MA2VC, Vector Calculus, Assignment 4

due: 12pm, 14 Dec 2012 (late assignments will not be accepted, and marks will be deducted for poor presentation)

Consider the vector field

$$
\mathbf{F}(\mathbf{r})=x y \hat{\mathbf{j}}
$$

1a) (7 marks) Evaluate the surface integral

$$
\oint_{\partial R} \mathbf{F} \cdot \hat{\mathbf{n}} d S
$$

where $\hat{\mathbf{n}}$ is the outward-pointing normal on the surface, ∂R, of the tetrahedron, R, defined by $x \geq 0, y \geq 0, z \geq 0$, and $3 x+2 y+z \leq 6$.
1b) (1 mark) Explain why the surface integral has the same value as the volume integral

$$
\int_{R} x d V
$$

calculated in assignment 3.

2a) (6 marks) Evaluate the surface integral

$$
\oint_{\partial D} \mathbf{F} \cdot \hat{\mathbf{n}} d S
$$

where $\hat{\mathbf{n}}$ is the outward-pointing normal on the surface, ∂D, of the hemisphere, D, defined by $0 \leq x \leq \sqrt{1-y^{2}-z^{2}}$ where $y^{2}+z^{2} \leq 1$. Hint, project the spherical surface into the $y-z$ plane and use polar coordinates.

2b) (6 marks) Evaluate the volume integral

$$
\int_{D} \nabla \cdot \mathbf{F} d V
$$

Hint, use spherical-polar coordinates.

