Vector calculus MA2VC 2013-14 - Assignment 4

Handed out: Wednesday 27th November. Due: Wednesday 11th December, 12 noon.
Late assignments will not be accepted. Do not use red pen or pencil.
You can use formulas and identities from the lecture notes. Drawing a sketch of the domains may help you.

Total marks: 25 . (5% of the total marks for the module.)
(1) (10 marks) Demonstrate Green's theorem for the field $\overrightarrow{\mathbf{G}}=x^{3} \hat{\boldsymbol{\imath}}+x^{2} y \hat{\boldsymbol{\jmath}}$ and the region R, defined in polar coordinates as

$$
R=\left\{x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}=r \hat{\boldsymbol{r}}+\theta \hat{\boldsymbol{\theta}}, \text { such that } 0<r<2,0<\theta<\frac{\pi}{4}\right\} .
$$

Hints: draw a sketch of the domain; use polar coordinates to compute the double integral; find simple parametrisations of the sides of R; exploit some orthogonalities to compute the line integral along a part of ∂R.
(2) (6 marks) Consider the domain $D=\left\{\overrightarrow{\mathbf{r}} \in \mathbb{R}^{3}, 1<|\overrightarrow{\mathbf{r}}|<2\right\}$ and the field $\overrightarrow{\mathbf{H}}(\overrightarrow{\mathbf{r}})=|\overrightarrow{\mathbf{r}}|^{2} \overrightarrow{\mathbf{r}}$. Use the divergence theorem and spherical coordinates to compute the flux of $\overrightarrow{\mathbf{H}}$ through ∂D.
(3) (9 marks) Let $\overrightarrow{\mathbf{F}}$ be a vector field that satisfies the following properties:
(i) $\overrightarrow{\mathbf{F}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is smooth and irrotational;
(ii) $\overrightarrow{\mathbf{F}}$ is parallel to the x axis, i.e. $\overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}})=F_{1}(\overrightarrow{\mathbf{r}}) \hat{\boldsymbol{\imath}}$ for all $\overrightarrow{\mathbf{r}} \in \mathbb{R}^{3}$;
(iii) on the x axis $\overrightarrow{\mathbf{F}}$ has expression $\overrightarrow{\mathbf{F}}(x, 0,0)=x^{2} \hat{\boldsymbol{\imath}}$.

Compute the line integral $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}$, where Γ is the horizontal straight segment going from $\hat{\imath}+\hat{\jmath}$ to $\hat{\boldsymbol{\jmath}}$.

Hint: the tools you need are Green's theorem and a square.

