Vector calculus MA2VC and MA3VC 2015-16: Assignment 2 SOLUTIONS

(Exercise 1 - $\mathbf{6}$ marks) Consider the square $Q=(0,1)^{2}=\left\{x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}} \in \mathbb{R}^{2}, 0<x<1,0<y<1\right\}$ and the change of variables

$$
\overrightarrow{\mathbf{T}}(x, y)=\xi(x, y) \hat{\boldsymbol{\xi}}+\eta(x, y) \hat{\boldsymbol{\eta}} \quad \text { where } \quad \xi(x, y)=x y, \quad \eta(x, y)=y^{2}-x^{2} .
$$

1. Compute the area of the transformed region $\overrightarrow{\mathbf{T}}(Q)$.

Hint: Recall example 2.28 in the notes.
2. Which of the following regions corresponds to $\overrightarrow{\mathbf{T}}(Q)$? Justify your answer.

Hint: the equations of the sides of $\overrightarrow{\mathbf{T}}(Q)$, obtained from those of the four sides of Q, may help.

(1.) We compute the Jacobian determinant and the area as the integral of the constant field $f=1$:

$$
\begin{aligned}
\frac{\partial(\xi, \eta)}{\partial(x, y)} & =\left|\begin{array}{cc}
y & x \\
-2 x & 2 y
\end{array}\right|=2 y^{2}+2 x^{2}, \\
\operatorname{Area}(\overrightarrow{\mathbf{T}}(Q)) & =\iint_{\overrightarrow{\mathbf{T}}(Q)} 1 \mathrm{~d} \xi \mathrm{~d} \eta=\iint_{Q}\left|\frac{\partial(\xi, \eta)}{\partial(x, y)}\right| \mathrm{d} y \mathrm{~d} x=\int_{0}^{1} \int_{0}^{1}\left(2 x^{2}+2 y^{2}\right) \mathrm{d} y \mathrm{~d} x=\int_{0}^{1}\left(2 x^{2}+\frac{2}{3}\right) \mathrm{d} x=\frac{4}{3} .
\end{aligned}
$$

(2.) To understand the shape of $\overrightarrow{\mathbf{T}}(Q)$ we first compute its vertices by substituting the coordinates of the four vertices $\overrightarrow{\mathbf{0}}, \hat{\boldsymbol{\imath}}, \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}, \hat{\boldsymbol{\jmath}}$ of the square Q in the change of variables:

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}(\overrightarrow{\mathbf{0}}) & =0 \hat{\boldsymbol{\xi}}+(0-0) \hat{\boldsymbol{\eta}}=\overrightarrow{\mathbf{0}}, & & \overrightarrow{\mathbf{T}}(\hat{\boldsymbol{\imath}})=0 \hat{\boldsymbol{\xi}}+(0-1) \hat{\boldsymbol{\eta}}=-\hat{\boldsymbol{\eta}} \\
\overrightarrow{\mathbf{T}}(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}) & =1 \hat{\boldsymbol{\xi}}+(1-1) \hat{\boldsymbol{\eta}}=\hat{\boldsymbol{\xi}}, & & \overrightarrow{\mathbf{T}}(\hat{\boldsymbol{\jmath}})=0 \hat{\boldsymbol{\xi}}+(1-0) \hat{\boldsymbol{\eta}}=\hat{\boldsymbol{\eta}} .
\end{aligned}
$$

This rules out figures P_{2} and P_{5} whose boundaries do not contain $\pm \hat{\boldsymbol{\eta}}$. To decide between the remaining figures, we compute the image under $\overrightarrow{\mathbf{T}}$ of the lines of the four edges of Q :

$$
\begin{aligned}
\{x=0\} & \mapsto
\end{aligned}\{\xi=0\},
$$

We see that two sides are mapped to the vertical line $\{\xi=0\}$, which is part of the boundary of the regions in P_{1}, P_{3} and P_{4}. The third line $\{x=1\}$ becomes $\left\{\eta=\xi^{2}-1\right\}$, i.e. the graph of the parabola $\eta=\xi^{2}-1$, which is the lower side of the region in P_{3}, see figure above. Similarly $\{y=1\}$ becomes $\left\{\eta=1-\xi^{2}\right\}$ i.e. the parabola at the upper side of the same region. Thus the answer is P_{3}.

Alternatively, (after ruling out P_{2} and P_{5}) one can verify that the point $\overrightarrow{\mathbf{p}}=\frac{1}{2} \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}$ on the boundary of Q (the mid point of the upper side) is mapped to $\overrightarrow{\mathbf{T}}(\overrightarrow{\mathbf{p}})=\frac{1}{2} \hat{\boldsymbol{\xi}}+\frac{3}{4} \hat{\boldsymbol{\eta}}$. This point lies above the straight line $\eta=1-\xi$ through the points $\hat{\boldsymbol{\xi}}$ and $\hat{\boldsymbol{\eta}}$, so the upper side of $\overrightarrow{\boldsymbol{T}}(Q)$ must be convex (graph of a concave function).

Another alternative solution is to recall that the area of $\overrightarrow{\mathbf{T}}(Q)$ is $4 / 3>1$, as computed in the first part of the exercise, while $\operatorname{Area}\left(P_{1}\right)=1$ and $\operatorname{Area}\left(P_{4}\right)<1$, as they have the same vertices of P_{3}.

You can visualise the change of coordinates with the Matlab function VCplotter (available on the course web page) with the command: VCplotter (6, @(x,y) x*y, @(x,y) y^2-x^2,0,1,0,1);
(Exercise 2-14 marks) Let us fix the vector field $\overrightarrow{\mathbf{F}}=x(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{k}})+2 y \hat{\boldsymbol{\jmath}}$.

1. Compute the line integral of $\overrightarrow{\mathbf{F}}$ on the straight segment Γ_{S} from $\hat{\boldsymbol{\imath}}$ to $\hat{\boldsymbol{\jmath}}$.

Hint: recall Remark 1.24 on the parametrisation of paths.
2. Compute the line integral of $\overrightarrow{\mathbf{F}}$ on the arc Γ_{A} of the unit circle $\left\{x^{2}+y^{2}=1, z=0\right\}$ from $\hat{\boldsymbol{\imath}}$ to $\hat{\boldsymbol{\jmath}}$.
3. Prove that, for all paths Γ running from $\hat{\boldsymbol{\imath}}$ to $\hat{\boldsymbol{\jmath}}$ and lying in the $x y$-plane $\{z=0\}$, the equality $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=$ $\int_{\Gamma_{S}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}$ holds (where Γ_{S} is the segment from part 1 of the question).
Hint: what is special in the parametrisation of a path lying in the xy-plane?
4. Find a path Γ_{V} from $\hat{\boldsymbol{\imath}}$ to $\hat{\boldsymbol{\jmath}}$ such that $\int_{\Gamma_{V}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}} \neq \int_{\Gamma_{S}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}$.

Hint: don't forget the statement shown in question 3 (even if you did not manage to prove it). Look for a simple path, you should be able to find one whose parametrisation's components are polynomials of degree at most two.

(1.-2.) We write the parametrisations of the paths Γ_{S} and Γ_{A} (using Remark 1.24) and compute the corresponding line integrals:

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}_{S}(t)=\hat{\boldsymbol{\imath}}+t(\hat{\boldsymbol{\jmath}}-\hat{\boldsymbol{\imath}})=(1-t) \hat{\boldsymbol{\imath}}+t \hat{\boldsymbol{\jmath}} \quad 0 \leq t \leq 1, \quad \frac{d \overrightarrow{\mathbf{a}}_{S}}{d t}(t)=-\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}, \\
& \int_{\Gamma_{S}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\int_{0}^{1}(x \hat{\boldsymbol{\imath}}+2 y \hat{\boldsymbol{\jmath}}+x \hat{\boldsymbol{k}}) \cdot(-\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}) \mathrm{d} t=\int_{0}^{1}(-x+2 y) \mathrm{d} t=\int_{0}^{1}(-(1-t)+2 t) \mathrm{d} t=\int_{0}^{1}(3 t-1) \mathrm{d} t=\frac{1}{2}, \\
& \overrightarrow{\mathbf{a}}_{A}(t)=\cos \tau \hat{\boldsymbol{\imath}}+\sin \tau \hat{\boldsymbol{\jmath}} \quad 0 \leq \tau \leq \frac{\pi}{2}, \quad \frac{d \overrightarrow{\mathbf{a}}_{A}}{d \tau}(\tau)=-\sin \tau \hat{\boldsymbol{\imath}}+\cos \tau \hat{\boldsymbol{\jmath}}, \\
& \int_{\Gamma_{A}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\int_{0}^{\pi / 2}(x \hat{\boldsymbol{\imath}}+2 y \hat{\boldsymbol{\jmath}}+x \hat{\boldsymbol{k}}) \cdot(-\sin \tau \hat{\boldsymbol{\imath}}+\cos \tau \hat{\boldsymbol{\jmath}}) \mathrm{d} \tau=\int_{0}^{\pi / 2}(-1+2) \sin \tau \cos \tau \mathrm{d} \tau=\left.\frac{\sin ^{2} \tau}{2}\right|_{0} ^{\pi / 2}=\frac{1}{2} .
\end{aligned}
$$

(3.) Since $\vec{\nabla} \times \overrightarrow{\mathbf{F}}=-\hat{\boldsymbol{\jmath}} \neq \overrightarrow{\mathbf{0}}$, the field is not irrotational, thus $\overrightarrow{\mathbf{F}}$ is not conservative. So we cannot use directly the fundamental theorem of vector calculus and cannot expect that all paths from $\hat{\boldsymbol{\imath}}$ to $\hat{\boldsymbol{\jmath}}$ give the same line integral. However, question 3 asks to consider only paths lying in the plane $\{z=0\}$. A path of this kind has parametrisation

$$
\overrightarrow{\mathbf{a}}(t)=a_{1}(t) \hat{\boldsymbol{\imath}}+a_{2}(t) \hat{\boldsymbol{\jmath}}, \quad t_{I} \leq t \leq t_{F}, \quad \overrightarrow{\mathbf{a}}\left(t_{I}\right)=\hat{\boldsymbol{\imath}}, \quad \overrightarrow{\mathbf{a}}\left(t_{F}\right)=\hat{\boldsymbol{\jmath}}
$$

with no $\hat{\boldsymbol{k}}$ component. From this expression, it follows that also the total derivative has no $\hat{\boldsymbol{k}}$ component: $\frac{d \overrightarrow{\mathbf{a}}}{d t}(t)=\frac{d a_{1}}{d t}(t) \hat{\boldsymbol{\imath}}+\frac{d a_{2}}{d t}(t) \hat{\boldsymbol{\jmath}}$. Thus the integral along this path reads

$$
\begin{array}{rlrl}
\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}} & =\int_{t_{I}}^{t_{F}}(x \hat{\boldsymbol{\imath}}+2 y \hat{\boldsymbol{\jmath}}+x \hat{\boldsymbol{k}}) \cdot\left(\frac{d a_{1}}{d t}(t) \hat{\boldsymbol{\imath}}+\frac{d a_{2}}{d t}(t) \hat{\boldsymbol{\jmath}}\right) \mathrm{d} t & & \text { from line integral formula (44) } \\
& =\int_{t_{I}}^{t_{F}}\left(a_{1}(t) \frac{d a_{1}}{d t}(t)+2 a_{2}(t) \frac{d a_{2}}{d t}(t)\right) \mathrm{d} t & x=a_{1}(t), y=a_{2}(t) \quad \text { (note } x \hat{\boldsymbol{k}} \text { does not contribute), }
\end{array}
$$

$$
=\int_{t_{I}}^{t_{F}} \frac{d}{d t}\left(\frac{1}{2} a_{1}^{2}(t)+a_{2}^{2}(t)\right) \mathrm{d} t \quad \text { product/chain rule for functions }\left(a^{2}(t)\right)^{\prime}=2 a(t) a^{\prime}(t)
$$

$$
=\frac{1}{2} a_{1}^{2}\left(t_{F}\right)+a_{2}^{2}\left(t_{F}\right)-\frac{1}{2} a_{1}^{2}\left(t_{I}\right)-a_{2}^{2}\left(t_{I}\right) \quad \text { fundamental theorem of calculus }
$$

$$
=0+1-\frac{1}{2}-0=\frac{1}{2} \quad \text { because } \Gamma \text { runs from } \hat{\boldsymbol{\imath}} \text { to } \hat{\boldsymbol{\jmath}}, \text { so } \overrightarrow{\mathbf{a}}\left(t_{I}\right)=\hat{\boldsymbol{\imath}}, \overrightarrow{\mathbf{a}}\left(t_{F}\right)=\hat{\boldsymbol{\jmath}}
$$

Thus the line integral on any Γ from $\hat{\boldsymbol{\imath}}$ to $\hat{\boldsymbol{\jmath}}$ lying in the $x y$-plane coincides with the integral found in question 1 .
The key here is that the horizontal part of $\overrightarrow{\mathbf{F}}$ is conservative, while only the component in the direction $\hat{\boldsymbol{k}}$ gives a non-conservative contribution, namely $\overrightarrow{\mathbf{F}}=\vec{\nabla}\left(\frac{1}{2} x^{2}+y^{2}\right)+x \hat{\boldsymbol{k}}$. Since the path considered lies in the $x y$-plane, the "non-conservative component" $x \hat{\boldsymbol{k}}$ of $\overrightarrow{\mathbf{F}}$ does not contribute to the integral.
(4.) From the previous question it is clear that we need a path that does not lie in the $x y$-plane. How to find it? The simplest option is to start from $\overrightarrow{\mathbf{a}}_{S}(t)=(1-t) \hat{\boldsymbol{\imath}}+t \hat{\jmath}$ from question 1 , and add to it a third component $a_{3}(t) \hat{\boldsymbol{k}}$. This must satisfy $a_{3}(0)=a_{3}(1)=0$ in order to connect $\hat{\boldsymbol{\imath}}$ to $\hat{\boldsymbol{\jmath}}$, so we can take $a_{3}(t)=t(1-t)=t-t^{2}$. Let us check if this gives an integral different from $\frac{1}{2}$ (it is not guaranteed):

$$
\begin{aligned}
\overrightarrow{\mathbf{a}}_{V}(t): & =(1-t) \hat{\boldsymbol{\imath}}+t \hat{\boldsymbol{\jmath}}+t(1-t) \hat{\boldsymbol{k}}, \quad 0 \leq t \leq 1, \quad \frac{d \overrightarrow{\mathbf{a}}_{V}}{d t}(t)=-\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+(1-2 t) \hat{\boldsymbol{k}}, \quad \overrightarrow{\mathbf{a}}_{V}(0)=\hat{\boldsymbol{\imath}}, \quad \overrightarrow{\mathbf{a}_{V}}(1)=\hat{\boldsymbol{\jmath}} \\
\int_{\Gamma_{S}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}} & =\int_{0}^{1}(x \hat{\boldsymbol{\imath}}+2 y \hat{\boldsymbol{\jmath}}+x \hat{\boldsymbol{k}}) \cdot(-\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+(1-2 t) \hat{\boldsymbol{k}}) \mathrm{d} t=\int_{0}^{1}(-x+2 y+x(1-2 t)) \mathrm{d} t \\
& =\int_{0}^{1}(-(1-t)+2 t+(1-t)(1-2 t)) \mathrm{d} t=\int_{0}^{1}\left(2 t^{2}\right) \mathrm{d} t=\frac{2}{3} \neq \frac{1}{2}
\end{aligned}
$$

as desired. So the curve $\overrightarrow{\mathbf{a}}_{V}(t)=(1-t) \hat{\boldsymbol{\imath}}+t \hat{\boldsymbol{\jmath}}+t(1-t) \hat{\boldsymbol{k}}$ satisfies the request. The path Γ_{V} is shown in figure. (Actually, we can obtain any real number I as integral by choosing the curve $\overrightarrow{\mathbf{a}}_{V}(t)=(1-t) \hat{\boldsymbol{\imath}}+t \hat{\boldsymbol{\jmath}}+(6 I-3) t(1-t) \hat{\boldsymbol{k}}$.) Of course, many other curves can be chosen, they all need to exit the $x y$-plane and satisfy $\overrightarrow{\mathbf{a}}_{V}\left(t_{I}\right)=\hat{\boldsymbol{\imath}}, \overrightarrow{\mathbf{a}}_{V}\left(t_{F}\right)=\hat{\boldsymbol{\jmath}}$.

(Exercise 3-5/10 marks) Say which of the following statements are true.
MA2VC: You do NOT need to justify your answer.
MA3VC: Justify your answer. (In case the statement is true, prove it, otherwise find a simple counterexample.)

1. Let the path Γ be part of the graph of a function $y=g(x)$ and $\overrightarrow{\mathbf{F}}$ be a conservative field. Then $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=0$. FALSE, for example $\overrightarrow{\mathbf{F}}=\hat{\boldsymbol{\imath}}=\vec{\nabla} x$ and Γ the segment $[\overrightarrow{\mathbf{0}}, \hat{\boldsymbol{\imath}}]$, graph of constant function $y=0$, give $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=1$.
2. Let Γ be a circle and $\overrightarrow{\mathbf{F}}$ an irrotational field defined in all of \mathbb{R}^{3}. Then $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=0$.

TRUE, $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=0$ because by Theorem $2.18 \overrightarrow{\mathbf{F}}$ is conservative and by the fundamental theorem of vector calculus 2.14 (or by Theorem 2.19) its integral on a loop is zero. Recall that \mathbb{R}^{3} is star-shaped and that a circle is a loop. The fact that $\overrightarrow{\mathbf{F}}$ is defined in all of \mathbb{R}^{3} is crucial to ensure it is conservative.
3. Let $\overrightarrow{\mathbf{F}}$ be a vector field perpendicular to the path Γ at each point. Then $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=0$.

TRUE, $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=0$ because the line integral of $\overrightarrow{\mathbf{F}}$ is the integral of the tangential component of $\overrightarrow{\mathbf{F}}$, which is zero if $\overrightarrow{\mathbf{F}}$ is perpendicular to the path. In formulas: $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=\int_{\Gamma}(\overrightarrow{\mathbf{F}} \cdot \hat{\boldsymbol{\tau}}) \mathrm{d} s$ by equation (45), and $\overrightarrow{\mathbf{F}} \cdot \hat{\boldsymbol{\tau}}=0$.
4. Let $\overrightarrow{\mathbf{F}}$ be a vector field perpendicular to a surface S at each point. Then $\iint_{S} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{S}}=0$.

FALSE, e.g. for any oriented surface $(S, \hat{\boldsymbol{n}})$ and $\overrightarrow{\mathbf{F}}=\hat{\boldsymbol{n}}$, the unit normal vector field on S, we have

$$
\iint_{S} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{S}}=\iint_{S}(\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{n}}) \mathrm{d} S=\iint_{S} 1 \mathrm{~d} S=\operatorname{Area}(S)>0, \quad \text { by equation }(72)
$$

For a more specific example, take e.g. the graph $S_{0}=\{0<x<1,0<y<1, z=0\}$ and $\overrightarrow{\mathbf{F}}=\hat{\boldsymbol{n}}=\hat{\boldsymbol{k}}, \iint_{S} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{S}}=1$.
5. Let $\overrightarrow{\mathbf{X}}$ be a chart of a parametric surface S. Then $\iint_{S} \frac{\partial \overrightarrow{\mathbf{x}}}{\partial u} \cdot \mathrm{~d} \overrightarrow{\mathbf{S}}=0$.

TRUE, the vector field $\frac{\partial \overrightarrow{\mathbf{x}}}{\partial u}$ is tangent to S at each point, so its flux is zero. Using the flux formula (73) and the triple product property $\overrightarrow{\mathbf{p}} \cdot(\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{q}})=\overrightarrow{\mathbf{q}} \cdot(\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{p}})=0$, we have $\iint_{S} \frac{\partial \overrightarrow{\mathbf{X}}}{\partial u} \cdot \mathrm{~d} \overrightarrow{\mathbf{S}}=\iint_{R} \frac{\partial \overrightarrow{\mathbf{x}}}{\partial u} \cdot\left(\frac{\partial \overrightarrow{\mathbf{x}}}{\partial u} \times \frac{\partial \overrightarrow{\mathbf{x}}}{\partial w}\right) \mathrm{d} A=0$.

Recall: the flux of a tangent field through a surface is zero, the line integral of a field perpendicular to a path is zero, but the the flux of a perpendicular field and the line integral of a tangent field can take any value.

