Vector Calculus —MA2VC/MA3VC 2016–17— Summary and comparison of the different integrals of fields

The seven types of integrals we have considered in the lectures are in the red boxes.

Those in blue are the formulas we use to compute integrals over curvilinear domains of integration (paths Γ and surfaces S) as integrals over flat domains

(intervals (t_I, t_F) and regions R) of the same dimension, by using the parametrisations $\vec{\mathbf{a}} : (t_I, t_F)$ and $\vec{\mathbf{X}} : R \to S$.

The most important theorems relating these kinds of integrals are mentioned in green.

 $\hat{\boldsymbol{\tau}} = \frac{d\vec{a}}{dt} / \left| \frac{d\vec{a}}{dt} \right|$ and $\hat{\boldsymbol{n}} = \frac{\partial \vec{X}}{\partial u} \times \frac{\partial \vec{X}}{\partial u} / \left| \frac{\partial \vec{X}}{\partial u} \times \frac{\partial \vec{X}}{\partial w} \right|$ are the *orientations* of paths and (parametric) surfaces, namely unit tangent and normal vector fields, respectively.

Vector Calculus —MA2VC/MA3VC 2016–17— Summary and comparison of main vector calculus theorems

	The integral on $a(n)$	of	of a	is equal to the	of the	on/at the	Equivalently, in formulae,
Fundamental theorem of calculus	interval (t_I, t_F)	the derivative	real function G	difference of the values	function G	endpoints	$\int_{t_I}^{t_F} G'(t) \mathrm{d}t = G(t_F) - f(t_I)$
Fundamental theorem of vector calculus	oriented path Γ from $\vec{\mathbf{p}}$ to $\vec{\mathbf{q}}$	$\hat{ au} \cdot$ gradient	scalar field f	difference of the values	field f	endpoints $\vec{\mathbf{q}}$ and $\vec{\mathbf{p}}$	$\int_{\Gamma} \vec{\nabla} f \cdot d\vec{\mathbf{r}} = f(\vec{\mathbf{q}}) - f(\vec{\mathbf{p}})$
Green's theorem	two-dimensional region R	$\hat{m{k}} \cdot ext{curl}$	vector field $\vec{\mathbf{F}}$	circulation	field $\vec{\mathbf{F}}$	boundary ∂R	$\iint_{R} \hat{\boldsymbol{k}} \cdot (\vec{\nabla} \times \vec{\mathbf{F}}) \mathrm{d}A = \oint_{\partial R} \vec{\mathbf{F}} \cdot \mathrm{d}\vec{\mathbf{r}}$
Stokes' theorem	oriented surface (S, \hat{n})	$\hat{m{n}}\cdot$ curl	vector field $\vec{\mathbf{F}}$	circulation	field $\vec{\mathbf{F}}$	boundary ∂S	$\iint_{S} (\vec{\nabla} \times \vec{\mathbf{F}}) \cdot d\vec{\mathbf{S}} = \int_{\partial S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$
Divergence theorem	3D domain D	divergence	vector field $\vec{\mathbf{F}}$	flux	field $\vec{\mathbf{F}}$	boundary ∂D	$\iiint_D (\vec{\nabla} \cdot \vec{\mathbf{F}}) \mathrm{d}V = \oiint_{\partial D} \vec{\mathbf{F}} \cdot \mathrm{d}\vec{\mathbf{S}}$
	1st domain of integration	differential operator	function or field	integral type or evaluation	function or field	2nd domain of integration	formula