MA2VC, Vector Calculus, Assignment 2
due: 12 pm on the 18th of Nov 2011 (late assignments will not be accepted)
1a) (3 marks) Calculate the derivative $\frac{d f}{d t}$ of the scalar field, $f(\mathbf{r})=e^{x y z}$, along the path $\mathbf{r}(t)=t \hat{\mathbf{i}}+t \hat{\mathbf{j}}+t^{2} \hat{\mathbf{k}}$.
1b) (2 marks) Calculate the change in the scalar field, Δf, in going from $t=1$ to $t=1.01$, and then estimate it using the derivative $\frac{d f}{d t}$.

2a) (4 marks) Calculate the vector field, $\mathbf{F}(\mathbf{r})=\nabla \phi(\mathbf{r})$, for the potential $\phi(\mathbf{r})=1 / r$.
2b) (1 mark) Determine the line integral $\int \mathbf{F} \cdot d \mathbf{r}$ from $(1,1,0)$ to $(2,2,0)$ using the change in the potential.
2c) (4 marks) Explicitly calculate $\int \mathbf{F} \cdot d \mathbf{r}$ along the straight path from $(1,1,0)$ to $(2,2,0)$.
2d) (6 marks) Explicitly calculate $\int \mathbf{F} \cdot d \mathbf{r}$ along the 2 straight-line segments from $(1,1,0)$ to $(1,2,0)$ to $(2,2,0)$.

