Vector calculus MA2VC 2013-14 - Assignment 4 SOLUTIONS

(Exercise 1) We have to demonstrate

$$
\iint_{R}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) \mathrm{d} A=\oint_{\partial R} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}
$$

for the field and the region given; see Figure 1. We write the integrand at the left-hand side in polar coordinates as

$$
\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}=2 x y \stackrel{(60)}{=} 2 r^{2} \cos \theta \sin \theta
$$

and we compute the corresponding double integral:

$$
\begin{aligned}
\iint_{R}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) \mathrm{d} A & =\iint_{R}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) r \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{2}\left(\int_{0}^{\frac{\pi}{4}} 2 r^{2} \cos \theta \sin \theta \mathrm{~d} \theta\right) r \mathrm{~d} r \\
& =\left(\int_{0}^{2} r^{3} \mathrm{~d} r\right)\left(\int_{0}^{\frac{\pi}{4}} \sin 2 \theta \mathrm{~d} \theta\right) \\
& =\left.\left.\frac{r^{4}}{4}\right|_{0} ^{2}\left(-\frac{1}{2} \cos 2 \theta\right)\right|_{0} ^{\frac{\pi}{4}}=\frac{16}{4} \frac{1}{2}=2 .
\end{aligned}
$$

To compute the circulation at the right-hand side, we split the boundary in three parts (maintaining the anticlockwise orientation). The integration on the two straight segments (here denoted Γ_{a} and Γ_{b} as in the figure) is as follows:

$$
\begin{aligned}
& \Gamma_{a}: \quad \overrightarrow{\mathbf{a}}(t)=t \hat{\boldsymbol{\imath}}, \quad 0<t<2, \quad \frac{d \overrightarrow{\mathbf{a}}}{d t}=\hat{\boldsymbol{\imath}}, \\
& \int_{\Gamma_{a}} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}= \int_{0}^{2} \overrightarrow{\mathbf{G}}(\overrightarrow{\mathbf{a}}(t)) \cdot \frac{d \overrightarrow{\mathbf{a}}}{d t}(t) \mathrm{d} t=\int_{0}^{2} G_{1}(t) \mathrm{d} t=\int_{0}^{2} a_{1}^{3}(t) \mathrm{d} t=\int_{0}^{2} t^{3} \mathrm{~d} t=\frac{16}{4}=4 \\
& \Gamma_{b}: \quad \overrightarrow{\mathbf{b}}(t)=\frac{1}{\sqrt{2}}(2-t)(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}), \quad 0<t<2, \quad \frac{d \overrightarrow{\mathbf{b}}}{d t}=-\frac{1}{\sqrt{2}}(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}), \\
& \int_{\Gamma_{b}} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}= \int_{0}^{2} \overrightarrow{\mathbf{G}}(\overrightarrow{\mathbf{b}}(t)) \cdot \frac{d \overrightarrow{\mathbf{b}}}{d t}(t) \mathrm{d} t \\
&= \int_{0}^{2}\left(b_{1}^{3}(t) \hat{\boldsymbol{\imath}}+b_{1}^{2}(t) b_{2}(t) \hat{\boldsymbol{\jmath}}\right) \cdot\left(-\frac{1}{\sqrt{2}}(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}})\right) \mathrm{d} t \\
&=-\frac{1}{\sqrt{2}} \int_{0}^{2}\left(b_{1}^{3}(t)+b_{1}^{2}(t) b_{2}(t)\right) \mathrm{d} t=-\frac{1}{\sqrt{2}} \int_{0}^{2} 2\left(\frac{1}{\sqrt{2}}(2-t)\right)^{3} \mathrm{~d} t=-\frac{2}{4} \frac{16}{4}=-2
\end{aligned}
$$

(Another parametrisation of Γ_{b} may be $\overrightarrow{\mathbf{b}}(t)=(\sqrt{2}-t)(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}})$ for $0<t<\sqrt{2}$.) It is immediate to see that $\overrightarrow{\mathbf{G}}(\overrightarrow{\mathbf{r}})=x^{2} \overrightarrow{\mathbf{r}}$, so the field points in the radial direction (in every point $\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{G}}(\overrightarrow{\mathbf{r}})$ is parallel to $\overrightarrow{\mathbf{r}}$ itself). Thus, on the $\operatorname{arc} \Gamma_{c}$ centred at the origin and bounding R from the right, the field $\overrightarrow{\mathbf{G}}$ is perpendicular to the arc itself. So the corresponding integral $\int_{\Gamma_{c}} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}$ vanishes, as it depends only on the tangential component of the field. ${ }^{1}$

Putting everything together, we see that both left- and right-hand side of Green's theorem, in the case under examination, have value 2 :

$$
\oint_{\partial R} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\int_{\Gamma_{a}} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}+\int_{\Gamma_{b}} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}+\int_{\Gamma_{c}} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=4-2+0=2=\iint_{R}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) \mathrm{d} A .
$$

[^0]

Figure 1: The region R in exercise 1. The vector field $\overrightarrow{\mathbf{G}}$ points in the radial direction, thus it is perpendicular to Γ_{c}.
(Exercise 2) Green's theorem states that we can compute the flux of $\overrightarrow{\mathbf{H}}$ through ∂D as the triple integral of its divergence on D. We first compute the divergence of the field $\overrightarrow{\mathbf{H}}$, using a vector differential identity from Proposition 1.36, the expression of the position vector $\overrightarrow{\mathbf{r}}$ and its magnitude:

$$
\begin{aligned}
& \vec{\nabla} \cdot \overrightarrow{\mathbf{H}}=\vec{\nabla} \cdot\left(|\overrightarrow{\mathbf{r}}|^{2} \overrightarrow{\mathbf{r}}\right) \stackrel{(27)}{=}|\overrightarrow{\mathbf{r}}|^{2} \vec{\nabla} \cdot \overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}} \cdot \vec{\nabla}\left(|\overrightarrow{\mathbf{r}}|^{2}\right) \\
&=|\overrightarrow{\mathbf{r}}|^{2}\left(\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}\right)+\overrightarrow{\mathbf{r}} \cdot \vec{\nabla}\left(x^{2}+y^{2}+z^{2}\right) \\
&=3|\overrightarrow{\mathbf{r}}|^{2}+\overrightarrow{\mathbf{r}} \cdot 2 \overrightarrow{\mathbf{r}}=5|\overrightarrow{\mathbf{r}}|^{2}=5 \rho^{2} .
\end{aligned}
$$

The domain D can be expressed very easily in spherical coordinates: it is the "parallelepiped" $(1,2) \times$ $[0, \pi] \times(-\pi, \pi]$ in the $\rho \phi \theta$-space. ${ }^{2}$ Because of this and because $\vec{\nabla} \cdot \overrightarrow{\mathbf{H}}$ depends only on one spherical coordinate (namely on ρ), the triple integral on D reduces immediately to the product of three onedimensional integrals and the flux is:

$$
\begin{aligned}
\oiint_{\partial D} \overrightarrow{\mathbf{H}} \cdot \hat{\boldsymbol{n}} \mathrm{~d} S & \stackrel{(88)}{=} \iiint_{D} \vec{\nabla} \cdot \overrightarrow{\mathbf{H}} \mathrm{~d} V \\
& \stackrel{(74)}{=} \iiint_{D} \vec{\nabla} \cdot \overrightarrow{\mathbf{H}} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \\
& =\int_{-\pi}^{\pi}\left(\int_{0}^{\pi} \sin \phi\left(\int_{1}^{2} \vec{\nabla} \cdot \overrightarrow{\mathbf{H}} \rho^{2} \mathrm{~d} \rho\right) \mathrm{d} \phi\right) \mathrm{d} \theta \\
& =\left(\int_{-\pi}^{\pi} \mathrm{d} \theta\right)\left(\int_{0}^{\pi} \sin \phi \mathrm{d} \phi\right)\left(\int_{1}^{2} 5 \rho^{2} \rho^{2} \mathrm{~d} \rho\right) \\
& =(2 \pi)(2)\left(2^{5}-1^{5}\right)=4 \pi 31=124 \pi \approx 389.56 .
\end{aligned}
$$

(We can double check the result obtained by computing directly the flux, without divergence theorem. We denote $S_{O}=\{|\overrightarrow{\mathbf{r}}|=2\}$ the outer part of the boundary of D and $S_{I}=\{|\overrightarrow{\mathbf{r}}|=1\}$ the inner part. Then $\overrightarrow{\mathbf{F}} \cdot \hat{\boldsymbol{n}}$ is constantly equal to 8 on S_{O} and to -1 on S_{I} (verify why). So, $\oiint_{\partial D}(\overrightarrow{\mathbf{H}} \cdot \hat{\boldsymbol{n}}) \mathrm{d} S=8 \operatorname{Area}\left(S_{O}\right)-\operatorname{Area}\left(S_{I}\right)=$ $8\left(4 \pi 2^{2}\right)-4 \pi=124 \pi$.)

[^1](Exercise 3) (Version 1) We want to compute the line integral of a field along a segment lying in the line $\{y=1, z=0\}$ using its value known only on the parallel line $\{y=z=0\}$. How to establish a relation between these two lines? We introduce the square $R=(0,1)^{2}=\{x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}, 0<x, y<1\}$. We can decompose its boundary in the union of four oriented segments: $\partial R=\Gamma_{S} \cup \Gamma_{E} \cup \Gamma_{N} \cup \Gamma_{W}$, with
$$
\Gamma=\Gamma_{N} \text { from } \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}} \text { to } \hat{\boldsymbol{\jmath}}, \quad \Gamma_{W} \text { from } \hat{\boldsymbol{\jmath}} \text { to } \overrightarrow{\mathbf{0}}, \quad \Gamma_{S} \text { from } \overrightarrow{\mathbf{0}} \text { to } \hat{\boldsymbol{\imath}}, \quad \Gamma_{E} \text { from } \hat{\boldsymbol{\imath}} \text { to } \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}} .
$$

The idea is to use Green's theorem to relate the value of the integral along Γ with those on the other three sides of R, which can be computed using (ii) and (iii), and with a double integral computed using (i).

From Green's theorem we know that $\oint_{\partial R} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\iint_{R}(\vec{\nabla} \times \overrightarrow{\mathbf{F}})_{3} \mathrm{~d} A$.
Since, by property (i), $\overrightarrow{\mathbf{F}}$ is irrotational, $\vec{\nabla} \times \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}$ and $\oint_{\partial R} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\iint_{R} 0 \mathrm{~d} A=0$.
On the vertical segments Γ_{E} and Γ_{W}, the tangent unit vector is $\hat{\boldsymbol{\tau}}= \pm \hat{\boldsymbol{\jmath}}$ (oriented vertically), which is orthogonal to $\overrightarrow{\mathbf{F}}=F_{1} \hat{\imath}$ because of property (ii). Thus the contributions of these sides to the circulation of $\overrightarrow{\mathbf{F}}$ vanish:

$$
\int_{\Gamma_{E}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\int_{0}^{1} F_{1}(\hat{\boldsymbol{\imath}}+t \hat{\boldsymbol{\jmath}}) \underbrace{\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\jmath}}}_{=0} \mathrm{~d} t=0, \quad \int_{\Gamma_{W}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\int_{0}^{1} F_{1}((1-t) \hat{\boldsymbol{\jmath}}) \underbrace{\hat{\boldsymbol{\imath}} \cdot(-\hat{\boldsymbol{\jmath}})}_{=0} \mathrm{~d} t=0 .
$$

Property (iii) allows to compute the line integral of $\overrightarrow{\mathbf{F}}$ along Γ_{S} :

$$
\int_{\Gamma_{S}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\int_{0}^{1} F_{1}(t \hat{\boldsymbol{\imath}}) \hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\imath}} \mathrm{d} t=\int_{0}^{1} t^{2} \mathrm{~d} t=\frac{1}{3}
$$

We decompose the circulation of $\overrightarrow{\mathbf{F}}$ in four terms corresponding to the four sides of S

$$
0=\iint_{R}(\underbrace{\vec{\nabla} \times \overrightarrow{\mathbf{F}}}_{=0})_{3} \mathrm{~d} A=\int_{\partial R} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\underbrace{\int_{\Gamma_{S}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}}_{=\frac{1}{3}}+\underbrace{\int_{\Gamma_{E}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}}_{=0}+\int_{\Gamma_{N}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}+\underbrace{\int_{\Gamma_{W}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}}_{=0} .
$$

We note that the upper side Γ_{N} coincides with the oriented path Γ in the statement of the exercise, so we can compute the desired result as

$$
\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=\int_{\Gamma_{N}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=0-\frac{1}{3}-0-0=-\frac{1}{3}
$$

3
(Version 2, without using Green's theorem) Alternatively, we can use properties (i) and (ii) and the definition of the curl to show

$$
\overrightarrow{\mathbf{0}} \stackrel{(i)}{=} \vec{\nabla} \times \overrightarrow{\mathbf{F}} \stackrel{(i i)}{=} \vec{\nabla} \times\left(F_{1} \hat{\imath}\right) \stackrel{(20)}{=} \frac{\partial F_{1}}{\partial z} \hat{\boldsymbol{\jmath}}-\frac{\partial F_{1}}{\partial y} \hat{\boldsymbol{k}} \quad \Rightarrow \quad \frac{\partial F_{1}}{\partial z}=\frac{\partial F_{1}}{\partial y}=0
$$

Thus $\overrightarrow{\mathbf{F}}=F_{1} \hat{\boldsymbol{\imath}}$ does not depend on y and z, so the field defined as $\overrightarrow{\mathbf{F}}(x, y, z)=x^{2} \hat{\boldsymbol{\imath}}$ for all $x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+z \hat{\boldsymbol{k}} \in \mathbb{R}^{3}$ is the only vector field that satisfies properties (i)-(iii). Integrating this field along Γ immediately gives the result.

[^2]
[^0]: ${ }^{1}$ If you prefer to see it in formulas, Γ_{c} can be parametrised by $\overrightarrow{\mathbf{c}}(t)=2 \cos t \hat{\imath}+2 \sin t \hat{\jmath}$ for $0<t<\frac{\pi}{4}$, so

 $$
 \begin{aligned}
 \overrightarrow{\mathbf{G}}(\overrightarrow{\mathbf{c}}(t)) \cdot \frac{d \overrightarrow{\mathbf{c}}}{d t}(t)=\left(c_{1}^{3}(t) \hat{\mathbf{\imath}}+c_{1}^{2}(t) c_{2}(t) \hat{\boldsymbol{\jmath}}\right) \cdot \frac{d \overrightarrow{\mathbf{c}}}{d t}(t) & =8\left(\cos ^{3} t \hat{\mathbf{\imath}}+\cos ^{2} t \sin t \hat{\boldsymbol{\jmath}}\right) \cdot(-2 \sin t \hat{\boldsymbol{\imath}}+2 \cos t \hat{\boldsymbol{\jmath}}) \\
 & =16 \cos ^{2} t(-\cos t \sin t+\sin t \cos t)=0, \\
 \Rightarrow \quad \int_{\Gamma_{c}} \overrightarrow{\mathbf{G}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}} & =\int_{0}^{\frac{\pi}{4}} \overrightarrow{\mathbf{G}}(\overrightarrow{\mathbf{c}}(t)) \cdot \frac{d \overrightarrow{\mathbf{c}}}{d t}(t) \mathrm{d} t=\int_{0}^{\frac{\pi}{4}} 0 \mathrm{~d} t=0 .
 \end{aligned}
 $$

[^1]: ${ }^{2}$ In the usual $x y z$-space the domain D is the set difference between the sphere of radius 2 and the sphere of radius 1 , both centred at the origin. Thus its boundary is composed of two disconnected components. However, this fact does not affect the solution of the exercise.

[^2]: ${ }^{3}$ After defining R and its four sides as above, the entire exercise can actually be solved in just one short chain of equalities:
 $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}=\oint_{\partial R} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}-\int_{\Gamma_{W}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}-\int_{\Gamma_{S}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}-\int_{\Gamma_{E}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}$

 $$
 \stackrel{\substack{\text { Green's th., } \\(\mathrm{ii)})(\mathrm{iii})}}{=} \iint_{R}(\vec{\nabla} \times \overrightarrow{\mathbf{F}})_{3} \mathrm{~d} A-\int_{\Gamma_{W}} F_{1} \hat{\boldsymbol{\imath}} \cdot(-\hat{\boldsymbol{\jmath}}) \mathrm{d} s-\int_{\Gamma_{S}} x^{2} \hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\imath}} \mathrm{~d} s-\int_{\Gamma_{E}} F_{1} \hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\jmath}} \mathrm{~d} s \stackrel{(\mathrm{i})}{=} 0-0-\frac{1}{3}-0=-\frac{1}{3} .
 $$

