
Vector calculus MA2VC 2014–15 — Assignment 1

SOLUTIONS

(Exercise 1) Compute a scalar potential ϕ for the vector field ~F = yz(z̂+ yk̂).

Is ~F solenoidal, irrotational? Does ~F allow a vector potential?

It is easy to find that the scalar potentials of ~F are the scalar fields ϕ =
1

2
y2z2 + λ , where λ is a real constant:

∂ϕ

∂x
= 0 ⇒ ϕ(x, y, z) = f(y, z) for some two-dimensional scalar field f,

∂ϕ

∂y
= yz2 ⇒

∂f(y, z)

∂y
= yz2 ⇒ ϕ =

1

2
y2z2 + g(z) for some real function g,

∂ϕ

∂z
= y2z ⇒

∂
(

1
2y

2z2 + g(z)
)

∂z
= y2z +

∂g(z)

∂z
= y2z ⇒

∂g(z)

∂z
= 0

⇒ ϕ =
1

2
y2z2 + λ.

To verify that the scalar potential is correct, it is sufficient to check that ~∇ϕ = ~F.
Since ~F is conservative, by the box in Section 1.5 or by the identity ~∇× (~∇ϕ) = ~0, ~F is irrotational.

The divergence of ~F is not zero: ~∇ · ~F = z2 + y2 6= 0, so ~F is not solenoidal. This implies that ~F does not
admit a vector potential, again by the box in Section 1.5 or by the identity ~∇ · (~∇× ~A) = 0.

(Exercise 2) Let ~F be a vector field with scalar potential ϕ, and let ~G be a vector field with scalar potential

ψ. Prove the following identity: 2~F · ~G = ∆(ϕψ)− ψ~∇ · ~F− ϕ~∇ · ~G.

The identity to be proved is nothing else than the product rule (32) for the Laplacian in disguise. We can either
use the known vector identities (simpler, i) or expand in partial derivatives (more complicated, ii).1

(Version i) We use three tools:

• The definition of scalar potential, namely ~F = ~∇ϕ and ~G = ~∇ψ;
• Identity (22) in the notes, which gives ∆ϕ = ~∇ · (~∇ϕ) = ~∇ · ~F and ∆ψ = ~∇ · (~∇ψ) = ~∇ · ~G;
• The product rule (32) for the Laplacian.
These identities together lead to

∆(ϕψ)
(32)
= (∆ϕ)ψ + 2~∇ϕ · ~∇ψ + (∆ψ)ϕ

(22)
= ~∇ ·(~∇ϕ)ψ + 2~∇ϕ · ~∇ψ + ~∇ ·(~∇ψ)ϕ = (~∇ · ~F)ψ + 2~F · ~G+ (~∇ · ~G)ϕ.

Rearranging for 2~F · ~G immediately gives the desired result.

(Version ii) If we use the expansion in components, we need to use twice the product rule for partial

derivatives (8), together with the definitions of Laplacian (20), divergence (17) and scalar potentials ~F = ~∇ϕ,
~G = ~∇ψ. The right-hand side of the identity can be expanded as follows:

∆(ϕψ)−ψ~∇ · ~F− ϕ~∇ · ~G

(17),(20)
=

∂2(ϕψ)

∂x2
+
∂2(ϕψ)

∂y2
+
∂2(ϕψ)

∂z2
− ψ

(

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)

− ϕ

(

∂G1

∂x
+
∂G2

∂y
+
∂G3

∂z

)

(8)
=

∂

∂x

(

∂ϕ

∂x
ψ + ϕ

∂ψ

∂x

)

+
∂

∂y

(

∂ϕ

∂y
ψ + ϕ

∂ψ

∂y

)

+
∂

∂z

(

∂ϕ

∂z
ψ + ϕ

∂ψ

∂z

)

− ψ

(

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)

− ϕ

(

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)

(8)
=
∂2ϕ

∂x2
ψ + 2

∂ϕ

∂x

∂ψ

∂x
+ ϕ

∂2ψ

∂x2
+
∂2ϕ

∂y2
ψ + 2

∂ϕ

∂y

∂ψ

∂y
+ ϕ

∂2ψ

∂y2
+
∂2ϕ

∂z2
ψ + 2

∂ϕ

∂z

∂ψ

∂z
+ ϕ

∂2ψ

∂z2

− ψ

(

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)

− ϕ

(

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)

1 A nice alternative solution I found in some of the assignments is the following (similar to i but slightly more complicated):

2~F · ~G = ~F · ~G+ ~F · ~G = ~∇ϕ · ~G+ ~F · ~∇ψ
(28)
= ~∇ · (ϕ~G)− ϕ~∇ · ~G+ ~∇ · (ψ~F)− ψ~∇ · ~F = ~∇ · (ϕ~G+ ψ~F)− ψ~∇ · ~F− ϕ~∇ · ~G

= ~∇ · (ϕ~∇ψ + ψ~∇ϕ)− ψ~∇ · ~F− ϕ~∇ · ~G
(26)
= ~∇ ·

(

~∇(ϕψ)
)

− ψ~∇ · ~F− ϕ~∇ · ~G
(22)
= ∆(ϕψ) − ψ~∇ · ~F− ϕ~∇ · ~G.
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= 2
∂ϕ

∂x

∂ψ

∂x
+ 2

∂ϕ

∂y

∂ψ

∂y
+ 2

∂ϕ

∂z

∂ψ

∂z

= 2~∇ϕ · ~∇ψ

= 2~F · ~G.

(Exercise 3) Demonstrate the identity in Ex. (2) for the vector field ~F in Ex. (1) and the scalar field ψ = y3.

We compute all the terms appearing in the identity (λ can be fixed to 0):

ϕ =
1

2
y2z2 + λ from Exercise (1),

ψ = y3,

~F = yz(z̂+ yk̂),

~G = ~∇ψ = 3y2̂,

~∇ · ~F =
∂(yz2)

∂y
+
∂(y2z)

∂z
= z2 + y2,

~∇ · ~G =
∂(3y2)

∂y
= 6y,

ψ(~∇ · ~F) = ψ∆ϕ = y3z2 + y5,

ϕ(~∇ · ~G) = ϕ∆ψ = 3y3z2 + 6yλ,

~F · ~G = 3y3z2,

ϕψ =
1

2
y5z2 + y3λ

∆(ϕψ) =
∂2(12y

5z2 + y3λ)

∂y2
+
∂2(12y

5z2)

∂z2
= 10y3z2 + 6yλ+ y5,

LHS = 2~F · ~G = 6y3z2,

RHS = ∆(ϕψ)− ψ~∇ · ~F− ϕ~∇ · ~G = (10y3z2 + 6yλ+ y5)− (y3z2 + y5)− (3y3z2 + 6yλ) = 6y3z2.

The left-hand side (LHS) and the right-hand side (RHS) of the identity coincide, so the identity is demonstrated.
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