MA2VC, Vector Calculus, Assignment 3

due: 12pm, 30 Nov 2012 (late assignments will not be accepted, and marks will be deducted for poor presentation)

1) (7 marks) Evaluate the volume integral, $\int_R x \, dV$, over the tetrahedron, R, defined by $x \ge 0$, $y \ge 0$, $z \ge 0$, and $3x + 2y + z \le 6$.

Demonstration of Green's theorem for

$$\oint_{\partial R} x^2 y \, dx - x y^2 dy$$

where ∂R is the counterclockwise path around the semi-circle, R, defined by $0 \le y \le \sqrt{9-x^2}$.

2a) (7 marks) Evaluate the line integral, $\oint_{\partial R} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = x^2 y \hat{\mathbf{i}} - x y^2 \hat{\mathbf{j}}$.

2b) (6 marks) Then evaluate the area integral, $\int_{R} [\nabla \times \mathbf{F}]_{z} dA$.