MA2VC, Vector Calculus, Assignment 1

due: 12pm, 2 Nov 2012 (late assignments will not be accepted, and marks will be deducted for poor presentation)

1) (4 marks) Sketch the volume defined by

$$
x \geq 0, \quad y \geq 0, \quad z \geq 0, \quad \text { and } \quad 3 x+2 y+z \leq 6
$$

and determine the outward pointing unit normal, $\hat{\mathbf{n}}$, on each of the four sides, by taking the gradient of a scalar field defined such that the side is a level surface, i.e., $\phi(\mathbf{r})=$ constant.
2) (4 marks) Prove the vector differential identity

$$
\nabla \cdot(f(\nabla g \times \nabla h))=\nabla f \cdot(\nabla g \times \nabla h)
$$

You can make use of the identities on the reverse side.
3) (4 marks) Demonstrate that the above identity is satisfied for the scalar fields

$$
\begin{aligned}
f(\mathbf{r}) & =e^{x+y} \\
g(\mathbf{r}) & =x y+z^{2} \\
h(\mathbf{r}) & =e^{z}
\end{aligned}
$$

4) (4 marks) Show that the vector field

$$
\mathbf{F}(\mathbf{r})=2 x z \hat{\mathbf{i}}+2 y z \hat{\mathbf{j}}+\left(x^{2}+y^{2}+z^{2}\right) \hat{\mathbf{k}}
$$

is irrotational and find a scalar potential, $\phi(\mathbf{r})$.
5) (4 marks) Show that the vector field

$$
\mathbf{F}(\mathbf{r})=2 x y \hat{\mathbf{i}}-y^{2} \hat{\mathbf{j}}
$$

is solenoidal and find a vector potential, $\mathbf{A}(\mathbf{r})$. Hint: look for one that just has a z component.

Vector Differential Identities
(a) $\quad \nabla(f g)=f \nabla g+g \nabla f$
(b) $\quad \nabla \cdot(f \mathbf{F})=(\nabla f) \cdot \mathbf{F}+f(\nabla \cdot \mathbf{F})$
(c) $\quad \nabla \times(f \mathbf{F})=(\nabla f) \times \mathbf{F}+f(\nabla \times \mathbf{F})$
(d) $\quad \nabla \cdot(\mathbf{F} \times \mathbf{G})=(\nabla \times \mathbf{F}) \cdot \mathbf{G}-\mathbf{F} \cdot(\nabla \times \mathbf{G})$
(e) $\quad \nabla \times(\mathbf{F} \times \mathbf{G})=(\nabla \cdot \mathbf{G}) \mathbf{F}+(\mathbf{G} \cdot \nabla) \mathbf{F}-(\nabla \cdot \mathbf{F}) \mathbf{G}-(\mathbf{F} \cdot \nabla) \mathbf{G}$
(f) $\quad \nabla(\mathbf{F} \cdot \mathbf{G})=\mathbf{F} \times(\nabla \times \mathbf{G})+\mathbf{G} \times(\nabla \times \mathbf{F})+(\mathbf{F} \cdot \nabla) \mathbf{G}+(\mathbf{G} \cdot \nabla) \mathbf{F}$
(g) $\quad \nabla \cdot(\nabla \times \mathbf{F})=0$
(h) $\quad \nabla \times(\nabla f)=0$
(i) $\quad \nabla \times(\nabla \times \mathbf{F})=\nabla(\nabla \cdot \mathbf{F})-\nabla^{2} \mathbf{F}$

