
Vector calculus MA2VC and MA3VC 2015–16: Assignment 2

SOLUTIONS

(Exercise 1 — 6 marks) Consider the square Q = (0, 1)2 = {xı̂+ ŷ ∈ R
2, 0 < x < 1, 0 < y < 1} and the

change of variables

~T(x, y) = ξ(x, y)ξ̂ + η(x, y)η̂ where ξ(x, y) = xy, η(x, y) = y2 − x2.

1. Compute the area of the transformed region ~T(Q).

Hint: Recall example 2.28 in the notes.

2. Which of the following regions corresponds to ~T(Q)? Justify your answer.

Hint: the equations of the sides of ~T(Q), obtained from those of the four sides of Q, may help.
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(1.) We compute the Jacobian determinant and the area as the integral of the constant field f = 1:
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(2.) To understand the shape of ~T(Q) we first compute its vertices by substituting the coordinates of the four
vertices ~0, ı̂, ı̂+ ̂, ̂ of the square Q in the change of variables:

~T(~0) = 0ξ̂ + (0 − 0)η̂ = ~0, ~T(̂ı) = 0ξ̂ + (0− 1)η̂ = −η̂,

~T(̂ı+ ̂) = 1ξ̂ + (1 − 1)η̂ = ξ̂, ~T(̂) = 0ξ̂ + (1− 0)η̂ = η̂.

This rules out figures P2 and P5 whose boundaries do not contain ±η̂. To decide between the remaining figures,
we compute the image under ~T of the lines of the four edges of Q:

{x = 0} 7→ {ξ = 0},

{y = 0} 7→ {ξ = 0},

{x = 1} 7→ {ξ = y, η = y2 − 1} = {η = ξ2 − 1},

{y = 1} 7→ {ξ = x, η = 1− x2} = {η = 1− ξ2}.
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We see that two sides are mapped to the vertical line {ξ = 0}, which is part of the boundary of the regions in
P1, P3 and P4. The third line {x = 1} becomes {η = ξ2 − 1}, i.e. the graph of the parabola η = ξ2 − 1, which is
the lower side of the region in P3, see figure above. Similarly {y = 1} becomes {η = 1− ξ2} i.e. the parabola at

the upper side of the same region. Thus the answer is P3 .

Alternatively, (after ruling out P2 and P5) one can verify that the point ~p = 1
2 ı̂ + ̂ on the boundary of Q

(the mid point of the upper side) is mapped to ~T(~p) = 1
2 ξ̂+

3
4 η̂. This point lies above the straight line η = 1− ξ

through the points ξ̂ and η̂, so the upper side of ~T(Q) must be convex (graph of a concave function).

Another alternative solution is to recall that the area of ~T(Q) is 4/3 > 1, as computed in the first part of
the exercise, while Area(P1) = 1 and Area(P4) < 1, as they have the same vertices of P3.

You can visualise the change of coordinates with the Matlab function VCplotter (available on the course web
page) with the command: VCplotter(6, @(x,y) x*y, @(x,y) y^2-x^2, 0,1,0,1);
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(Exercise 2 — 14 marks) Let us fix the vector field ~F = x(̂ı + k̂) + 2ŷ.

1. Compute the line integral of ~F on the straight segment ΓS from ı̂ to ̂.

Hint: recall Remark 1.24 on the parametrisation of paths.

2. Compute the line integral of ~F on the arc ΓA of the unit circle {x2 + y2 = 1, z = 0} from ı̂ to ̂.

3. Prove that, for all paths Γ running from ı̂ to ̂ and lying in the xy-plane {z = 0}, the equality
∫

Γ
~F · d~r =

∫

ΓS

~F · d~r holds (where ΓS is the segment from part 1 of the question).

Hint: what is special in the parametrisation of a path lying in the xy-plane?

4. Find a path ΓV from ı̂ to ̂ such that
∫

ΓV

~F · d~r 6=
∫

ΓS

~F · d~r.

Hint: don’t forget the statement shown in question 3 (even if you did not manage to prove it). Look for a
simple path, you should be able to find one whose parametrisation’s components are polynomials of degree
at most two.
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(1.–2.) We write the parametrisations of the paths ΓS and ΓA (using Remark 1.24) and compute the correspond-
ing line integrals:

~aS(t) = ı̂+ t(̂ − ı̂) = (1− t)̂ı + t̂ 0 ≤ t ≤ 1,
d~aS
dt

(t) = −ı̂+ ̂,

∫
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~F · d~r =

∫ 1

0

(xı̂+ 2ŷ+ xk̂) · (−ı̂+ ̂) dt =

∫ 1

0
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0
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∫ 1

0

(3t− 1) dt =
1

2
,

~aA(t) = cos τ ı̂ + sin τ ̂ 0 ≤ τ ≤
π

2
,

d~aA
dτ

(τ) = − sin τ ı̂ + cos τ ̂,

∫
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∫ π/2

0

(xı̂ + 2ŷ+ xk̂) · (− sin τ ı̂+ cos τ ̂) dτ =

∫ π/2

0

(−1 + 2) sin τ cos τ dτ =
sin2 τ
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(3.) Since ~∇× ~F = −̂ 6= ~0, the field is not irrotational, thus ~F is not conservative . So we cannot use directly
the fundamental theorem of vector calculus and cannot expect that all paths from ı̂ to ̂ give the same line
integral. However, question 3 asks to consider only paths lying in the plane {z = 0}. A path of this kind has
parametrisation

~a(t) = a1(t)̂ı + a2(t)̂, tI ≤ t ≤ tF , ~a(tI) = ı̂, ~a(tF ) = ̂,

with no k̂ component. From this expression, it follows that also the total derivative has no k̂ component:
d~a
dt (t) =

da1

dt (t)̂ı+
da2

dt (t)̂. Thus the integral along this path reads

∫

Γ

~F · d~r =

∫ tF

tI

(xı̂ + 2ŷ+ xk̂) ·
(da1

dt
(t)̂ı+

da2
dt

(t)̂
)

dt from line integral formula (44),

=

∫ tF

tI

(

a1(t)
da1
dt

(t) + 2a2(t)
da2
dt

(t)
)

dt x = a1(t), y = a2(t) (note xk̂ does not contribute),

=

∫ tF

tI

d

dt

(1

2
a21(t) + a22(t)

)

dt product/chain rule for functions
(

a2(t)
)

′

= 2a(t)a′(t),

=
1

2
a21(tF ) + a22(tF )−

1

2
a21(tI)− a22(tI) fundamental theorem of calculus,

= 0 + 1−
1

2
− 0 =

1

2
because Γ runs from ı̂ to ̂, so ~a(tI) = ı̂, ~a(tF ) = ̂.

Thus the line integral on any Γ from ı̂ to ̂ lying in the xy-plane coincides with the integral found in question 1.
The key here is that the horizontal part of ~F is conservative, while only the component in the direction k̂

gives a non-conservative contribution, namely ~F = ~∇(12x
2 + y2) + xk̂. Since the path considered lies in the

xy-plane, the “non-conservative component” xk̂ of ~F does not contribute to the integral.
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(4.) From the previous question it is clear that we need a path that does not lie in the xy-plane. How to find it?
The simplest option is to start from ~aS(t) = (1 − t)̂ı + t̂ from question 1, and add to it a third component
a3(t)k̂. This must satisfy a3(0) = a3(1) = 0 in order to connect ı̂ to ̂, so we can take a3(t) = t(1 − t) = t− t2.
Let us check if this gives an integral different from 1

2 (it is not guaranteed):

~aV (t) : = (1 − t)̂ı+ t̂+ t(1− t)k̂, 0 ≤ t ≤ 1,
d~aV
dt

(t) = −ı̂+ ̂+ (1 − 2t)k̂, ~aV (0) = ı̂, ~aV (1) = ̂,

∫

ΓS

~F · d~r =

∫ 1

0

(xı̂+ 2ŷ+ xk̂) ·
(

− ı̂ + ̂+ (1− 2t)k̂
)

dt =

∫ 1

0

(

− x+ 2y + x(1 − 2t)
)

dt

=

∫ 1

0

(

− (1− t) + 2t+ (1− t)(1 − 2t)
)

dt =

∫ 1

0

(2t2) dt =
2

3
6=

1

2
,

as desired. So the curve ~aV (t) = (1− t)̂ı+ t̂+ t(1 − t)k̂ satisfies the request. The path ΓV is shown in figure.

(Actually, we can obtain any real number I as integral by choosing the curve ~aV (t) = (1−t)̂ı+t̂+(6I−3)t(1−t)k̂.)
Of course, many other curves can be chosen, they all need to exit the xy-plane and satisfy ~aV (tI) = ı̂, ~aV (tF ) = ̂.
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(Exercise 3 — 5/10 marks) Say which of the following statements are true.
MA2VC: You do NOT need to justify your answer.
MA3VC: Justify your answer. (In case the statement is true, prove it, otherwise find a simple counterexample.)

1. Let the path Γ be part of the graph of a function y = g(x) and ~F be a conservative field. Then
∫

Γ
~F · d~r = 0.

FALSE, for example ~F= ı̂= ~∇x and Γ the segment [~0, ı̂], graph of constant function y = 0, give
∫

Γ
~F · d~r = 1.

2. Let Γ be a circle and ~F an irrotational field defined in all of R3. Then
∫

Γ
~F · d~r = 0.

TRUE,
∫

Γ
~F · d~r = 0 because by Theorem 2.18 ~F is conservative and by the fundamental theorem of vector

calculus 2.14 (or by Theorem 2.19) its integral on a loop is zero. Recall that R
3 is star-shaped and that a

circle is a loop. The fact that ~F is defined in all of R3 is crucial to ensure it is conservative.

3. Let ~F be a vector field perpendicular to the path Γ at each point. Then
∫

Γ
~F · d~r = 0.

TRUE,
∫

Γ
~F · d~r = 0 because the line integral of ~F is the integral of the tangential component of ~F, which is

zero if ~F is perpendicular to the path. In formulas:
∫

Γ
~F · d~r =

∫

Γ(
~F · τ̂ ) ds by equation (45), and ~F · τ̂ = 0.

4. Let ~F be a vector field perpendicular to a surface S at each point. Then
∫∫

S
~F · d~S = 0.

FALSE, e.g. for any oriented surface (S, n̂) and ~F = n̂, the unit normal vector field on S, we have
∫∫

S

~F · d~S =

∫∫

S

(n̂ · n̂) dS =

∫∫

S

1 dS = Area(S) > 0, by equation (72).

For a more specific example, take e.g. the graph S0={0<x<1, 0<y<1, z=0} and ~F = n̂ = k̂,
∫∫

S
~F· d~S = 1.

5. Let ~X be a chart of a parametric surface S. Then
∫∫

S
∂~X
∂u · d~S = 0.

TRUE, the vector field ∂~X
∂u is tangent to S at each point, so its flux is zero. Using the flux formula (73) and

the triple product property ~p · (~p× ~q) = ~q · (~p× ~p) = 0, we have
∫∫

S
∂~X
∂u · d~S =

∫∫

R
∂~X
∂u · (∂

~X
∂u × ∂~X

∂w ) dA = 0.

Recall: the flux of a tangent field through a surface is zero, the line integral of a field perpendicular to a path is
zero, but the the flux of a perpendicular field and the line integral of a tangent field can take any value.
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