Vector Calculus -MA2VC/MA3VC 2016-17- Summary and comparison of the different integrals of fields

The seven types of integrals we have considered in the lectures are in the red boxes
Those in blue are the formulas we use to compute integrals over curvilinear domains of integration (paths Γ and surfaces S) as integrals over flat domains (intervals $\left(t_{I}, t_{F}\right)$ and regions R) of the same dimension, by using the parametrisations $\overrightarrow{\mathbf{a}}:\left(t_{I}, t_{F}\right)$ and $\overrightarrow{\mathbf{X}}: R \rightarrow S$.
The most important theorems relating these kinds of integrals are mentioned in green.
$\hat{\boldsymbol{\tau}}=\frac{d \overrightarrow{\mathbf{a}}}{d t} /\left|\frac{d \overrightarrow{\mathbf{a}}}{d t}\right|$ and $\hat{\boldsymbol{n}}=\frac{\partial \overrightarrow{\mathbf{x}}}{\partial u} \times \frac{\partial \overrightarrow{\mathbf{X}}}{\partial w} /\left|\frac{\partial \overrightarrow{\mathbf{X}}}{\partial u} \times \frac{\partial \overrightarrow{\mathbf{X}}}{\partial w}\right|$ are the orientations of paths and (parametric) surfaces, namely unit tangent and normal vector fields, respectively.

Integrals of real functions $\int_{\left(t_{I}, t_{F}\right)} G(t) \mathrm{d} t$	Line integrals of scalar fields $\int_{\Gamma} f \mathrm{~d} s$	Line integrals of vector fields $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}$	$\} 1 \mathrm{D}$ sets
Fundamental theorem of calculus applies here.	$=\int_{\left(t_{I}, t_{F}\right)} f(\overrightarrow{\mathbf{a}})\left\|\frac{d \overrightarrow{\mathbf{a}}}{d t}\right\| \mathrm{d} t$	$=\int_{\Gamma}(\overrightarrow{\mathbf{F}} \cdot \hat{\boldsymbol{\tau}}) \mathrm{d} s=\int_{\left(t_{I}, t_{F}\right)} \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{a}}) \cdot \frac{d \overrightarrow{\mathbf{a}}}{d t} \mathrm{~d} t$ Fundamental theorem of vector calculus applies here.	$\int_{\text {Stokes' }}$
Double integrals $\iint_{R} f \mathrm{~d} A$ Green's th.	Surface integrals of scalar fields $\iint_{S} f \mathrm{~d} S$	Fluxes = surface integrals of vector fields $\iint_{S} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{S}}$	$\left\{\begin{array}{l}\text { Stokes' th. } \\ 2 \mathrm{D} \text { sets }\end{array}\right.$
(Polar coordinates can be used.)	$=\iint_{R} f(\overrightarrow{\mathbf{X}})\left\|\frac{\partial \overrightarrow{\mathbf{X}}}{\partial u} \times \frac{\partial \overrightarrow{\mathbf{X}}}{\partial w}\right\| \mathrm{d} A$	$=\iint_{S}(\overrightarrow{\mathbf{F}} \cdot \hat{\boldsymbol{n}}) \mathrm{d} S=\iint_{R} \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{X}}) \cdot \frac{\partial \overrightarrow{\mathbf{X}}}{\partial u} \times \frac{\partial \overrightarrow{\mathbf{X}}}{\partial w} \mathrm{~d} A$	\int
Triple integrals $\quad \iiint_{D} f \mathrm{~d} V$ (Cylindrical or spherical coordinates can be used.)	Divergence th.		$\} 3 \mathrm{D}$ sets
Flat domains of integration: defined by boundary on	Curvilinear domains Parametrisation allow $\left(t_{I}, t_{F}\right)$ in place of Γ,	f integration: parametrisation (either $\overrightarrow{\mathbf{a}}$ or $\overrightarrow{\mathbf{X}}$) is needed. to compute integrals over flat domains of integration: R in place of S.	

- $G: \mathbb{R} \rightarrow \mathbb{R}$ is a real function
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a scalar field
- $\overrightarrow{\mathbf{F}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a vector field

These are the integrands, namely the functions/fields of which we compute integrals.

- $\left(t_{I}, t_{F}\right) \subset \mathbb{R}$ is an interval (1D)
- $R \subset \mathbb{R}^{2}$ is a planar region (2D)
- $D \subset \mathbb{R}^{3}$ is a domain (3D)
- $\Gamma \subset \mathbb{R}^{3}$ is a path (1D), parametrised by $\overrightarrow{\mathbf{a}}:\left(t_{I}, t_{F}\right) \rightarrow \Gamma$
- $S \subset \mathbb{R}^{3}$ is a surface $(2 \mathrm{D})$, parametrised by $\overrightarrow{\mathbf{X}}: R \rightarrow S$

These are the domains of integration, namely the geometric objects on which we compute integrals.

Vector Calculus -MA2VC/MA3VC 2016-17- Summary and comparison of main vector calculus theorems

	The integral on a n)	of	of a	is equal to the	of the	on/at the	Equivalently, in formulae,
Fundamental theorem of calculus	interval (t_{I}, t_{F})	the derivative	real function G	difference of the values	function G	endpoints	$\int_{t_{I}}^{t_{F}} G^{\prime}(t) \mathrm{d} t=G\left(t_{F}\right)-f\left(t_{I}\right)$
Fundamental theorem of vector calculus	oriented path Γ from $\overrightarrow{\mathbf{p}}$ to $\overrightarrow{\mathbf{q}}$	$\hat{\boldsymbol{\tau}}$. gradient	scalar field f	difference of the values	field f	endpoints $\overrightarrow{\mathbf{q}}$ and $\overrightarrow{\mathbf{p}}$	$\int_{\Gamma} \vec{\nabla} f \cdot \mathrm{~d} \mathbf{r}=f(\overrightarrow{\mathbf{q}})-f(\overrightarrow{\mathbf{p}})$
Green's theorem	two-dimensional region R	$\hat{\boldsymbol{k}}$ - curl	vector field $\overrightarrow{\mathbf{F}}$	circulation	field $\overrightarrow{\mathbf{F}}$	boundary ∂R	$\iint_{R} \hat{\boldsymbol{k}} \cdot(\vec{\nabla} \times \overrightarrow{\mathbf{F}}) \mathrm{d} A=\oint_{\partial R} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}$
Stokes' theorem	oriented surface ($S, \hat{\boldsymbol{n}})$	$\hat{\boldsymbol{n}}$ - curl	vector field $\overrightarrow{\mathbf{F}}$	circulation	field $\overrightarrow{\mathbf{F}}$	boundary ∂S	$\iint_{S}(\vec{\nabla} \times \overrightarrow{\mathbf{F}}) \cdot \mathrm{d} \overrightarrow{\mathbf{S}}=\int_{\partial S} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}$
Divergence theorem	3D domain D	divergence	vector field $\overrightarrow{\mathbf{F}}$	flux	field $\overrightarrow{\mathbf{F}}$	boundary ∂D	$\iiint_{D}(\vec{\nabla} \cdot \overrightarrow{\mathbf{F}}) \mathrm{d} V=\oiint_{\partial D} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{S}}$
	1st domain of integration	differential operator	function or field	integral type or evaluation	function or field	2nd domain of integration	formula

