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Vector algebra

Let u,v ∈ Rn then the scalar (or dot) product u · v is the scalar (number) given by:

u · v =

{
|u||v| cos θ where θ is the angle between the vectors∑n
k=1 ukvk = u1v1 + u2v2 + · · ·+ unvn

Geometrically, if v is a unit vector then one can interpret the dot product u · v as a measure of how

much of u is projected onto v (i.e., their overlap in some sense). If u · v = 0 then u and v are said to

be orthogonal (some authors prefer the term perpendicular but this concept does not generalise beyond

R3 and as such we shall not use it).

o Example. Let u =
(√

3− 1, 1 +
√

3
)T

and v =
(
3, 3
)T

, as shown in figure 1, then u · v = 6
√

3.

We verify the assertions about the geometric nature of the scalar product by additionally computing:

Figure 1: The scalar product of two vectors

|u| = 2
√

2 and |v| = 3
√

2. Therefore, the angle θ between the vectors satisfies 6
√

3 = 12 cos θ and

is consequently found to be θ = π/6. Thus, |u| cos θ (this ‘adjacent’ component of u is precisely the

amount of u projected onto v) is |u| cos θ = 2
√

2 cos(π/6) = 2
√

2
(√

3/2
)

=
√

6. To see that this is

precisely the overlap of u and v we rotate u by −π/4 (thereby bringing v in line with the horizontal

axis) whereon its components become
(√

6,
√

2
)T

which readily confirms our earlier assertion.

Let u,v ∈ R3 then the vector (or cross) product u× v is the vector given by:

u× v =

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 =
(
u2v3 − u3v2

)̂
i+

(
u3v1 − u1v3

)
ĵ +

(
u1v2 − u2v1

)
k̂ =

∣∣∣∣∣∣
î ĵ k̂

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
where we formally evaluate the determinant by expanding along the first row. The vector product is

constructed so as to produce a vector u× v that is orthogonal to both u and v.
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o Example. Let u = (2,−1, 0)T and v = (π, 0, 1)T then

u× v =

∣∣∣∣∣∣
î ĵ k̂

2 −1 0

π 0 1

∣∣∣∣∣∣ = î

∣∣∣∣ −1 0

0 1

∣∣∣∣− ĵ ∣∣∣∣ 2 0

π 1

∣∣∣∣+ k̂

∣∣∣∣ 2 −1

π 0

∣∣∣∣ = −î− 2ĵ + πk̂ .

Hence, u× v = (−1,−2, π)T.

We check the previous assertion that u× v is orthogonal to both u and v by computing

(
u× v

)
· u =

 −1

−2

π

 ·
 2

−1

0

 =
(
−1 −2 π

) 2

−1

0

 = −2 + 2 + 0 = 0 ;

and (
u× v

)
· v =

 −1

−2

π

 ·
 π

0

1

 =
(
−1 −2 π

) π

0

1

 = −π + 0 + π = 0 .

It follows from elementary row properties of the determinant that the vector product is an antisymmetric

operation; i.e., u × v = −v × u. A further corollary of this observation is that u × u = 0 ∀u ∈ R3.

Unlike the scalar product, the vector product does not generalise straightforwardly to higher dimensions

(its generalisation, the wedge product, is beyond the scope of this discussion).

We close this section with some standard identities of vector algebra and a note on their proof: Let

u,v,w ∈ R3 then

u ·
(
v ×w

)
= v ·

(
w × u

)
= w ·

(
u× v

)
(note the cyclical nature) and

u×
(
v ×w

)
=
(
u ·w

)
v −

(
u · v

)
w .

The standard strategy for establishing vector identities is to consider their components. For example, the

first component,
[
u×

(
v ×w

)]
1
, of u×

(
v ×w

)
is[

u×
(
v ×w

)]
1

= u2

[
v ×w

]
3
− u3

[
v ×w

]
2

= u2

(
v1w2 − v2w1

)
− u3

(
v3w1 − v1w3

)
=
(
u2w2 + u3w3

)
v1 −

(
u2v2 + u3w3

)
w1

=
(
u ·w − u1w1

)
v1 −

(
u · v − u1v1

)
w1

=
(
u ·w

)
v1 −

(
u · v

)
w1

=
[(
u ·w

)
v −

(
u · v

)
w
]
1

and to complete the proof one must establish the same result for all the other components individually.

The Levi-Civita symbol

The Levi-Civitia (or permutation) symbol εijk can greatly simplify vector calculations involving the vector

product, it is defined to be

εijk =


+1 if ijk is a cyclic permutation of 123

−1 if ijk is an anti-cyclic permutation of 123

0 otherwise

Consequently, for example, εijk = εkij .

o Example. ε123 = ε312 = ε231 = +1, ε321 = ε132 = ε213 = −1 and all other symbols vanish.
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The advantage of the Levi-Civita symbol is that one can use it to give a concise expression for the i-th

component of u× v in the following way:

[
u× v

]
i

=

3∑
j=1

3∑
k=1

εijkujvk .

o Example. Recall that to compute
[
u × v

]
1

= u2v3 − u3v2 we must formally evaluate the

determinant of a 3× 3 ‘matrix’ and then isolate the appropriate component. Consider

[
u× v

]
1

=

3∑
j=1

3∑
k=1

ε1jkujvk

=

3∑
j=1

(
ε1j1ujv1 + ε1j2ujv2 + ε1j3ujv3

)
=
(
ε111u1v1 + ε121u2v1 + ε131u3v1

)
+
(
ε112u1v2 + ε122u2v2 + ε132u3v2

)
+
(
ε113u1v3 + ε123u2v3 + ε133u3v3

)
= ε132u3v2 + ε123u2v3

= u2v3 − u3v2

You are entitled to make the objection that this isn’t a significantly easier question but it does enable

for the direct manipulation of components of a vector product as we shall soon establish (especially, the

curl of a vector field).

Scalar and vector fields

Throughout this section we let O ⊂ Rn denote a subset of Rn (possibly the whole of Rn).

Let f : O → R be a scalar field, i.e., a scalar valued function. For convenience, we denote the set of

scalar fields by S(O,R).

o Example. The mapping f : R3 → R defined by (x, y, z) 7→ xy + z is a scalar function; hence,

f ∈ S(R3,R).

The set S(Rn,R) is easily shown to be a linear space.

o Example. The mapping f : R2 → R is defined by (x, y) 7→ xy is a scalar function; hence,

f ∈ S(R2,R). The mapping g : R → R is defined by (x, y) 7→ x + y is a scalar function; hence,

g ∈ S(R2,R). As both f, g ∈ S(R2,R) they may be added and their sum (f + g) : R2 → R, defined

by (x, y) 7→ f(x, y) + g(x, y) = xy + x+ y, is also a scalar field.

Let F : O → Rn be a vector field, i.e., a vector valued function. For convenience, we denote the set of

vector fields by V (O,Rn). The components of a vector field are themselves scalar fields.

o Example. The mapping F : R3 → R3 defined by (x, y, z) 7→
(
x, 1, x + y

)T
is a vector field;

hence, F ∈ V (R3,R3).

The set V (O,Rn) is easily shown to be a linear space.

o Example. The mapping F : R2 → R2 is defined by (x, y) 7→
(
x, y
)T

is a vector field; that is,

F ∈ V (R2,R2). The mapping G : R→ R is defined by (x, y) 7→
(
x, x+ y

)T
is a vector field; that is,

G ∈ V (R2,R2). As both F ,G ∈ V (R2,R2) they may be added and their sum (F +G) : R2 → R2,

defined by (x, y) 7→ F (x, y) +G(x, y) =
(
2x, x+ 2y

)T
, is also a vector field.
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grad, div and curl

Throughout this section we let O ⊂ Rn denote a subset of Rn (possibly the whole of Rn).

The gradient operator ∇ : S(O,R)→ V (O,Rn) is defined by

f 7→
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)T

for all sufficiently differentiable f ∈ S(O,R).

o Example. Let f : R2 → R be defined by (x, y) 7→ xy + cosx then ∇f : R2 7→ R2 is given by

(x, y) 7→ (y − sinx, x)
T
.

Typically, we write ∇f(x, y) = (y − sinx, x)
T

or ∇f(x, y) = (y − sinx)̂i+ xĵ.

Let σ : R3 → R then σ(x, y, z) = 0 defines a two-dimensional surface in R3 and the vector ∇σ is

everywhere normal (orthogonal) to the surface defined by σ(x, y, z) = 0.

o Example. Let σ : R3 → R be defined by (x, y, z) 7→ x+ y − 3z + 5 then σ(x, y, z) = 0 defines a

two-dimensional surface in R3 (indeed, x + y − 3z + 5 = 0 is an equation of a plane whose normal

vector is easily inspected to be (1, 1,−3)T). We compute

∇σ =

(
∂

∂x

(
x+ y − 3z + 5

)
,
∂

∂y

(
x+ y − 3z + 5

)
,
∂

∂z

(
x+ y − 3z + 5

))T

= (1, 1,−3)
T

as expected.

o Example. Let σ : R3 → R be defined by (x, y, z) 7→ x2 + y2 + z2 − 9 then σ(x, y, z) = 0 defines

a two-dimensional surface in R3 (indeed, x2 + y2 + z2 − 9 = 0 defines the surface of the sphere

of radius 3 centred at the origin). We compute ∇σ = (2x, 2y, 2z)
T

which is certainly an outward

normal vector (consider the various octants for confirmation).

Let F : Rn → Rn be a vector field whose components F =
(
F1, . . . , Fn

)T
are each sufficiently dif-

ferentiable scalar fields. The divergence of the vector field F , denoted ∇ · F , is the scalar field given

by

∇ · F =

n∑
k=1

∂Fk
∂xk

.

(One can think of the divergence operator ∇· : V (O,R)→ S(O,R) should one wish to).

o Example. Consider the R3 vector field F given by (x, y, z) 7→ (x2, yz sinx, 1)T then ∇ · F is

given by

(x, y, z) 7→ ∂

∂x
(x2) +

∂

∂y
(yz sinx) +

∂

∂z
(1) = 2x+ z sinx ;

alternatively written ∇ · F (x, y, z) = 2x+ z sinx.

Let F : R3 → R3 be a vector field as before. The curl of the vector field F , denoted ∇× F , is the R3

vector field given by

∇×F =


∂F3

∂y −
∂F2

∂z
∂F1

∂z −
∂F3

∂x
∂F2

∂x −
∂F1

∂y

 =

(
∂F3

∂y
− ∂F2

∂z

)
î+

(
∂F1

∂z
− ∂F3

∂x

)
ĵ+

(
∂F2

∂x
− ∂F1

∂y

)
k̂ =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣ .
Note that again when we write the curl of a field in terms of a determinant that this is pure formalism.

(Again, one can think of the curl operator ∇× : V (O,R)→ V (O,R) should one wish to).

It is at this point that we have the opportunity to adopt a more powerful notation. Consider the arbitrary

R3 vector x = (x, y, z)T; rather than using the usual Cartesian labels we instead write x = (x1, x2, x3)T.

The advantage of this notation is that one can now write i-th component ∇i of the gradient operator ∇
is ∇i = ∂/∂xi.
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o Example. Let f : R3 → R be defined by (x1, x2, x3) 7→ x1 + x1x2 then[
∇f
]
1

= ∇1f = 1 + x2 ,
[
∇f
]
2

= ∇2f = x1 and
[
∇f
]
3

= ∇3f = 0 .

A consequence of this new notation is the following expression for the curl ∇ × F of the vector field

F : R3 → R3 with components
(
F1, F2, F3

)T
where F1, F2, F3 ∈ S(R3,R):

[
∇× F

]
i

=

3∑
j=1

3∑
k=1

εijk∇jFk .

Using this notation one can begin to establish those vector calculus identities involving the curl. For

example, let F : R3 → R3 be a vector field (as before) then

∇i
[
∇× F

]
i

= ∇i

 3∑
j=1

3∑
k=1

εijk∇jFk

 =

3∑
j=1

3∑
k=1

εijk∇i∇jFk .

Summing the term ∇i
[
∇× F

]
i

over all admissible i one obtains

∇ ·
(
∇× F

)
=

3∑
i=1

3∑
j=1

3∑
k=1

εijk∇i∇jFk

= ε123∇1∇2F3 + ε312∇3∇1F2 + ε231∇2∇3F1

+ ε321∇3∇2F1 + ε132∇1∇3F2 + ε231∇2∇3F1

=
(
∇1∇2 −∇2∇1

)
F3 +

(
∇3∇1 −∇1∇3

)
F2

+
(
∇2∇3 −∇3∇2

)
F1

= 0

as partial derivatives commute (i.e., ∇1∇2F3 = ∇2∇1F3, etc.) for sufficiently well behaved functions

(Clairaut’s theorem). Thus we learn the famous vector calculus identity that “div-curl” vanishes.

We close this section with the remark that vector calculus has many important applications in science

outside of its interest in mathematics.

o Example (Maxwell’s equations). An electric field E with associated magnetic field B satisfy

the Maxwell equations:

∇ ·D = ρ , ∇ ·B = 0 , ∇×E = −∂B
∂t

and ∇×H = j +
∂D

∂t

where ρ is the charge density, j is the current and the auxiliary vectors D and H (for a field propa-

gating in an isotropic and homogeneous medium) satisfy E ∝ D and B ∝H. Any electromagnetic

field must obey all of Maxwell’s equations.

Standard identities involving grad, div and curl

In this brief section we cover the basic identities of vector calculus beginning with a familiar object from

the study of differential equations. Recall the Laplacian 4 which typically features in the Laplace, Poisson

or heat equation; in two-dimensions 4 is given by 4 = ∂2

∂x2 + ∂2

∂y2 or in n-dimensions

4 =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

.

Let f : Rn → R be a twice differentiable scalar field then

(
∇ ·∇

)
f = ∇ ·

(
∇f
)

=


∂
∂x1
∂
∂x2

...
∂
∂xn

 ·


∂f
∂x1
∂f
∂x2

...
∂f
∂xn

 =
∂

∂x1

∂f

∂x1
+
∂

∂x1

∂f

∂x1
+ . . .

∂

∂x1

∂f

∂xn
= 4f .
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Hence, we obtain the standard interpretation of the Laplacian as “div-grad”: ∇ ·∇ = 4.

We may prove other vector calculus identities by adopting this strategy. For example, let F ,G ∈
V (R3,R3) be suitably differentiable vector fields and consider

∇ ·
(
F ×G

)
=

3∑
i=1

∇i
(
F ×G

)
i

=

3∑
i=1

∇i
3∑
j=1

3∑
k=1

εijkFjGk

=

3∑
i=1

3∑
j=1

3∑
k=1

εijk
(
(∇iFj)Gk + Fj∇iGk

)
=

3∑
i=1

3∑
j=1

3∑
k=1

(
εkij((∇iFj)Gk − εjikFj∇iGk

)
=

3∑
k=1

(
∇× F

)
k
Gk −

3∑
j=1

Fj
(
∇×G

)
j

⇔ ∇ ·
(
F ×G

)
=
(
∇× F

)
·G− F ·

(
∇×G

)
.

By continuing in this manner one can establish the following standard vector calculus identities:

∇
(
fg
)

= f∇g + g∇f ∇ ·
(
F ×G

)
=
(
∇× F

)
·G− F ·

(
∇×G

)
∇
(
fF
)

=
(
∇f
)
· F + f

(
∇ · F

)
∇×

(
F ×G

)
= F

(
∇ ·G

)
−G

(
∇ · F

)
−
(
F ·∇

)
G+

(
G ·∇

)
F

∇×
(
fF
)

=
(
∇f
)
× F + f

(
∇× F

)
∇
(
F ·G

)
= F ×

(
∇×G

)
+G×

(
∇× F

)
+
(
F ·∇

)
G+

(
G ·∇

)
F

∇×
(
∇f
)

= 0 ∇ ·
(
∇× F

)
= 0

∇ ·∇f = 4f ∇×
(
∇× F

)
= ∇

(
∇ · F

)
−4F

for any scalar fields f, g and vector fields F ,G.

Line integrals

Let a < b, f : Rn → R be a scalar field and consider the curve γ : R→ Rn. For convenience we define

the set Γ ⊂ Rn by Γ = {γ(t) | t ∈ [a, b]}. The line integral∫
Γ

f ds =

∫ b

a

f(γ(t))|γ′(t)|dt

where ds is an infinitesimal piece of the curve γ. If γ(a) = γ(b) then we say the line integral is a contour

integral and denote thus ∮
Γ

f ds .

o Example. Consider the points (0, 0) and (1, 1) and the connecting path γ : R→ R2 defined by

t 7→ (t, t) ∀t ∈ [0, 1]. Then γ′(t) = (1, 1)T, thus |γ′(t)| =
√

2; hence,∫
Γ

(
x2 + y

)
ds =

∫ 1

0

(
t2 + t

)√
2 dt =

5

3
√

2
.

o Example. Consider the points (0, 0) and (1, 1) and the connecting path γ : R → R2 de-

fined by t 7→ (sin(πt/2), sin(πt/2)) ∀t ∈ [0, 1]. Then γ′(t) = (π/2) cos(πt/2)(1, 1)T, thus |γ′(t)| =

(π/2)| cos(πt/2)|; hence,∫
Γ

(
x2 + y

)
ds =

∫ 1

0

(
sin2(πt/2) + sin(πt/2)

) π√
2

cos(πt/2) dt =
5

3
√

2
.
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Let a < b, F : Rn → Rn be a bounded vector field and consider the curve γ : R→ Rn. For convenience

we define the set Γ ⊂ Rn by Γ = {γ(t) | t ∈ [a, b]}. The line integral∫
Γ

F · dr =

∫ b

a

F (γ(t)) · γ′(t) dt

where dr =
(
dx,dy,dz

)T
. If γ(a) = γ(b) then we say the line integral is a contour integral and denote

it thus ∮
Γ

F · dr .

Contrary to intuition it is not a priori true that
∮

Γ
F · dr = 0; in fact, it is generally not true.

o Example. Consider the points (0, 0) and (1, 1) and the connecting path γ : R→ R2 defined by

t 7→ (t, t) ∀t ∈ [0, 1]. Then γ′(t) = (1, 1)T; hence,∫
Γ

(
yî− xĵ

)
· dr =

∫ 1

0

(
t

−t

)
·
(

1

1

)
dt =

∫ 1

0

0 dt = 0 .

o Example. Consider the points (0, 0) and (1, 1) and the connecting path γ : R→ R2 defined by

t 7→ (t, sin(πt/2)) ∀t ∈ [0, 1]. Then γ′(t) = (1, (π/2) cos(πt/2))T; hence,∫
Γ

(
yî− xĵ

)
· dr =

∫ 1

0

(
sin(πt/2)

−t

)
·
(

1

(π/2) cos(πt/2)

)
dt

=

∫ 1

0

(
sin(πt/2)− π

2
t cos(πt/2)

)
dt

=
4− π
π

.

Note that the results are different depending on the path taken between the end points of the curve.

Conservative vector fields and scalar potentials

A vector field F : Rn → Rn is said to be conservative if there exists a f : Rn → R such that

F = ∇f . The function f is referred to as a scalar potential. (Some authors insist on F = −∇f ;

this alternative convention choice has considerable advantages in the theory of classical mechanics and

electromagnetism).

o Example. The vector field F : R2 → R2 defined by (x, y) 7→
(
x+ y, x

)T
is conservative; indeed,

it arises from the scalar potential f : R2 → R defined by (x, y) 7→ xy + x2/2.

o Example. Let f : R3 → R be given by (x1, x2, x3) 7→ x1x2x3 then the vector field F : R3 → R3

defined by

(x1, x2, x3) 7→
(
∇1f,∇2f,∇3f

)T
=
(
x2x3, x1x3, x1x2

)T
is conservative.

o Example. Consider the vector field F : R2 → R2 defined by (x, y) 7→
(
y+ 1, x

)T
which is easily

shown to be conservative by solving

∂f

∂x
= y + 1 . . .�

∂f

∂y
= x . . .� .

Integration (w.r.t. x) of equation� implies that f(x, y) = x(y+1)+ϕ(y) for some arbitrary function

ϕ. This proposed general solution must also satisfy equation �, i.e., x + ϕ′(y) = x ⇔ ϕ′(y) = 0;

the solution ϕ to this ode is y 7→ c where c is an arbitrary constant of integration. Thus, the general

scalar potential solution f is given by (x, y) 7→ x(y+ 1) + c, however, in practice it is typical to drop

the constant as f only appears under a divergence or as a difference term when this cannot influence

the answer. Therefore, f(x, y) = x(y + 1). Hence, the vector field is conservative.
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Not all vector fields are conservative. To prove a given vector field is not conservative one must establish

that there does not exist a scalar potential, typically one use a reductio ad absurdum argument.

o Example. The vector field F : R2 → R2 defined by (x, y) 7→
(
y,−x

)T
is not conservative;

indeed, suppose it were and that there exist a scalar potential f : R2 → R satisfying

∂f

∂x
= y . . .�

∂f

∂y
= −x . . .� .

Integration (w.r.t. x) of equation � implies that f(x, y) = xy + ϕ(y) for some arbitrary function

ϕ. This proposed general solution must also satisfy equation �, i.e., x + ϕ′(y) = −x but no such

function of a single variable can exist (our desired contradiction). Hence, the vector field is not

conservative.

An R3 conservative vector field F : R3 → R3 satisfies ∇×F = 0. This is a straightforward corollary of

∇×
(
∇f
)

= 0. A vector field of vanishing curl is said to be irrotational.

The fundamental theorem of vector calculus

Let Γ ⊂ Rn define a closed path between the points p and q then the fundamental theorem of vector

calculus states that: if F : Rn → Rn is a conservative vector field then∫
Γ

F · dr = f

∣∣∣∣q
p

= f(q)− f(p)

where f : Rn → R is a scalar potential associated to F (i.e., F = ∇f). We can make the connection

with the usual one variable situation by writing the result exclusively in terms of the scalar potential

whereon it becomes
∫

Γ

(
∇f
)
· dr = f

∣∣q
p

which is pleasingly reminiscent of the standard fundamental

theorem of calculus.

o Example. Consider the vector field F : R2 → R2 defined by (x, y) 7→
(
y + 1, x

)T
which we

have previously established is conservative with associated scalar potential f : R2 → R defined by

(x, y) 7→ x(y + 1) and the points p = (0, 0) and q = (1, 1). Then∫
Γ

F · dr = f(q)− f(p) = x(y + 1)

∣∣∣∣(1,1)

(0,0)

= 2

independently of the specific path Γ joining the endpoints. To further reinforce this remarkable fact

we specify a particular path Γ by Γ = {(t, t) ∈ R2 | t ∈ [0, 1]} then∫
Γ

F · dr =

∫ 1

0

(
t+ 1

t

)
·
(

1

1

)
dt =

∫ 1

0

(
2t+ 1

)
dt = 2

as expected.

o Example. We have previously established that the vector field F : R2 → R2 given by (x, y) 7→(
y,−x

)T
is not conservative. The points p = (0, 0) and q = (1, 1) can be connected by a variety of

paths, for definiteness we consider the paths

Γ1 = {(t, t) ∈ R2 | t ∈ [0, 1]} ;

Γ2 = {(t, t2) ∈ R2 | t ∈ [0, 1]} ;

Γ3 = {(0, s) ∈ R2 | s ∈ [0, 1]} ∪ {(t, 1) ∈ R2 | t ∈ [0, 1]} .

Then ∫
Γ1

F · dr =

∫ 1

0

(
t

−t

)
·
(

1

1

)
dt =

∫ 1

0

0 dt = 0 .
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Whereas, ∫
Γ2

F · dr =

∫ 1

0

(
t2

−t

)
·
(

1

2t

)
dt =

∫ 1

0

(
− t2

)
dt = −1

3
,

and, finally,∫
Γ3

F · dr =

∫ 1

0

(
s

0

)
·
(

0

1

)
ds+

∫ 1

0

(
1

−t

)
·
(

1

0

)
dt =

∫ 1

0

0 ds+

∫ 1

0

1 dt = 1 .

Hence, ∫
Γ1

F · dr 6=
∫

Γ2

F · dr 6=
∫

Γ3

F · dr and

∫
Γ1

F · dr 6=
∫

Γ3

F · dr

despite the fact that Γ1,Γ2 and Γ3 all have the same endpoints.

Path independence of line integral quantities is not just a pleasing mathematical fact, it is of central

importance of the field of classical physics and thermodynamics where it has profound consequences. For

example, the work done by to resist a force F along the path Γ is given by
∫

Γ
F ·dr; hence, if the force is

not conservative one may have to work harder along certain paths between the endpoints of the motion.

Multiple integration

Let a < b, g : [a, b]→ R be a bounded function and consider the expression∫ b

a

g(x) dx

which we typically interpret as the (signed) area between the curves x = a, x = b, y = 0 and y =

g(x). This interpretation rests on the fact that g(x)dx can be identified as the area of the rectangle

[x, x + dx] × [0, g(x)] which one sums (continuously) over all admissible x ∈ [a, b]. We wish to extend

this notion and consider the integral of a function of two (and later more) variables.

Suppose R ⊂ R2 is a bounded region and f : R → R is a bounded function of two variables. We wish

to give meaning to expressions of the form ∫
R
f(x, y) dA

where the region of integration is R and the area element is dA. If we consider an infinitesimal element

of area dA in Cartesian coordinates of the rectangular region with vertices (x, y), (x,+dx, y), (x+dx, y)

and (x + dx, y + dy) as shown in figure 2. This indicates that, in Cartesian coordinates, dA = dx dy

and that we should be able to evaluate the area integral by a double integral. The question remains as

to the limits of integration in the variables:∫
R
f(x, y)dA =

∫ ?

??

(∫ ???

????

f(x, y)dx

)
dy or

∫
R
f(x, y)dA =

∫ ?

??

(∫ ???

????

f(x, y)dy

)
dx

(as, at least intuitively, the area dxdy is the same as dy dx).

The answer is provided by considering the boundary ∂R of R. The boundary ∂R is a curve in R2, that

is a one dimensional object. Let us denote the equation of the curve by ϕ(x, y) = 0 which one may solve

for either variable (we are at liberty to consider either as the independent one). Consider figure 3 which

indicates that we may evaluate these double integrals using the following limit prescription:∫
R
f(x, y)dA =

∫ max y

min y

(∫ max x(y)

min x(y)

f(x, y)dx

)
dy

or ∫
R
f(x, y)dA =

∫ max x

min x

(∫ max y(x)

min y(x)

f(x, y)dy

)
dx

as desired. In the examples which follow the reader is strongly advised to verify the asserted limits by

means of a suitable sketch (in the form of figure 3).
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Figure 2: The area element dA in Cartesian coordinates

o Example. Let R = [0, 1]× [1, 2] and f : R → R be defined by (x, y) 7→ x2 + x cosπy then∫
R
f(x, y) dA =

∫ 2

1

(∫ 1

0

(
x2 + x cosπy

)
dx

)
dy =

∫ 2

1

(
1

3
+

1

2
cosπy

)
dy =

1

3
.

o Example. Let R be the triangle with vertices (0, 0), (1, 0) and (1, 3) and f : R → R be given by

(x, y) 7→ sinh y then∫
R
f(x, y) dA =

∫ 3

0

(∫ 1

y/3

sinh y dx

)
dy =

∫ 3

0

sinh y
(

1− y

3

)
dy = −1 +

1

3
sinh 3 .

o Example. Let R = {(x, y) ∈ R2 | x+ y2 ≤ 1} and f : R → R be defined by (x, y) 7→ xy then∫
R
f(x, y) dA =

∫ 1

−1

(∫ √1−y2

−
√

1−y2

(
x+ y2

)
dx

)
dy =

∫ 1

−1

2y2
√

1− y2 dy =
π

4
.

We remark that this integral is remarkably symmetric in the following sense. Suppose we perform

the change of variables y 7→ ỹ = −y then∫ 1

−1

(∫ √1−y2

−
√

1−y2

(
x+ y2

)
dx

)
dy =

∫ −1

1

(∫ √1−ỹ2

−
√

1−ỹ2

(
x+ ỹ2

)
dx

)(
− dỹ

)
=

∫ 1

−1

(∫ √1−ỹ2

−
√

1−ỹ2

(
x+ ỹ2

)
dx

)
dỹ .

Therefore, ∫ 1

−1

(∫ √1−y2

−
√

1−y2

(
x+ y2

)
dx

)
dy = 2

∫ 1

0

(∫ √1−y2

−
√

1−y2

(
x+ y2

)
dx

)
dy

which may be equivalently expressed∫
R

(
x2 + y2

)
dA = 2

∫
D

(
x2 + y2

)
dA

where D is the upper unit semi-circle centred at the origin. Thus,
∫
D
(
x2 + y2

)
dA = π/8.
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Figure 3: The limits of a double integral

Polar coordinates

Some situations admit particular symmetry which may be exploited to enable easier computation. In this

section we briefly consider planar circular symmetry where the polar coordinates (r, θ) ∈ [0,∞)× [0, 2π)

are related to the Cartesian coordinates (x, y) ∈ R2 through x = r cos θ and y = r sin θ. By considering

an infinitesimal area dA element in planar polar coordinates one can show that dA = rdr dθ; see figure

4.

Figure 4: Area element in polar coordinates

o Example. Let R be the upper half of the unit circle centred at the origin in R2 and f : R → R
be given by (x, y) 7→ x+ y2 then∫

R
f(x, y) dA =

∫ 1

0

(∫ π

0

(
r cos θ + r2 sin2 θ

)
dθ

)
rdr =

∫ 1

0

(π
2
r2
)
rdr =

π

8

as expected.
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Multiple integrals and the Jacobian determinant

One may extend the idea of double integrals to higher dimensional settings. For the purposes of this

discussion we shall restrict ourselves to a brief remark on higher integrals of the form∫
Ω

f(x1, . . . , xn) dV

where Ω ⊂ Rn, f : Ω→ R is a bounded function and the volume element dV (in Cartesian coordinates)

is given by dV =
∏n
k=1 dxk = dx1 . . . dxn.

o Example. Let a < b and Ω = [a, b]× · · · × [a, b] (n-times) then∫
Ω

dV =

∫ b

a

(
. . .

(∫ b

a

dx1

)
. . .

)
dxn =

(
b− a

)n
as one would expect for the ‘volume’ of the n-cube of side length b− a.

o Example. Let h, ` > 0, Ω = {(x, y, z) ∈ R3 | x2 + y2 ≤ `2 and z ∈ [0, h]} = R × [0, h] where

R = {(x, y) ∈ R2 | x2 + y2 ≤ `2} and consider
∫

Ω
dV which we expect, on geometric grounds, to be

equal to π`2h. Indeed, one may verify this by writing∫
Ω

dV =

∫
R×[0,h]

dV =

∫
R

dA

∫ h

0

dz = h

∫
R

dA = h

∫ `

0

(∫ 2π

0

dθ

)
rdr = h

∫ `

0

(
2π
)
rdr = π`2h .

We turn our attention briefly to the subject of the change of variables in multiple integration. Suppose

we wish to change from Cartesian variables (x1, . . . , xn) to another set of variables (t1, . . . , tn) then one

can show that

dx1 . . . dxn =

∣∣∣∣∂(x1, . . . , xn)

∂(t1, . . . , tn)

∣∣∣∣dt1 . . . dtn where
∂(x1, . . . , xn)

∂(t1, . . . , tn)
=

∣∣∣∣∣∣∣
∂x1

∂t1
. . . ∂x1

∂tn
...

. . .
...

∂xn

∂t1
. . . ∂xn

∂tn

∣∣∣∣∣∣∣
is the Jacobian determinant of the change of variables transform.

o Example. Consider the change from Cartesian to planar polar coordinates via x = r cos θ and

y = r sin θ then

∂(x1, . . . , xn)

∂(t1, . . . , tn)
=

∣∣∣∣ ∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r .

Hence,

dxdy = rdr dθ

as before.

o Example (Spherical polar coordinates). Let ` > 0, Ω = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ `}
and define f : Ω→ R by (x, y, z)→ x2 + y2 then

∫
Ω
f(x, y, z) dV may be evaluated by the following

change of variables
x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

 where


r ≥ 0

θ ∈ [0, π]

ϕ ∈ [0, 2π)

.
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The Jacobian determinant ∂(x, y, z)/∂(r, θ, ϕ) of the transform is

∂(x, y, z)

∂(r, θ, ϕ)
=

∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ

sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ −r sin θ 0

∣∣∣∣∣∣
= cos θ

∣∣∣∣ r cos θ cosϕ −r sin θ sinϕ

r cos θ sinϕ r sin θ cosϕ

∣∣∣∣+ r sin θ

∣∣∣∣ sin θ cosϕ −r sin θ sinϕ

sin θ sinϕ r sin θ cosϕ

∣∣∣∣
= cos θ

(
r2 cos θ sin θ

)
+ r sin θ

(
r sin2 θ

)
= r2 sin θ ;

⇒ dxdy dz = r2 sin θ dr dθ dϕ

as r ≥ 0 and sin θ ≥ 0 if θ ∈ [0, π]. Hence, noting that x2 + y2 = r2 sin2 θ,∫
Ω

(
x2 + y2

)
dV =

∫ `

0

(∫ π

0

(∫ 2π

0

(
r2 sin2 θ

)
dϕ

)
sin θ dθ

)
r2dr

=

∫ `

0

(∫ π

0

(
2πr2 sin2 θ

)
sin θ dθ

)
r2dr

=

∫ `

0

(
8

3
πr2

)
r2dr

=
8

15
π`5 .

For clarity (for fixed r): in our conventions for spherical polar coordinates the angle θ governs the

displacement from the origin in the z-direction whereas φ determined the distance from the origin in the

x − y plane. We present a series of plots of the surfaces swept out for a variety of angular regions in

figure 5.

We provide a summary of these findings and another common coordinate system in table 1.

Table 1: Some common coordinate systems

Coordinate system Coordinates Measure Notes

Planar

Cartesian x, y dxdy x, y ∈ R

Polar
x = r cos θ

dxdy = rdr dθ
r ≥ 0

y = r sin θ θ ∈ [0, 2π)

Volume

Cartesian x, y, z dxdy dz x, y, z ∈ R

Polar

x = r sin θ cosϕ

dxdy dz = r2 sin θ dr dθ dϕ

r ≥ 0

y = r sin θ sinϕ θ ∈ [0, π]

z = r cos θ ϕ ∈ [0, 2π)

Cylindrical

x = r cos θ

dxdy dz = r dr dθ dz

r ≥ 0

y = r sin θ θ ∈ [0, 2π)

z z ∈ R
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Figure 5: Spherical polar coordinates. θ ∈ [0, π), ϕ ∈ [0, 2π] (top left), θ ∈ [0, π/2), ϕ ∈ [0, 2π) (top

right), θ ∈ [0, π], ϕ ∈ [0, π] (bottom left) and θ ∈ [0, π/2], ϕ ∈ [0, π] (bottom right)

Surface integrals

Table 1 also enables us to infer some results about surface integrals. A surface integral is one of the

form
∮
∂Ω
f(x, y) dS where ∂Ω is a surface bounding the region Ω and dS is the surface element of ∂Ω.

In general dS 6= dx dy (i.e., a small patch of area on ∂Ω is not always a rectangle). One can become

convinced of this by considering the following well known phenomenon/brand of chocolate orange: it is

impossible to smoothly wrap a sheet of paper around a ball (the fact that the surface of the ball is curved

means that you need to introduce a fold).

Rather than integrating over a planar region using Cartesian coordinates we could use planar polar

coordinates to integrate a function over R2. Planar polar coordinates provide us with a surface (circle)

of radius r (which we can integrate our function over) before subsequently integrating over all r and

thereby sweeping out the entire plane as shown in figure 6.

Figure 6 encourages the following interpretation of the area integral:

∫
R2

f(x, y) dA =

∫ ∞
0


first integrate f over the surface of a circle of radius r︷ ︸︸ ︷∫ 2π

0

f(r, θ) rdθ

 dr .

︸ ︷︷ ︸
then sweep out the plane by integrating over the radial direction r

Hence, we may interpret rdθ as the surface element of the circle and
∫ 2π

0
f(r, θ) rdθ as the integral of
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Figure 6: Sweeping out the plane using the surfaces of a series of circles

f over the surface of a circle of (fixed) radius r. Denoting this surface ∂R we write this integral as∮
∂R f(x, y) dS.

o Example. Let ` > 0 and ∂R = {(x, y) ∈ R2 | x2 + y2 = `2}. Consider the surface integral∮
∂R

(
x+ y2 + 1

)
dS =

∫ 2π

0

(
` cos θ + `2 sin2 θ + 1

)
`dθ = π`

(
2 + `2

)
.

Using a similar argument to that of figure 6 we may infer that r2 sin θ dθ dϕ is the appropriate surface

element for the sphere of radius r.

o Example. Let ` > 0 and ∂Ω = {(x, y, z) ∈ R3 | x2 + y2 + z2 = `} be the surface of the sphere of

radius `. Consider the integral
∮
∂Ω
xdS. In spherical polar coordinates dS = `2 sin θ dθ dϕ and the

value of x, restricted to the surface ∂Ω, is given by x = ` sin θ cosϕ. Hence,∫
∂Ω

xdS =

∫ 2π

0

(∫ π

0

(
` sin θ cosϕ

)
`2 sin θ dθ

)
dϕ =

∫ 2π

0

(
1

2
π`3 cosϕ

)
dϕ = 0 .

Readers interested in learning how to construct the surface element dS for other surfaces are directed

to the literature (we confess that the technique we have employed here takes advantage of the special

geometry considered and does not generalise).

A brief digression on dimensional analysis

The Cartesian coordinates (x, y, z) each have the fundamental dimension of length L. Let f be a physical

quantity, then we denote the dimension of f by {f}dim. For example, {length}dim = {radius}dim =

L, {area}dim = L2 and {volume}dim = L3. Scalars (numbers) are dimensionless which we write

{scalar}dim = 1; for example, {angle}dim = 1. Pertinent to our discussion are the observations that

{dx}dim = {dr}dim = L , {dx dy}dim = L2 , {dx dy dz}dim = L3 and {dθ}dim = {dϕ}dim = 1 .

If we consider the change of coordinates and the Jacobian determinant then

{dx1 . . . dxn}dim =

{∣∣∣∣∂(x1, . . . , xn)

∂(t1, . . . , tn)

∣∣∣∣dt1 . . . dtn}
dim

=

{∣∣∣∣∂(x1, . . . , xn)

∂(t1, . . . , tn)

∣∣∣∣}
dim

{dt1}dim . . . {dtn}dim
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Suppose we did not know dxdy dz = r2 sin θ dr dθ dϕ we could at least deduce, on purely dimensional

grounds, that dx dy dz = c(θ, ϕ) r2dr dθ,dϕ where {c(θ, ϕ)}dim = 1. Indeed, we may sensibly assume

that

dxdy dz = k(r, θ, ϕ) dr dθ dϕ ⇔ {dxdy dz}dim = {k(r, θ, ϕ)}dim{dr}dim{dθ}dim{dϕ}dim

⇔ L3 = {k(r, θ, ϕ)}dimL

⇔ L2 = {k(r, θ, ϕ)}dim

⇔ {k(r, θ, ϕ)}dim = {r2c(θ, ϕ)}dim where {c(θ, ϕ)}dim = 1

as previously asserted. (Astute readers will have noticed that this argument relies on the implicit assump-

tion that we have not omitted a dimensionful quantity). Hence, had we (erroneously) concluded earlier

that dx dy dz = r sin θ dr dθ dϕ we would know immediately that we had blundered. Finally, we note

that this technique cannot provide any insight into the dimensionless quantities but is a useful tool in

our armory nonetheless.

The divergence theorem

Gauss’ divergence theorem is a generalisation of the fundamental theorem of calculus. We present the

planar version of this theorem (it’s generalisation to higher dimensions requires a discussion of surface

integrals and the interested reader is directed to the literature). Let R ⊂ R2 be a bounded region with

boundary ∂R having outward unit normal n̂ and F ∈ V (R,R2) then∫
R
∇ · F dA =

∮
∂R
F · n̂ ds .

Physically one may interpret
∮
∂R F · n̂ ds as a measure of the amount of F flowing through the boundary

∂R in the direction n̂; consequently, one sometimes refers to such terms as ‘flux integrals’. We remark

that some authors write n̂ds = ds and the divergence theorem as
∫
R∇ · F dA =

∮
∂R F · ds. Rightly

or wrongly we shall not adopt this convention for this discussion.

o Example. Let ` > 0, R = {(x, y) ∈ R2 | x2 + y2 ≤ `2} and consider
∫
R dA which we

have already shown to be equal to π`2. This may be verified using the divergence theorem in the

following way: define F : R 7→ R2 by (x, y) 7→
(
x, y
)T
/2 then ∇ · F = 1. Moreover, the boundary

∂R = {(x, y) ∈ R2 | x2 + y2 = `2} and n̂ =
(
x, y
)T
/`. Therefore, the divergence theorem asserts

that∫
R

dA =

∮
∂R
F · n̂ds =

1

2`

∮
∂R

(
x2 + y2

)
ds =

1

2`

∮
∂R

`2 ds =
`

2

∮
∂R

ds =
`

2

∫ 2π

0

` dθ = π`2

as expected.

It is straightforward to generalise the divergence theorem to higher dimensions (although we restrict

ourselves to the physically meaningful three). Let Ω ⊂ R3 be a bounded region with boundary ∂Ω having

outward unit normal n̂ and F ∈ V (Ω,R3) then∫
Ω

∇ · F dV =

∮
∂Ω

F · n̂ dA

where dV is the volume element dV = dx dy dz (in Cartesian coordinates).

o Example. Let ` > 0, Ω ⊂ R3 be the solid sphere of radius `, i.e.

Ω = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ `2} ,
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with normal n = ∇
(
x2 +y2 +z2− `

)
=
(
2x, 2y, 2z

)T
. Therefore, n̂ =

(
x, y, z

)T
/`. Define the vector

field F : R3 → R by (x, y, z) 7→
(
x, y,−z

)T
then the flux integral

∮
∂Ω

F · n̂dS =

∮
∂Ω

 x

y

−z

 ·
 x/`

y/`

z/`

 dS

=
1

`

∮
∂Ω

(
x2 + y2 − z2

)
dS

=
1

`

∮
∂Ω

(
2x2 + 2y2 − `2

)
dS .

There are many ways to parametrise the surface ∂Ω of the sphere Ω. Perhaps the most conventional

is

x = ` cos θ cosϕ , y = ` cos θ sinϕ and z = ` sin θ ∀θ ∈ [0, π] , ϕ ∈ [0, 2π) .

The surface element dS = ` sin θ dθ dϕ. Therefore,∮
∂Ω

F · n̂dS =
1

`

∮
∂Ω

(
2x2 + 2y2 − `2

)
dS = `2

∫ 2π

0

(∫ π

0

sin3 θ dθ

)
dϕ =

4`2

3

∫ 2π

0

dϕ =
8π`2

3
.

o Example. Let ` > 0, Ω ⊂ R3 be the solid cylinder of radius ` and unit height, i.e.

Ω = {(x, y, z) ∈ R3 | x2 + y2 ≤ `2 and z ∈ [0, 1]} ,

and define F : R3 → R3 by (x, y, z) 7→
(
xy2, x2y, z2(x2 + y2)

)T
. Then the flux

∫
Ω
F · n̂dS of F

flowing out of the cylinder Ω, i.e. across ∂Ω, is easily calculated using the divergence theorem:∮
∂Ω

F · n̂ dS =

∫
Ω

∇ · F dV

=

∫
Ω

(
x2 + y2

)(
1 + 2z

)
dV

=

∫ 1

0

(∫ `

0

(∫ 2π

0

r2
(
1 + 2z

)
dθ

)
rdr

)
dz

=

∫ 1

0

(∫ `

0

2πr2
(
1 + 2z

)
rdr

)
dz

=

∫ 1

0

π`4

2

(
1 + 2z

)
dz

= π`4 .

We close this section with a brief remark about partial differential equations. It is straightforward to

establish the identity ∇ ·
(
f∇g

)
= f4g +

(
∇f
)
·
(
∇g
)

for any suitably defined scalar fields f, g; an

immediate corollary of this observation is that ∇ ·
(
f∇g− g∇f

)
= f4g− g4f . Hence, it follows from

the divergence theorem that∫
Ω

(
f4g − g4f

)
dV =

∫
∂Ω

(
f∇g − g∇f

)
· n̂dS .

This result is known as Green’s identity. Green’s identity is of central importance to the study of partial

differential equations where one routinely wishes to construct objects called Green’s functions (which one

can think of as the inverse of pde ivp/bvp’s).
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Green’s theorem

Let R ⊂ R2 be a bounded region with boundary ∂R then: Green’s theorem in the plane for the field

F : R → R2 defined by (x, y) 7→
(
F1(x, y), F2(x, y)

)T
is∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∮
∂R
F · dr

where F1, F2 : R2 → R are scalar fields.

o Example. Let R = {(x, y) ∈ R2 | x2+y2 ≤ 1} and F : R → R2 be defined by (x, y) 7→
(
x+y, x

)T
then ∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
R

(
∂

∂x

(
x
)
− ∂

∂y

(
x+ y

))
dA =

∫
R

(
0
)

dA = 0 .

Next we remark that ∂R = {(x, y) ∈ R2 | x2 + y2 = 1} is parametrised by t 7→
(

cos(2πt), sin(2πt)
)T

where t ∈ [0, 1). Hence,∮
∂R
F · dr =

∫ 1

0

(
cos(2πt) + sin(2πt)

cos(2πt)

)
·
(
−2π sin(2πt)

2π cos(2πt)

)
dt

= 2π

∫ 1

0

(
− sin(2πt) cos(2πt)− sin2(2πt) + cos2(2πt)

)
dt

= 2π

∫ 1

0

(
−1

2
sin(4πt) + cos(4πt)

)
= 0

thereby verifying the statement of Green’s theorem in the plane.

o Example. Let R = {(x, y) ∈ R2 | x2 + y2 ≤ 1 and y ≥ 0} and F : R → R2 be defined by

(x, y) 7→
(
x,−xy

)T
then∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
R

(
∂

∂x

(
− xy

)
− ∂

∂y

(
x
))

dA

=

∫
R

(
− y
)

dA

= −
∫ 1

0

(∫ √1−y2

−
√

1−y2
y dx

)
dy

= −
∫ 1

0

2y
√

1− y2 dy

= −2

3

Next we remark that ∂R = {(x, y) ∈ R2 | x2 + y2 = 1 and y ≥ 0} ∪ {(x, 0) ∈ R2 | x ∈ [−1, 1]}.
Hence,∮

∂R
F · dr =

∫ 1
2

0

(
cos(2πt)

− cos(2πt) sin(2πt)

)
·
(
−2π sin(2πt)

2π cos(2πt)

)
dt+

∫ 1

−1

(
s

0

)
·
(

1

0

)
ds

= −2π

∫ 1
2

0

(
1

2
sin(4πt) + cos2(2πt) sin(2πt)

)
dt+

∫ 1

−1

sds

= −2

3

thereby verifying the statement of Green’s theorem in the plane.
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Stokes’ theorem

Stokes’ theorem generalises Green’s theorem in the following way: let Ω ⊂ R3 be a surface (i.e. dimension

2) with normal vector n̂ and boundary ∂Ω. Let F : Ω→ R2 then∫
Ω

(
∇× F

)
· n̂dS =

∮
∂Ω

F · dr .

In the interests of clarify: this result is more correctly known as Kelvin’s formulation of Stokes’ theorem

or the Kelvin-Stokes theorem; the full Stokes theorem requires the machinery of forms from differential

geometry and is beyond the scope of this discussion.

o Example. Let ` > 0 and Ω = {(x, y, z) ∈ R3 | x2 + y2 + z2 = `2 and z ≥ 0} be the surface of

the upper hemi-sphere of radius ` and outward normal n̂ =
(
x, y, z

)T
/`. The boundary, ∂Ω, of Ω

is the circle given by ∂Ω = {(x, y, 0) ∈ R3 | x2 + y2 = `2}. The vector field F : R3 → R3 given by

(x, y, z) 7→
(
− z, y, x

)T
has curl ∇× F =

(
0,−2, 0

)T
. Therefore,

(
∇× F

)
· n̂ = −2y and∫

Ω

(
∇× F

)
· n̂ dS =

∫ 2π

0

(∫ π/2

0

(
− 2` sin θ sinϕ

)
`2 sin θ dθ

)
dϕ =

∫ 2π

0

(
−1

2
π`3 sinϕ

)
dϕ = 0 .

Additionally, we compute
∮
∂Ω
F · dr using the parametrisation:

x = ` cos θ , y = ` sin θ and z = 0 ⇔ r = `
(

cos θ, sin θ, 0
)T ⇒ r′ = `

(
−sin θ, cos θ, 0

)T
Therefore, r = `

(
cos θ, sin θ, 0

)T
from which we readily compute

∫
∂Ω

F · dr =

∫ 2π

0

F · r′ dθ = `

∫ 2π

0

 0

sin θ

cos θ

 ·
 − sin θ

cos θ

0

 dθ = `

∫ 2π

0

sin θ cos θ dθ = 0

thereby verifying the statement of Stokes’ theorem.

o Example. Let ` > 0 and Ω = {(x, y, z) ∈ R3 | x2 + y2 + z2 = `2 and z ≥ 0} be the surface

of the upper hemi-sphere of radius ` and outward normal n̂. The boundary, ∂Ω, of Ω is given

by ∂Ω = {(x, y, 0) ∈ R3 | x2 + y2 = `2} (note that this boundary is also the boundary of the

disc D = {(x, y) ∈ R2 | x2 + y2 ≤ `2} whose normal vector is k̂). Define F : R3 → R3 by

(x, y, z) 7→
(
y2 cos(xz), x3eyz,−e−xyz

)T
then, by two applications of the Kelvin-Stokes theorem,∫

Ω

(
∇× F

)
· n̂dS =

∮
∂Ω

F · dr =

∫
D

(
∇× F

)
· k̂ dA .

We evaluate this right most integrand:

∇× F =
(
xze−xyz − x3yeyz,−xy2 sin(xz)− yze−xyz, 3x2eyz − 2y cos(xz)

)T
⇒

(
∇× F

)
· k̂ = 3x2eyz − 2y cos(xz)

⇒
(
∇× F

)
· k̂
∣∣∣∣
D

= 3x2 − 2y (recall that z = 0 on D) .

Hence,∫
Ω

(
∇×F

)
·n̂dS =

∫
D

(
3x2−2y

)
dA =

∫ `

0

(∫ 2π

0

(
3r2 cos2 θ − 2r sin θ

)
dθ

)
rdr =

∫ `

0

3πr3 dr =
3

4
π`4 .
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