Vector calculus MA2VC 2013–14 — Assignment 4

Handed out: Wednesday 27th November. Due: $\underline{\text{Wednesday}}$ 11th December, 12 noon.

Late assignments will not be accepted. Do not use red pen or pencil.

You can use formulas and identities from the lecture notes. Drawing a sketch of the domains may help you.

Total marks: 25. (5% of the total marks for the module.)

(1) (10 marks) Demonstrate Green's theorem for the field $\vec{\mathbf{G}} = x^3 \hat{\imath} + x^2 y \hat{\jmath}$ and the region R, defined in polar coordinates as

$$R = \Big\{x \hat{\pmb{\imath}} + y \hat{\pmb{\jmath}} = r \hat{\pmb{r}} + \theta \hat{\pmb{\theta}}, \text{ such that } 0 < r < 2, \ 0 < \theta < \frac{\pi}{4}\Big\}.$$

Hints: draw a sketch of the domain; use polar coordinates to compute the double integral; find simple parametrisations of the sides of R; exploit some orthogonalities to compute the line integral along a part of ∂R .

- (2) (6 marks) Consider the domain $D = {\vec{\mathbf{r}} \in \mathbb{R}^3, 1 < |\vec{\mathbf{r}}| < 2}$ and the field $\vec{\mathbf{H}}(\vec{\mathbf{r}}) = |\vec{\mathbf{r}}|^2 \vec{\mathbf{r}}$. Use the divergence theorem and spherical coordinates to compute the flux of $\vec{\mathbf{H}}$ through ∂D .
 - (3) (9 marks) Let $\vec{\mathbf{F}}$ be a vector field that satisfies the following properties:
 - (i) $\vec{\mathbf{F}}: \mathbb{R}^3 \to \mathbb{R}^3$ is smooth and irrotational;
 - (ii) $\vec{\mathbf{F}}$ is parallel to the x axis, i.e. $\vec{\mathbf{F}}(\vec{\mathbf{r}}) = F_1(\vec{\mathbf{r}})\hat{\imath}$ for all $\vec{\mathbf{r}} \in \mathbb{R}^3$;
- (iii) on the x axis $\vec{\mathbf{F}}$ has expression $\vec{\mathbf{F}}(x,0,0) = x^2 \hat{\imath}$.

Compute the line integral $\int_{\Gamma} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where Γ is the horizontal straight segment going from $\hat{\imath} + \hat{\jmath}$ to $\hat{\jmath}$.

Hint: the tools you need are Green's theorem and a square.