MA2VC, Vector Calculus, Assignment 1

due: 12pm on the 4th of Nov 2011 (late assignments will not be accepted)

1) (7 marks) Prove the identity:

$$
\nabla \cdot(\mathbf{F} \times \mathbf{G})=(\nabla \times \mathbf{F}) \cdot \mathbf{G}-\mathbf{F} \cdot(\nabla \times \mathbf{G})
$$

2) (7 marks) Demonstrate that the above identity is satisfied for the vector fields:

$$
\begin{aligned}
\mathbf{F} & =y z \hat{\mathbf{i}}+x z \hat{\mathbf{j}} \\
\mathbf{G} & =x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}
\end{aligned}
$$

3a) (2 marks) Evaluate $\mathbf{F}=\nabla \times \mathbf{A}$, where $\mathbf{A}=x z \hat{\mathbf{i}}-y z \hat{\mathbf{j}}$.
3b) (2 marks) Show that it is both an irrotational vector field (i.e., $\nabla \times \mathbf{F}=0$) as well as a solenoidal vector field (i.e., $\nabla \cdot \mathbf{F}=0$).

3c) (2 marks) Determine its scalar potential ϕ (i.e., $\mathbf{F}=\nabla \phi$).

