Vector calculus MA2VC 2013-14 - Assignment 2

Handed out: Friday 1st November.
Due: Friday 15th November, 12 noon.
Late assignments will not be accepted.
You can use the vector identities in the lecture notes.
Total marks: 25 . (5% of the total marks for the module.)
(1) (6 marks) Consider the curve

$$
\overrightarrow{\mathbf{a}}(t)=e^{t} \hat{\boldsymbol{\imath}}+t \hat{\boldsymbol{\jmath}}+e^{2 t} \cos t \hat{\boldsymbol{k}}, \quad t \in \mathbb{R}
$$

and the scalar field $f=|\overrightarrow{\mathbf{r}}|$.

- Compute the total derivative $\frac{d \vec{a}}{d t}$ of the curve.
- Compute the total derivative $\frac{d(f(\overrightarrow{\mathbf{a}}))}{d t}$ of the evaluation of the field on the curve; write it as a function of t only (i.e. not containing x, y, z).
(2) (5 marks) Consider the curve

$$
\overrightarrow{\mathbf{b}}(t)=5 \cos t \hat{\boldsymbol{\imath}}+(3 \cos t-4 \sqrt{2} \sin t) \hat{\boldsymbol{\jmath}}+(4 \cos t+3 \sqrt{2} \sin t) \hat{\boldsymbol{k}} .
$$

Compute the length of the path of $\overrightarrow{\mathbf{b}}$ corresponding to the interval $0 \leq t \leq \pi$.
(3) (8 marks) Consider the two curves

$$
\begin{gathered}
\overrightarrow{\mathbf{c}}(t)=\frac{2}{\pi} t \hat{\boldsymbol{\imath}}+\cos t \hat{\boldsymbol{\jmath}}, \quad \text { for }-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \\
\overrightarrow{\mathbf{d}}(\tau)=\tau \hat{\boldsymbol{\imath}}+\left(1-\tau^{2}\right) \hat{\boldsymbol{\jmath}}, \\
\text { for }-1 \leq \tau \leq 1
\end{gathered}
$$

and the vector field $\overrightarrow{\mathbf{G}}=y \hat{\mathbf{\imath}}$. Compute the integrals of $\overrightarrow{\mathbf{G}}$ along the two paths described by the two curves and use the result obtained to prove that $\overrightarrow{\mathbf{G}}$ is not conservative. (A sketch of the two paths may help you.)

How can you prove (easily) that $\overrightarrow{\mathbf{G}}$ is not conservative without computing any integral?
(4) (6 marks) Show that the vector field $\overrightarrow{\mathbf{H}}=x \hat{\boldsymbol{\imath}}+y^{2} \hat{\boldsymbol{\jmath}}+z^{3} \hat{\boldsymbol{k}}$ is irrotational and compute a scalar potential. Use the scalar potential obtained to compute the line integral of $\overrightarrow{\mathbf{H}}$ along one of the paths described in Exercise 3.

