = x2, g(~r) = sin 2z − cosx.

[7 marks]

(c) From the identity above, it follows that~∇× (f ~∇f) = ~0 for all
smooth scalar fieldsf . Prove that, for all natural numbersn, ℓ ∈ N,
the more general identity~∇× (fn~∇(f ℓ)) = ~0 holds true.
(Herefn andf ℓ simply denote thenth andℓth powers off .)

Hint: use an appropriate version of the chain rule to computethe
gradients off ℓ andfn.

[6 marks]
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2. The quadrilateralR ⊂ R
2 is defined as

R =
{

xı̂+ ŷ, such thatx = (3− η)ξ, y = (2− ξ)η,

for 0 < ξ < 1, 0 < η < 1
}

.

Compute the area ofR.

[10 marks]

3. Consider the triangular prism

D = {xı̂+ ŷ + zk̂, such thatx > 0, y > 0, 0 < z < 1, x + y < 1}

with vertices~0, ı̂, ̂, k̂, (ı̂+ k̂), (̂+ k̂). Use the divergence theorem to
compute the flux of the vector field~F(~r) = ~r|~r|2 through its boundary∂D.

Hint: recall that the unit normal vector field̂n is oriented outward on∂D;
the flux of vector field~F through a surface is the integral of the normal
component of~F on that surface.

[10 marks]

4. Consider a three-dimensional domainD and two harmonic scalar fieldsf
andg. Use the divergence theorem to prove that the flux off ~∇g through
the boundary∂D is equal to the flux ofg~∇f through the same boundary.

Hint: recall that a field is harmonic if its Laplacian vanishes everywhere;
the use of vector differential identities may be helpful.

[10 marks]

[End of Question Paper]
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