
Vector calculus MA2VC 2013–14 — Assignment 2

SOLUTIONS

(1) We compute the total derivative of ~a

d~a

dt
(t) =

d(etı̂+ t̂+ e2t cos tk̂)

dt
= etı̂ + ̂+ e2t(2 cos t− sin t)k̂;

the gradient of f

~∇f =
∂(
√

x2 + y2 + z2)

∂x
ı̂ +

∂(
√

x2 + y2 + z2)

∂y
̂+

∂(
√

x2 + y2 + z2)

∂z
k̂ =

xı̂ + y̂+ zk̂
√

x2 + y2 + z2
=

~r

|~r| ;

and their scalar product, which (thanks to the chain rule (34)) is the total derivative of the compound
function:

d
(

f(~a)
)

dt
(t) = ~∇f

(

~a(t)
)

· d~a
dt

(t) (chain rule)

=
xet + y + ze2t(2 cos t− sin t)

√

x2 + y2 + z2

=
e2t + t+ e4t(2 cos2 t− cos t sin t)√

e2t + t2 + e4t cos2 t
.

In the last step we have substituted the values of the curve components a1(t), a2(t) and a3(t) in place of
x, y and z, so that we have a function of t only.

Alternatively, d(f(~a))
dt

(t) can be found by computing and deriving the compound function:

f
(

~a(t)
)

=
√

e2t + t2 + e4t cos2 t,

d
(

f(~a)
)

dt
(t) =

2e2t + 2t+ 4e4t cos2 t− 2e4t cos t sin t

2
√
e2t + t2 + e4t cos2 t

=
e2t + t+ e4t(2 cos2 t− cos t sin t)√

e2t + t2 + e4t cos2 t
.

(2) As described in Section 2.1.1 of the notes, the length of a path can be measured by integrating

the constant scalar field f(~r) = 1. We compute the total derivative of ~b

~b = 5 cos t ı̂+
(

3 cos t− 4
√
2 sin t

)

̂+
(

4 cos t+ 3
√
2 sin t

)

k̂;

d~b

dt
= −5 sin t ı̂+

(

− 3 sin t− 4
√
2 cos t

)

̂+
(

− 4 sin t+ 3
√
2 cos t

)

k̂;

its magnitude (which enters the definition of the infinitesimal length element ds)

∣

∣

∣

∣

∣

d~b

dt

∣

∣

∣

∣

∣

2

= 25 sin2 t+
(

− 3 sin t− 4
√
2 cos t

)2
+
(

− 4 sin t+ 3
√
2 cos t

)2

= 25 sin2 t+
(

9 sin2 t+ 32 cos2 t+ 24
√
2 sin t cos t

)

+
(

16 sin2 t+ 18 cos2 t− 24
√
2 sin t cos t

)

= 50 sin2 t+ 50 cos2 t

= 50;

and the integral

Length(Γ) =

∫

Γ

1 dt =

∫ π

0

∣

∣

∣

∣

∣

d~b

dt

∣

∣

∣

∣

∣

dt =

∫ π

0

√
50 dt = π

√
50 = 5π

√
2 ≈ 22.2.

Since the magnitude of d~b
dt

is constant (|d~b
dt
| =

√
50), the integration turns out to be very easy. (The path

Γ is half circle of radius
√
50 and ~a travels on it with constant speed.)
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(3) First, we verify that the two paths (which we denote Γc and Γd) share the endpoints:

~c
(

− π

2

)

= ~d(−1) = −ı̂, ~c
(π

2

)

= ~d(1) = ı̂;

they both start at −ı̂ and end at ı̂. Then, we compute the total derivatives of the curves

d~c

dt
=

2

π
ı̂− sin t̂,

d~d

dτ
= ı̂− 2τ ̂,

and use them to compute the integrals of ~G = yı̂ along the two paths:
∫

Γc

~G · d~r =
∫ π

2

−

π

2

~G
(

~c(t)
)

· d~c
dt

dt

=

∫ π

2

−

π

2

(yı̂) ·
( 2

π
ı̂− sin t̂

)

dt =

∫ π

2

−

π

2

(cos t̂ı) ·
( 2

π
ı̂ − sin t̂

)

dt

=
2

π

∫ π

2

−

π

2

cos t dt =
2

π
sin t

∣

∣

∣

∣

π

2

t=−

π

2

=
4

π
≈ 1.273;

∫

Γd

~G · d~r =
∫ 1

−1

~G
(

~d(τ)
)

· d
~d

dτ
dτ

=

∫ 1

−1

(yı̂) · (̂ı − 2τ ̂) dτ =

∫ 1

−1

(1− τ2 )̂ı · (̂ı − 2τ ̂) dτ

=

∫ 1

−1

(1 − τ2) dτ =
(

τ − 1

3
τ3
)

∣

∣

∣

∣

1

τ=−1

=
4

3
≈ 1.333.

We note that they give different values:
∫

Γc

~G · d~r = 4
π
6= 4

3 =
∫

Γd

~G · d~r. (The values are actually quite
close to each other since the paths are quite similar, see Figure ??, where ~c is plotted as a continuous line
and ~d is dashed.) Since two line integrals along different paths sharing the endpoints are different, by (the
contrapositive of) the fundamental theorem of vector calculus (Section 2.1.3 in the notes), we have that
~G is not a gradient, so it is not conservative.

The easiest proof of the fact that ~G is non-conservative, consists in noting that ~∇× ~G = −k̂ 6= ~0, thus ~G
is not irrotational and the assertion follows from the contrapositive of the implication “conservative⇒irrotational”
in the box in Section 1.5.

−ı̂ ı̂

(4) For n = 1, 2, 3, the nth component of ~H depends on the nth variable only, thus, by the definition of

the curl operator, ~∇× ~H = ~0 and ~H is irrotational (equivalently, we compute the curl and verify directly

that ~∇× ~H = ~0).
We compute a scalar potential ϕ by proceeding as in Exercise 1.42:

~H = ~∇ϕ ⇒ ∂ϕ(x, y, z)

∂x
= H1 = x ⇒ ϕ(x, y, z) =

1

2
x2 + g(y, z),

∂ϕ(x, y, z)

∂y
=

∂
(

1
2x

2 + g(y, z)
)

∂y
=

∂g(y, z)

∂y
= H2 = y2 ⇒ g(y, z) =

1

3
y3 + f(z),

∂ϕ(x, y, z)

∂z
=

∂
(

1
2x

2 + 1
3y

3 + f(z)
)

∂z
=

∂f(z)

∂z
= H3 = z3 ⇒ f(z) =

1

4
z4 + λ,

⇒ ϕ(x, y, z) =
1

2
x2 + g(y, z) =

1

2
x2 +

1

3
y3 + f(z) =

1

2
x2 +

1

3
y3 +

1

4
z4 + λ, ∀λ ∈ R.

Both paths of Exercise (3) have endpoints ~c(−π
2 ) = ~d(−1) = −ı̂ and ~c(π2 ) = ~d(1) = ı̂. Since ~H is

conservative, by the fundamental theorem of vector calculus, the integral along any path connecting −ı̂

and ı̂ can be computed as:
∫

Γc

~H · d~r =
∫

Γc

~∇ϕ · d~r =
∫

Γd

~H · d~r =

∫

Γd

~∇ϕ · d~r = ϕ(̂ı)− ϕ(−ı̂) =
1

2
− 1

2
(−1)2 = 0.
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