MA2VC, Vector Calculus, Assignment 2

due: $12 \mathrm{pm}, 16$ Nov 2012 (late assignments will not be accepted, and marks will be deducted for poor presentation)

Consider the vector field $\mathbf{F}(\mathbf{r})=\left(1-x^{2}\right) y \hat{\mathbf{j}}$.
1a) (3 marks) Calculate the line integral, $\int \mathbf{F} \cdot d \mathbf{r}$, along the straight line from $(x, y, z)=(1,0,0)$ to $(0,1,0)$.
1b) (4 marks) Calculate the line integral, $\int \mathbf{F} \cdot d \mathbf{r}$, along the circular path, $x^{2}+y^{2}=1$ for $x, y \geq 0$, from $(x, y, z)=(1,0,0)$ to $(0,1,0)$.
1c) (3 marks) Show that $\mathbf{F}(\mathbf{r})$ is not conservative by evaluating $\nabla \times \mathbf{F}$.

Consider the vector field $\mathbf{F}(\mathbf{r})=z \hat{\mathbf{i}}+2 y \hat{\mathbf{j}}+x \hat{\mathbf{k}}$.
2a) (3 marks) Calculate the line integral, $\int \mathbf{F} \cdot d \mathbf{r}$, along the straight line from $(x, y, z)=(0,0,0)$ to $(1,1,1)$.
2b) (3 marks) Calculate the line integral, $\int \mathbf{F} \cdot d \mathbf{r}$, along the intersection of $y=x^{2}$ and $z=x^{3}$ from $(x, y, z)=(0,0,0)$ to $(1,1,1)$.

2c) (4 marks) Show that $\mathbf{F}(\mathbf{r})$ is conservative by finding a scalar potential, $\phi(\mathbf{r})$. Then use the potential to evaluate the line integral, $\int \mathbf{F} \cdot d \mathbf{r}$, from $(x, y, z)=(0,0,0)$ to $(1,1,1)$.

