Vector calculus MA2VC 2013-14 - Assignment 3

Handed out: Friday 15th November.
Due: Friday 29th November, 12 noon.
Late assignments will not be accepted. Do not use red pen or pencil.
You can use formulas and identities from the lecture notes. Drawing a sketch of the domains may help you.

Total marks: $20 . \quad$ (5% of the total marks for the module.)
(1) (5 marks) Consider the unit square $S=(0,1)^{2}=\{x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}, 0<x<1,0<y<1\}$ and the triangle $T=\{\xi \hat{\boldsymbol{\xi}}+\eta \hat{\boldsymbol{\eta}}, 0<\xi<\eta<1\}$ with vertices $\overrightarrow{\mathbf{0}}, \hat{\boldsymbol{\eta}}$ and $\hat{\boldsymbol{\xi}}+\hat{\boldsymbol{\eta}}$.
(1a) Find a simple (bijective) change of variables $(x, y) \mapsto(\xi, \eta)$ that maps S into T. Hint: consider a polynomial transformation that deforms the x variable only; in the notes you can find a (more complicated) example of a similar transformation.
(1b) Use the change of variables you found to compute

$$
\iint_{T} \frac{\xi}{\eta} \mathrm{~d} \xi \mathrm{~d} \eta .
$$

(2) (5 marks) Compute the volume of the domain D bounded by the unit cone $\left\{x^{2}+y^{2}=\right.$ $\left.z^{2}\right\}$ and the paraboloid $\left\{z=x^{2}+y^{2}\right\}$, i.e.:

$$
D=\left\{\overrightarrow{\mathbf{r}} \in \mathbb{R}^{3} \text {, s.t. } x^{2}+y^{2}<z<\sqrt{x^{2}+y^{2}}\right\} .
$$

Hint: find in Section 2.3 of the lecture notes a suitable system of coordinates to describe D.
(3) (5 marks) Consider the triangle R with vertices $3 \hat{\boldsymbol{\imath}}, 2 \hat{\boldsymbol{\jmath}}$ and $\hat{\boldsymbol{k}}$. Fix on R the orientation $\hat{\boldsymbol{n}}$ such that $\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{k}}>0$. Compute the flux of the vector field $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{r}}$ through R.

Hint: consider R as the surface graph of a two-dimensional scalar field $g(x, y)$.
Recall that, since R lies in a plane, the field g must be an affine function.
(4) (5 marks) State which of the following five expressions are well-defined and unambiguous; for those that are not, state precisely what does not work.

Consider only the notation used in the lecture notes and in class. Here $\overrightarrow{\mathbf{F}}, \overrightarrow{\mathbf{G}}, \overrightarrow{\mathbf{H}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ are smooth vector fields; $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are smooth scalar fields; $D \subset \mathbb{R}^{3}$ is a domain; Γ is an oriented path; $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ are smooth curves. (As usual, in equations (a)-(d) all fields are evaluated in $\overrightarrow{\mathbf{r}}$, even if $\overrightarrow{\mathbf{r}}$ is not explicitly written; e.g. $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}})$.)
(a) $\quad(\overrightarrow{\mathbf{r}}-|\overrightarrow{\mathbf{F}}| \overrightarrow{\mathbf{F}}) \cdot\left(\vec{\nabla} \times\left(\left(F_{1}+|\overrightarrow{\mathbf{F}}|^{2}+F_{3}^{3}\right) \vec{\nabla} \cdot(\cos x \overrightarrow{\mathbf{F}}+\sin y \overrightarrow{\mathbf{G}}-4 \hat{\boldsymbol{\jmath}})\right)+\vec{\nabla}\left(f F_{2}+e^{g} \frac{\partial F_{1}}{\partial z}\right)\right)$,
(b) $\vec{\nabla} \Delta f+((\vec{\nabla} \times \overrightarrow{\mathbf{F}}+\hat{\boldsymbol{\imath}} \sqrt{|\overrightarrow{\mathbf{F}}|}) \cdot \vec{\nabla}) \overrightarrow{\mathbf{F}}-5 \int_{\Gamma}\left(\overrightarrow{\mathbf{F}} \times(\vec{\nabla} \times \overrightarrow{\mathbf{F}})+\vec{\nabla} \frac{\partial f}{\partial y}-\vec{\Delta} \overrightarrow{\mathbf{F}}\right) \cdot \mathrm{d} \overrightarrow{\mathbf{r}}$,
(c) $\iiint_{D}\left(\hat{\boldsymbol{\imath}}\left(\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{G}} \times \overrightarrow{\mathbf{H}}+\cosh \left(\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{H}}-F_{1} H_{2}-F_{2} H_{1}\right)\right) \vec{\nabla} f\right) \cdot \overrightarrow{\mathbf{r}} \mathrm{d} V+e^{\frac{1}{\pi} \sqrt{\iiint_{D} \mathrm{~d} V}}$,
(d) $\overrightarrow{\mathbf{F}} \times\left(\hat{\boldsymbol{\imath}} \cos 3+|\overrightarrow{\mathbf{F}}-9 \hat{\boldsymbol{\imath}}|^{4} \hat{\boldsymbol{\jmath}} \times(\overrightarrow{\mathbf{G}} \cdot(\overrightarrow{\mathbf{H}}-\hat{\boldsymbol{\imath}})) \overrightarrow{\mathbf{F}}\right) \times(\hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}+3 \hat{\boldsymbol{k}})+(\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{G}}) \overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{G}} ;$
in equation (e) the dependences of all fields and curves are written explicitly $(t \in \mathbb{R})$:
(e) $f(\overrightarrow{\mathbf{F}}(7 \overrightarrow{\mathbf{a}}(t) \times \overrightarrow{\mathbf{b}}(t))) e^{\overrightarrow{\mathbf{a}}(t) \cdot \hat{\boldsymbol{\imath}}-a_{2}(t)} \overrightarrow{\mathbf{G}}\left(\overrightarrow{\mathbf{a}}\left(\overrightarrow{\mathbf{G}}\left(\frac{d \overrightarrow{\mathbf{b}}}{d t}(t)\right) \cdot \overrightarrow{\mathbf{H}}(\overrightarrow{\mathbf{b}}(t))\right)\right)+\overrightarrow{\mathbf{F}}\left(e^{|\overrightarrow{\mathbf{b}}(t)|^{2}}|\overrightarrow{\mathbf{a}}(t) \times \hat{\boldsymbol{k}} t|\right)$.

