Vector calculus MA2VC 2013-14 - Assignment 1 SOLUTIONS

(1) At least three different ways of proving the identity are possible.
(Version i) The easiest proof is to compute $\vec{\nabla} \cdot \overrightarrow{\mathbf{r}}=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3$ and use the vector identities, first separating $\overrightarrow{\mathbf{r}}$ from the two fields in the parenthesis:

$$
\begin{aligned}
\vec{\nabla} \cdot(\overrightarrow{\mathbf{r}} f g) & \stackrel{(27)}{=}(\vec{\nabla} \cdot \overrightarrow{\mathbf{r}}) f g+\overrightarrow{\mathbf{r}} \cdot \vec{\nabla}(f g) \\
& \stackrel{(25)}{=} 3 f g+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} f) g+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} g) f
\end{aligned}
$$

(Version ii) One can use the same vector identity twice, first separating one of the fields (e.g. f) from the second field and $\overrightarrow{\mathbf{r}}$, and then separating the latter two objects:

$$
\begin{aligned}
\vec{\nabla} \cdot(\overrightarrow{\mathbf{r}} f g) & \stackrel{(27)}{=}(\vec{\nabla} \cdot(\overrightarrow{\mathbf{r}} g)) f+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} f) g \\
& \stackrel{(27)}{=}((\vec{\nabla} \cdot \overrightarrow{\mathbf{r}}) g+\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} g) f+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} f) g \\
& =3 f g+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} f) g+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} g) f
\end{aligned}
$$

(Version iii) One can directly use the definitions of gradient and divergence, and the formula for the partial derivative of a product:

$$
\begin{aligned}
\vec{\nabla} \cdot(\overrightarrow{\mathbf{r}} f g) & =\vec{\nabla} \cdot(x f g \hat{\boldsymbol{\imath}}+y f g \hat{\boldsymbol{\jmath}}+z f g \hat{\boldsymbol{k}}) \\
& =\frac{\partial(x f g)}{\partial x}+\frac{\partial(y f g)}{\partial y}+\frac{\partial(z f g)}{\partial z} \\
& =\left(f g+x g \frac{\partial f}{\partial x}+x f \frac{\partial g}{\partial x}\right)+\left(f g+g y \frac{\partial f}{\partial y}+f y \frac{\partial g}{\partial y}\right)+\left(f g+z g \frac{\partial f}{\partial z}+z f \frac{\partial g}{\partial z}\right) \\
& =3 f g+\left(x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+z \frac{\partial f}{\partial z}\right) g+\left(x \frac{\partial g}{\partial x}+y \frac{\partial g}{\partial y}+z \frac{\partial g}{\partial z}\right) f \\
& =3 f g+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} f) g+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} g) f .
\end{aligned}
$$

All versions are correct, but if you learn how to properly use the vector identities as in the first two versions above, you will avoid mistakes and save a lot of time and effort.
(2) We have to evaluate both the left-hand side and the right-hand side of the identity using the given fields f and g. We should not use the vector identities here, otherwise we just repeat exercise 1 .

From the definition of divergence, the left-hand side of the identity reads:

$$
\begin{aligned}
\vec{\nabla} \cdot(\overrightarrow{\mathbf{r}} f g) & =\vec{\nabla} \cdot\left(x y^{4} z e^{x y} \hat{\boldsymbol{\imath}}+y^{5} z e^{x y} \hat{\boldsymbol{\jmath}}+y^{4} z^{2} e^{x y} \hat{\boldsymbol{k}}\right) \\
& =\left(y^{4} z e^{x} y+x y^{5} z e^{x y}\right)+\left(5 y^{4} z e^{x y}+x y^{5} z e^{x y}\right)+2 y^{4} z e^{x y} \\
& =8 y^{4} z e^{x} y+2 x y^{5} z e^{x y}
\end{aligned}
$$

The right-hand side reads:

$$
\begin{aligned}
3 f g+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} f) g+(\overrightarrow{\mathbf{r}} \cdot \vec{\nabla} g) f & =3 y^{4} z e^{x y}+\left(\overrightarrow{\mathbf{r}} \cdot\left(y e^{x y} \hat{\boldsymbol{\imath}}+x e^{x y} \hat{\boldsymbol{\jmath}}\right)\right) y^{4} z+\left(\overrightarrow{\mathbf{r}} \cdot\left(4 y^{3} z \hat{\boldsymbol{\jmath}}+y^{4} \hat{\boldsymbol{k}}\right)\right) e^{x y} \\
& =3 y^{4} z e^{x y}+2 x y^{5} z e^{x y}+5 y^{4} z e^{x y} \\
& =8 y^{4} z e^{x} y+2 x y^{5} z e^{x y}
\end{aligned}
$$

thus the two expressions are equal to each other and the desired identity is demonstrated.
(3) We immediately see that $\vec{\nabla} \cdot \overrightarrow{\mathbf{F}}=\frac{\partial\left(y^{2}\right)}{\partial x}+\frac{\partial\left(z^{3}\right)}{\partial y}+\frac{\partial 0}{\partial z}=0+0+0=0$, so $\overrightarrow{\mathbf{F}}$ is solenoidal.

We seek a vector potential $\overrightarrow{\mathbf{A}}=A_{1} \hat{\boldsymbol{\imath}}+A_{2} \hat{\boldsymbol{\jmath}}+A_{3} \hat{\boldsymbol{k}}$ such that $\vec{\nabla} \times \overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{F}}$, i.e., from the definition (4) of the curl,

$$
\frac{\partial A_{3}}{\partial y}-\frac{\partial A_{2}}{\partial z}=y^{2}, \quad \frac{\partial A_{1}}{\partial z}-\frac{\partial A_{3}}{\partial x}=z^{3}, \quad \frac{\partial A_{2}}{\partial x}-\frac{\partial A_{1}}{\partial y}=0
$$

If $A_{3}=0$, then A_{1} and A_{2} must both be non-zero, thus the only possibility for having a potential $\overrightarrow{\mathbf{A}}$ with only one non-zero component is to choose it parallel to the z axis, which means $\overrightarrow{\mathbf{A}}=A_{3} \hat{\boldsymbol{k}}$. From this choice we have

$$
\frac{\partial A_{3}}{\partial y}=y^{2}, \quad \frac{\partial A_{3}}{\partial x}=-z^{3}
$$

which immediately leads to the solution

$$
\overrightarrow{\mathbf{A}}=\left(\frac{1}{3} y^{3}-x z^{3}+\lambda\right) \hat{\boldsymbol{k}}
$$

where $\lambda \in \mathbb{R}$ may be any scalar.
If you don't see this last step, you can solve the corresponding differential equations:

$$
\begin{aligned}
\frac{\partial A_{3}}{\partial y}=y^{2} & \Rightarrow \quad A_{3}(\overrightarrow{\mathbf{r}})=\frac{1}{3} y^{3}+b(x, z) \\
\frac{\partial A_{3}}{\partial x}=-z^{3} & \Rightarrow \quad \frac{\partial\left(\frac{1}{3} y^{3}+b(x, z)\right)}{\partial x}=\frac{\partial b(x, z)}{\partial x}=-z^{3} \quad \Rightarrow \quad b(x, z)=-x z^{3}+\lambda \\
& \Rightarrow \quad A_{3}(\overrightarrow{\mathbf{r}})=\frac{1}{3} y^{3}-x z^{3}+\lambda
\end{aligned}
$$

Other possible vector potentials found in the solutions handed in (not following the hint but perfectly correct) are:

$$
\begin{array}{lc}
\frac{1}{4} z^{4} \hat{\boldsymbol{\imath}}-y^{2} z \hat{\boldsymbol{\jmath}}, & \frac{1}{4} z^{4} \hat{\boldsymbol{\imath}}+\frac{1}{3} y^{3} \hat{\boldsymbol{k}}, \\
-y^{2} z \hat{\boldsymbol{\jmath}}-x z^{3} \hat{\boldsymbol{k}}, & x z^{4} \hat{\boldsymbol{\imath}}-y^{2} z \hat{\boldsymbol{\imath}}-2 y^{2} z \hat{\boldsymbol{\jmath}}+z^{3} \hat{\boldsymbol{k}} .
\end{array}
$$

In particular, the first three of these are independent of the x variable.
(4) From identity (5) in Exercise 1.11 of the notes, the definition of perpendicularity ($\hat{\boldsymbol{n}} \cdot \overrightarrow{\mathbf{w}}=0$), and the unit length of $\hat{\boldsymbol{n}}(\sqrt{\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{n}}}=|\hat{\boldsymbol{n}}|=1)$, we obtain the required identity:

$$
\hat{\boldsymbol{n}} \times(\hat{\boldsymbol{n}} \times \overrightarrow{\mathbf{w}}) \stackrel{(5)}{=} \hat{\boldsymbol{n}}(\underbrace{\overrightarrow{\boldsymbol{w}} \cdot \hat{\boldsymbol{n}}}_{=0})-\overrightarrow{\mathbf{w}}(\underbrace{\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{n}}}_{=|\hat{\boldsymbol{n}}|^{2}=1})=0 \hat{\boldsymbol{n}}-1 \overrightarrow{\mathbf{w}}=\overrightarrow{\boldsymbol{0}}-‘ \overrightarrow{\mathbf{w}}=-\overrightarrow{\mathbf{w}} .
$$

We demonstrate the identity for the two vectors given by using twice the definition (4) of the vector product:

$$
\begin{aligned}
\hat{\boldsymbol{n}} \times(\hat{\boldsymbol{n}} \times \overrightarrow{\mathbf{w}}) & =\left(\frac{3}{5} \hat{\boldsymbol{\imath}}+\frac{4}{5} \hat{\boldsymbol{k}}\right) \times\left(\left(\frac{3}{5} \hat{\boldsymbol{\imath}}+\frac{4}{5} \hat{\boldsymbol{k}}\right) \times 3 \hat{\boldsymbol{\jmath}}\right) \\
& \stackrel{(4)}{=}\left(\frac{3}{5} \hat{\boldsymbol{\imath}}+\frac{4}{5} \hat{\boldsymbol{k}}\right) \times\left(\left(0-\frac{4}{5} 3\right) \hat{\boldsymbol{\imath}}+0 \hat{\boldsymbol{\jmath}}+\left(\frac{3}{5} 3-0\right) \hat{\boldsymbol{k}}\right) \\
& =\left(\frac{3}{5} \hat{\boldsymbol{\imath}}+\frac{4}{5} \hat{\boldsymbol{k}}\right) \times\left(-\frac{12}{5} \hat{\boldsymbol{\imath}}+\frac{9}{5} \hat{\boldsymbol{k}}\right) \\
& \stackrel{(4)}{=} 0 \hat{\boldsymbol{\imath}}+\left(\frac{4}{5}\left(\frac{-12}{5}\right)-\frac{3}{5} \frac{9}{5}\right) \hat{\boldsymbol{\jmath}}+0 \hat{\boldsymbol{k}} \\
& =-\frac{75}{25} \hat{\boldsymbol{\jmath}}=-3 \hat{\boldsymbol{\jmath}}=-\overrightarrow{\mathbf{w}} .
\end{aligned}
$$

