MA2VC, Vector Calculus, Assignment 3

due: $12 \mathrm{pm}, 30$ Nov 2012 (late assignments will not be accepted, and marks will be deducted for poor presentation)

1) (7 marks) Evaluate the volume integral, $\int_{R} x d V$, over the tetrahedron, R, defined by $x \geq 0, y \geq 0, z \geq 0$, and $3 x+2 y+z \leq 6$.

Demonstration of Green's theorem for

$$
\oint_{\partial R} x^{2} y d x-x y^{2} d y
$$

where ∂R is the counterclockwise path around the semi-circle, R, defined by $0 \leq y \leq \sqrt{9-x^{2}}$.
2a) (7 marks) Evaluate the line integral, $\oint_{\partial R} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=x^{2} y \hat{\mathbf{i}}-x y^{2} \hat{\mathbf{j}}$.
2b) (6 marks) Then evaluate the area integral, $\int_{R}[\nabla \times \mathbf{F}]_{z} d A$.

