Vector calculus MA2VC 2013-14 — Assignment 2
SOLUTIONS

(1) We compute the total derivative of &
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and their scalar product, which (thanks to the chain rule (34)) is the total derivative of the compound
function:

() = V(@) o

zet +y 4 ze?*(2cost — sint)

/$2+y2+22
e 4t +e*(2cos’ t — costsint)
Ve2t +12 4 ettcos?t

d(f(d))
dt
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In the last step we have substituted the values of the curve components a1 (t), az(t) and as(t) in place of
x, y and z, so that we have a function of ¢ only.
Alternatively, W (t) can be found by computing and deriving the compound function:
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(2) As described in Section 2.1.1 of the notes, the length of a path can be measured by integrating
the constant scalar field f(¥) = 1. We compute the total derivative of b
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its magnitude (which enters the definition of the infinitesimal length element ds)

2
= 25sin2t+(—3sint—4\/§cost)2 +(—4sint+3\/§cost)2

= 25sin? ¢ + (9 sin?t + 32 cos® t 4+ 24v/2sin t cos t)

+ (16 sin? ¢ + 18 cos® t — 24v/2sin ¢ cos t)
= 50sin®t 4 50 cos® ¢
= 50;

and the integral
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Since the magnitude of ‘Z—E is constant (|‘Zl—§| = v/50), the integration turns out to be very easy. (The path
T is half circle of radius v/50 and & travels on it with constant speed.)
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(3) First, we verify that the two paths (which we denote I'. and T'y) share the endpoints:
o(-2)=d-n=- ¢(5)=dm =g

they both start at —% and end at 2. Then, we compute the total derivatives of the curves
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and use them to compute the integrals of G= y? along the two paths:
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We note that they give different values: fFC G.dF = 144= de G - df. (The values are actually quite
close to each other since the paths are quite similar, see Figure 7?7, where € is plotted as a continuous line
and d is dashed.) Since two line integrals along different paths sharing the endpoints are different, by (the
contrapositive of) the fundamental theorem of vector calculus (Section 2.1.3 in the notes), we have that
G is not a gradient, so it is not conservative.
The easiest proof of the fact that G is non-conservative, consists in noting that VxG = —k £ 0, thus G
is not irrotational and the assertion follows from the contrapositive of the implication “conservative=-irrotational”
in the box in Section 1.5.

(4) For n =1, 2,3, the nth component of H depends on the nth variable only, thus, by the definition of
the curl operator V x H = 0 and H is irrotational (equivalently, we compute the curl and verify directly

that V x H = 0).
We compute a scalar potential ¢ by proceeding as in Exercise 1.42:
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Both paths of Exercise (3) have endpoints ¢(—5) = d(—1) = —7 and c(3) = d(1) = 2. Since H is
conservative, by the fundamental theorem of vector calculus, the integral along any path connecting —2
and 7 can be computed as:

- - - - 1 1
/H~dF:/V<p~df": H~dF:/ V- df = ¢(i) — p(-1) = = — =(-1)*=0.
r. r Ty 2 2

c



