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The main character in this course is the Helmholtz equation (also known as “reduced wave equa-
tion”), which is the following partial differential equation (PDE):

∆u+ k2u = 0. (1)

Here ∆ =
∑n
j=1 ∂

2
xj is the Laplace operator in n variables for n ∈ {1, 2, 3}, k > 0 is a real parameter

called wavenumber, and u is the unknown of the equation, a scalar field defined on a subset of Rn. We
will mostly consider the two-dimensional case n = 2.

In the following, we first derive the Helmholtz equation from different physical phenomena, showing
that it can be used to model different kinds of linear wave problems. Then we show some simple special
solutions of the equation. We describe some boundary value problems (BVPs) and focus on one of them,
the exterior Dirichlet problem. We show how to reformulate this as a boundary integral equation (BIE),
introduce a numerical method (the boundary element method, BEM) to approximate its solution, and
explain how to implement it. We also use Fredholm theory to study some analytical properties of the
BIE, in particular its well-posedness, and finally sketch some alternative BIEs for the same BVP.

At the end of the course you should be able to reproduce with Matlab all the figures of these notes.
In the first few sections the approach will be more “physical” than “mathematical”, so we will not make

precise assumptions and will gloss over some issues such as the regularity of the objects involved or the
admissibility of some operations.

All the results presented here are well-known, but scattered over several books. At the end of this
document a few useful references are listed; they are the main sources used in the preparation of these
notes (see also those mentioned in Remark 5.23). [CJ77] is classical book that describes very clearly and
succinctly many kinds of wave phenomena, developing both physical intuition and mathematical formalism;
[BK00] is similar in spirit but more advanced and up to date. [Ihl98] describes in detail Helmholtz BVPs
and their discretisation with the finite element method. Several Helmholtz (and Maxwell) BVPs and the
corresponding boundary integral equations (BIEs) are analysed in mathematically rigorous way in [CK1,
§3], [CK2, §1–3], [Néd01, §2–3]. [SS11] is a comprehensive and mathematically-oriented textbook on the
BEM for elliptic PDEs, including Helmholtz. [Spence14] is a survey of several variational formulations for
Helmholtz and Laplace BVPs, the corresponding BIEs and the numerical methods for their discretisation;
it is a very clear introduction to Helmholtz problems and the related literature. The lecture notes [Sayas15]
and [Sayas06] are very good introductions to BIEs for Laplace and Helmholtz equations, respectively, and
their discretisations with the boundary element method. Section 2 of [CGLS12] is devoted to the BIE
formulation of 2D Dirichlet–Helmholtz problems (precisely those we will mostly focus on); the rest of the
article analyses in detail a special class of BEM for the same problems. The book [SBH19] is an excellent
PDE textbook: it is written with applications to numerical methods in mind and it includes a detailed
analysis of the Helmholtz equation.

https://euler.unipv.it/moiola/T/MNAPDE2022/MNAPDE2022.html
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1 Why is the Helmholtz equation relevant?

1.1 Acoustics
In this section we introduce the equations modelling the propagation of sound waves, namely mechanical
vibrations, in a fluid, which could be either a gas or a liquid. Being able to model, and thus to control,
sound propagation is important for numerous industrial and medical applications: not only for the design
of concert halls, musical instruments, microphones and loudspeakers, but also for noise and vibration
mitigation (e.g. in cars and aircraft), medical ultrasound imaging, non-invasive therapy such as high-
intensity focussed ultrasound surgery (HIFU), offshore oil exploration, underwater communication (sonar),
bioacoustics, nondestructive testing, sensors. . .

We denote by ρ(x, t) the density, by p(x, t) the pressure and by v(x, t) the velocity of the fluid in
a point x ∈ Rn at time t ∈ R. We denote by ∇, div (or ∇·) and ∆ the gradient, the divergence and the
Laplacian in the space coordinate x only (i.e. without derivatives in t). Conservation of mass gives the
continuity equation

∂ρ

∂t
+ div(ρv) = 0

and conservation of momentum gives Euler’s equation

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0

where [(v ·∇)v]j =
∑n
m=1 vm∂xmvj . Both PDEs are non-linear as they contain quadratic terms (products

of ρ and v or v and its derivatives). We assume that all three quantities considered are small perturbations
of the constant1 static values:

ρ(x, t) = ρ0 + ρ≈(x, t), p(x, t) = p0 + p≈(x, t), v(x, t) = v0 + v≈(x, t) and that v0 = 0.

p≈ is called acoustic pressure or excess pressure. Linearising both equations around the static values
(using 1

ρ = 1
ρ0(1+ ρ≈

ρ0
)
≈ 1

ρ0
(1− ρ≈

ρ0
)) we obtain

∂ρ≈
∂t

+ ρ0 div(v≈) = 0 and
∂v≈
∂t

+
1

ρ0
∇p≈ = 0. (2)

The pressure is an increasing function of the density p = f(ρ) with p0 = f(ρ0). Linearising this relation
and denoting c2 := ∂f

∂ρ (ρ0) we have p0 + p≈ = f(ρ0 + ρ≈) ≈ f(ρ0) + c2ρ≈, thus p≈ = c2ρ≈. (We can call
the equations (2) together with p≈ = c2ρ≈ the “first-order acoustic wave equation system”.) Using this
relation in the two linearised PDEs (2) we obtain that the pressure satisfies the wave equation:

1

c2
∂2p≈
∂t2

−∆p≈ = 0.

(Here we use that the divergence of the gradient is the Laplacian, ∆u = div∇u.) Since ρ≈ = 1
c2 p≈, also

ρ≈ satisfies the same equation.
The wave equation has been obtained from the linearisation of two “conservation laws” (for mass and

momentum) and a “constitutive relation” (relating p and ρ).
In this derivation we have neglected the effect of the non-linear advection term (v ·∇)v and, implicitly,

those of fluid viscosity and gravity. A brief discussion of the validity of these assumptions is in [BK00,
p. 41]. Moreover, |p≈| � p0 is true for typical sounds in air: e.g. acoustic pain threshold is between 63
and 200Pa (130–140dB), while ambient pressure is p0 ≈ 101 325Pa, so |p≈|/p0 ≈ 6× 10−4—2× 10−3.

Exercise 1.1: (Acoustic velocity).

• Show that the velocity v≈ satisfies the vector wave equation 1
c2
∂2v≈
∂t2 −∇(∇ · v≈) = 0.

• Fix n = 3. Prove that for all vector fields F ∈ C2(R3)3 the following vector calculus identity holds

∇(∇ · F) = ∆F + curl curl F. (3)

Here ∆ is the vector Laplacian (defined componentwise) and curl F = ∇ × F = (∂F3

∂x2
− ∂F2

∂x3
, ∂F1

∂x3
−

∂F3

∂x1
, ∂F2

∂x1
− ∂F1

∂x2
) is the usual curl operator.

1In some applications, the static (time-independent) background quantities ρ0, p0 and v0 are not constant. E.g. in ocean
acoustics the background density and pressure typically depend on the position; in aero-acoustics the velocity of the fluid is
non-zero and variable. This leads to the presence of extra terms in the linearised differential equations.
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• Deduce that if v≈ is irrotational, i.e. curl-free (curl v≈ = 0), then each Cartesian component v≈,1, v≈,2, v≈,3
is solution of the scalar wave equation: 1

c2
∂2v≈,j
∂t2 −∆v≈,j = 0, j = 1, 2, 3.

• Show that if v≈ is irrotational at some given time t0, then it remains irrotational for all t > t0.

Exercise 1.2: (Velocity potential). Assume that, at some initial time t = t0, the velocity v≈(x, t0) is gradient
of a (time-independent) scalar field 1

ρ0
φ0(x). Show that the scalar field φ(x, t) := φ0(x) −

∫ t
t0
p≈(x, s) ds,

called velocity potential, satisfies −∂φ∂t = p≈ and 1
ρ0
∇φ = v≈. Show that the velocity potential satisfies the

wave equation 1
c2
∂2φ
∂t2 −∆φ = 0.

We have seen that several quantities (the acoustic pressure p≈, the density ρ≈, and, under suitable
assumptions, the velocity potential φ and the components of the velocity v≈,j) satisfy the same wave
equation, so we write it for a general scalar field U :

1

c2
∂2U

∂t2
−∆U = 0. (4)

This is the prototype of second-order, linear, hyperbolic PDEs.

Exercise 1.3: (Time-domain plane waves). Show that for any smooth function F : R → R and any unit
vector d ∈ Rn, |d| = 1, the field U(x, t) = F (x · d− ct) is a solution of the wave equation (4).

Exercise 1.3 shows that any wave profile (imagine F as a pulse, e.g. ) move across space–time
with speed c, which is thus called wave speed.2 Indeed, c =

√
p≈
ρ≈

and the square root of the ratio

between a pressure and a mass density has the dimension of a velocity (i.e.
√

kgm−1s−2

kgm−3 = m
s ).

Exercise 1.4: (Damped wave equation). The damped wave equation (or equation of telegraphy, see
[CJ77, §9]) with damping parameter γ > 0 is

1

c2
∂2U

∂t2
+
γ

c2
∂U

∂t
−∆U = 0. (5)

Assume that γ is small so that γ2 can be neglected. Show that wave profiles are damped in time with rate
γ
2 while they propagate: for any smooth function F : R → R and any unit vector d ∈ Rn, |d| = 1 the field
U(x, t) = F (x · d− ct)e−

γ
2 t is a solution of the damped wave equation (5) up to a factor − γ2

4c2U ≈ 0.
Conversely, show that if U is solution of the damped wave equation (5), then W (x, t) := e

γ
2 tU(x, t) is

solution of the wave equation (4) up to a factor γ2

4c2W ≈ 0.

When the acoustic waves hits an obstacle D ⊂ Rn through which it cannot propagate, on the interface
between the obstacle and the fluid some boundary conditions have to be imposed. Depending on the
nature of the obstacle and of the fluid, different conditions can be imposed.
• If the obstacle is “sound-soft” then the acoustic pressure on its boundary vanishes, i.e. p≈ = 0.

• If the obstacle is “sound-hard” then the normal velocity on the boundary vanishes, i.e. v≈ · n = 0,
where n is the unit normal vector on the boundary of D.

Both sound-soft and sound-hard boundary conditions reflect all the energy carried by the wave.

• A simple way to model a more realistic absorbing boundary condition is to impose that the normal
velocity is proportional to the pressure: v≈ · n = ϑ

cρ0
p≈ for some ϑ > 0 that represents how easily

the obstacle yields to the acoustic pressure. Here we have assumed that n points outwards of the
domain where the wave propagates and into the obstacle D. We have divided by cρ0 to ensure that ϑ
is dimensionless (check this fact). Deriving this relations and using the linearised Euler’s equation (2),
we obtain a relation involving p≈ only: n · ∇p≈ + ϑ

c
∂p≈
∂t = 0. This is called “impedance” boundary

condition.
2Thermodynamics states that sound waves are adiabatic, i.e. there is no heat loss, and that p = aργ , where a is a

proportionality constant and γ = 1.4 for air (or for a diatomic ideal gas), see [BK00, p. 39 and §7.2, (7.33)]. Indeed, taking

air pressure p0 = 1atm≈ 101 325N/m2 and air density ρ0 ≈ 1.225kg/m3 we have c =
√
∂p
∂ρ

(ρ0) =
√
γaργ−1

0 =
√
γp0/ρ0 ≈

340m/s, which is the speed of sound in air.
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• If the obstacle is made of a different fluid, then instead of imposing boundary conditions we consider
two copies of the wave equations in the two fluids, with different values of c. The two equations are
coupled by suitable “transmission conditions”, i.e. by imposing the continuity of the pressure and the
normal displacement across the interface.

Similarly, if the obstacle is an elastic solid, acoustic waves in the fluid generates elastic waves in the
solid and vice versa. This is modelled by coupling the acoustic wave equation (4) with the (more com-
plicated) elastodynamic wave equation, whose unknown is the point displacement, through appropriate
transmission conditions, [Ihl98, §1.3]. We briefly describe the equations of elastodynamics in §1.4.

In “aeroacoustics”, sound is generated by fluid turbulence, thus the source of acoustic disturbance is
distributed in the bulk of the fluid. This is modelled by the inhomogeneous wave equation:

1

c2
∂2U

∂t2
−∆U = F, (6)

where F (x, t) is the source term. Vice versa, in “vibroacoustics” the sound is generated by vibrating
structures immersed in the acoustic fluid. In this case the source of disturbance is imposed as a boundary
condition, justifying the interest in the homogeneous wave equation (4).

1.2 Time-harmonic waves
A time-harmonic function is a scalar field whose time-dependence is prescribed to be sinusoidal, in the
form3

U(x, t) = <{u(x)e−iωt} = <{u(x)} cosωt+ ={u(x)} sinωt (7)

for a time frequency ω > 0 and a complex-valued field u which depends on the position in space x but
not on the time variable t. (Here <{·} and ={·} denote real and imaginary parts, and i is the imaginary
unit.) A sound wave in the form (7) is a “pure tone”.

By taking the Laplacian and the second time-derivative of (7) we obtain that

1

c2
∂2U

∂t2
(x, t)−∆U(x, t) = <

{(
− ω2

c2
u−∆u

)
e−iωt

}
and the following crucial fact.

If U(x, t) is a time-harmonic (7) solution of the wave equation (4),
then u(x) is solution of the Helmholtz equation (1) with wavenumber k := ω/c > 0.

This is the main reason of the interest in the Helmholtz equation: it describes all time-
harmonic solutions of the wave equation. Any solution of the Helmholtz equation has to be inter-
preted via (7): multiplying by e−iωt and taking the real part we obtain a “physical” field depending on
space and time.

The higher the frequency ω and the wavenumber k, the more oscillatory are the solutions of the
Helmholtz equation. Sounds that are audible by humans correspond to values of ω ranging approximately
between 20Hz and 20 000Hz (1Hz= 1s−1).

Sound-soft conditions translate to Dirichlet boundary conditions u = 0, sound-hard to Neumann
n · ∇u = 0, and impedance to Robin n · ∇u− ikϑu = 0.

Exercise 1.5: (Amplitude and phase). Show that a time-harmonic function U(x, t) as in (7) (not necessarily
solution of any PDE) can be written in terms of an amplitude function A(x) ≥ 0 and a (real) phase function
φ(x) as

U(x, t) = A(x) cos
(
ω(t− φ(x))

)
.

Express A and φ in terms of u and vice versa.
At the point x, the wave U oscillates between the values −A(x) and A(x). Different points x1 and x2

reach the maximum periodically at different times dictated by φ: show that they are synchronised if and only
of φ(x1)− φ(x2) is an integer multiple of 2π

ω .

Exercise 1.6: (Inhomogeneous wave and Helmholtz equations). Let U be time-harmonic as in (7) and
be a solution of the inhomogeneous wave equation (6) with F (x, t) = <{f(x)e−iωt}. Show that u satisfies
the inhomogeneous Helmholtz equation −∆u− k2u = f .

3Unfortunately, several references use the opposite convention U(x, t) = <{u(x)eiωt}, with a different sign at the exponent.
This causes changes in the signs and conjugation in all formulas in the following.
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Exercise 1.7: (Time reversal). Show that complex conjugation of Helmholtz solutions “reverses time”: if U
is the space–time wave solution associated to the Helmholtz solution u, then the space–time wave solution W
associated to u = <w − i=w satisfies W (x, t) = U(x,−t).

Exercise 1.8: (Helmholtz solutions oscillate around 0). Show that if u is a Helmholtz solution defined on
an open set and x∗ is an interior local maximum (minimum, respectively) of its real part, then <u(x∗) ≥ 0

(<u(x∗) ≤ 0, respectively). This means that <u can look like but not like .

Exercise 1.9: (Time-harmonic loop). Verify that for every time-harmonic U as in (7)

U(x, 0) = <{u(x)}, U
(
x,

π

2ω

)
= ={u(x)}, U

(
x,
π

ω

)
= −<{u(x)}, U

(
x,

3π

2ω

)
= −={u(x)}.

This means that when the wave U has value equal to the real part of u, it will shift towards a value equal to
the imaginary part of u. We will use this to determine direction a time-harmonic wave u is moving, from the
comparison of his real and imaginary part.

Exercise 1.10: (Helmholtz equation with complex wavenumber). Show that if U is a time-harmonic solu-
tion of the damped wave equation (5) then it is solution of the Helmholtz equation with complex wavenumber
k, such that k2 = ω(ω + iγ)/c2. (We always choose the root k with <k > 0 and =k ≥ 0).

This shows that the solutions of the Helmholtz equation with complex wavenumber k can be understood
as waves that are attenuated while they propagate, i.e. they are absorbed by the medium through which they
propagate. The larger the imaginary part of the wavenumber, the stronger the damping. A negative imaginary
part of k corresponds to γ < 0 in (5) and to waves increasing in time, which is an unphysical situation.

Remark 1.11: (Waves in heterogeneous media). We have assumed that the medium through which the
wave propagates is uniform. In the more general case of an acoustic wave propagating through heteroge-
neous materials, both the sound speed c and the static density ρ0 depend on the position x. Repeating
the reasoning done above, one obtains the wave equation 1

ρ0(x)c2(x)
∂2p≈
∂t2 − div( 1

ρ0(x)∇p≈) = 0. Assum-
ing time-harmonic behaviour (7) for U = p≈ we have the Helmholtz equation with variable coefficients
div( 1

ρ0(x)∇u) + ω2

ρ0(x)c2(x)u = 0, which is often written as div( 1
ρ0(x)∇u) + k2n(x)u = 0 and n is called

refractive index. In the following we do not consider this more general problem and we stick to the constant-
coefficients case; see e.g. [CK2, §8] for more details on this problem.

Remark 1.12: (Is the Helmholtz equation elliptic?). According to the standard classification of second-
order linear PDEs, Helmholtz equation is clearly elliptic: its principal part (the second order term) is simply
the Laplacian. Indeed it shares many properties with Laplace equation, e.g. “elliptic regularity” (all solutions
are C∞ in their domain). But often the word “elliptic” is used to denote problems that satisfy the assumptions
of Lax–Milgram theorem. We will see that the typical variational forms of Helmholtz BVPs do not satisfy this
requirement, so under this respect the equation is not elliptic. Indeed, it does not satisfy some other typical
properties of elliptic PDEs, such as the maximum principle; moreover it is closely related to the wave equation,
which is the prototypical hyperbolic equation.

Remark 1.13: (Helmholtz equation = wave equation + Fourier transform). Fourier analysis tells us
that any “reasonable” (e.g. square-integrable) time-dependent field U can be written as a continuous linear
combination of time-harmonic fields eiωtÛ(x, ω) with different frequencies ω ∈ R, where Û is its Fourier
transform (in time):

U(x, t) =
1√
2π

∫
R

eiωtÛ(x, ω) dω with Û(x, ω) =
1√
2π

∫
R

e−iωtU(x, t) dt.

Reasoning as above, we can verify that, if U is solution of the wave equation with wave speed c, then its Fourier
transform Û evaluated at a given frequency ω, i.e. u(x) = Û(x, ω), is solution of the Helmholtz equation with
wavenumber k = ω/c. Thus any solution of the wave equation is a linear combination of infinitely many
solutions of the Helmholtz equation at different wavenumbers. (Roughly speaking, this is how human ears
process sound: different parts of the ear receive and transmit to the brain different frequencies.) Numerically,
often one approximates a wave equation solution by solving several Helmholtz problems. This is an important
reason for studying the Helmholtz equation, even if we were not interested in problems at a fixed frequency.

When we study U and the wave equation we say that we work “in time domain”; when we study Û or u
and the Helmholtz equation we say that we work “in frequency domain”.
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1.3 Electromagnetism
Although the Helmholtz equation is usually associated to acoustic waves, it is important also in the
modelling of other kinds of linear waves, e.g. electromagnetic ones. In this section and in the next one we
fix n = 3, i.e. we consider 3D problems. Electromagnetic waves in a homogeneous material, in the absence
of charges, are described by the Maxwell’s equations:

curl E(x, t) + µ
∂H
∂t

(x, t) = 0, curlH(x, t)− ε∂E
∂t

(x, t)− σE(x, t) = 0, (8)

where E is the electric field, H the magnetic field, ε the electric permittivity, µ the magnetic permeability,
and σ the conductivity. The parameters ε, µ and σ represent the properties of the material through which
the wave propagates. As we consider a homogeneous, isotropic medium, ε and µ are positive constants, σ
is a non-negative constant (0 in a dielectric, i.e. a perfect insulator, and positive in a conducting medium).
The first equation is called Faraday law, the second one Ampère law.

If both the electric and the magnetic field are time-harmonic, i.e. E(x, t) = <{E(x)e−iωt} andH(x, t) =
<{H(x)e−iωt} for some ω > 0, then the time-independent fields E and H satisfy the time-harmonic
Maxwell’s equations:

curl E(x)− iωµH(x) = 0, curl H(x) + iωεE(x)− σE(x) = 0. (9)

These are two vector-valued PDEs with two vector fields as unknowns. Eliminating H, we obtain the
second-order time-harmonic Maxwell’s equations for the electric field:

curl curl E− k2E = 0 with k2 = ω2εµ+ iωσµ. (10)

Since div curl v = 0 for any vector field v, any solution of (10) is divergence-free (solenoidal). Then
the expansion (3) of the curl curl operator implies that each component of the solution of the second-
order Maxwell’s equations (10) is solution of the Helmholtz equation with (possibly complex, if σ > 0)
wavenumber k:

∆Ej + k2Ej = 0 for j = 1, 2, 3.

The speed of propagation of electromagnetic waves (e.g. of light) is c = 1√
εµ > 0 and the damping factor

(as in Exercise 1.10) is γ = ={k2} c
2

ω = σ
ε ≥ 0.

As any other PDE, time-harmonic Maxwell’s equations are complemented by boundary conditions.
When the domain under consideration is surrounded by a metal, through which the electric field does not
penetrate, then typically one imposes the “perfect electric conductor” (PEC) boundary conditions,
which impose that the tangential component of the electric field vanishes. In formulas this is E× n = 0,
where × denote the vector product and n is the unit normal vector on the boundary. In terms of
the magnetic field, the PEC boundary conditions correspond to the vanishing of the normal component:
H·n = 0. This is easy to verify for a plane boundary, e.g. Π = {x1 = 0}: in this case E×n = E×(1, 0, 0) =
(0, E3,−E2) so E2 = E3 = 0 on the whole plane Π, and H ·n = 1

iωµ curl E · (1, 0, 0) = 1
iωµ (∂E3

∂x2
− ∂E2

∂x3
) = 0.

We also often encounter impedance boundary conditions: H × n − ϑ(n × E) × n = 1
ikg, or

equivalently µ−1 curl E×n− ikϑ(n×E)×n = g, for a positive parameter ϑ and a boundary source term
g. Here (n×E)× n = E− (E · n)n is the tangential component of E.

Exercise 1.14: (Maxwell-vs-Helmholtz). Complete the proof of the following statement. For k ∈ C, k 6= 0,
a vector field v is solution of curl curl v − k2v = 0 if and only if it is divergence-free and each of its three
components is solution of the Helmholtz equation ∆vj + k2vj = 0, j = 1, 2, 3.

Exercise 1.15: (Alternative derivation). We have shown that the components of the time-harmonic solutions
of the Maxwell’s equations (8) are Helmholtz solutions. Show again the same fact performing the same
operations in different order. First eliminate H from (8) obtaining second-order Maxwell’s equations in time-
domain. Then verify that each component of E satisfies the wave equation (4). Finally assume that E is
time-harmonic.

Remark 1.16: (Current density). Often the conductivity term σE(x, t) in the time-domain Maxwell’s equation
is modelled as a given current density J (x, t) and treated as a datum. If this is assumed to be time-harmonic
J (x, t) = <{J(x)e−iωt} we obtain the inhomogeneous time-harmonic Ampère law curl H+ iωεE = J and the
second-order equation curl 1

µ curl E−ω2εE = iωJ. In absence of charges, the current density is divergence free:
div J = 0 (more generally we would have the continuity equation div J = −∂ρ∂t , where ρ is the charge density),
so the component of the electric field satisfy the inhomogeneous Helmholtz equation ∆Ej + k2Ej = −iωµJj .



Electromagnetism |7| A. Moiola — February 28, 2022

Remark 1.17: (1 Maxwell PDE⇒ 3 Helmholtz PDEs, 1 Maxwell BVP 6⇒ 3 Helmholtz BVPs). We have
seen that time-harmonic Maxwell solutions are componentwise Helmholtz solutions. However, in general one
cannot reduce the solution of a boundary value problem for the Maxwell equations (10) to three independent
Helmholtz problems for E1, E2, E3, because the boundary conditions required are different.

For instance, when we impose PEC boundary conditions, only the tangential component of the electric
field vanishes. This is equivalent to the imposition of two scalar boundary conditions (e.g. on two Cartesian
components if the domain is a cube) for three unknown scalar fields and three scalar PDEs (Helmholtz); the
boundary value problem is closed by the condition div E = 0 which intertwines the three components. Being
able to solve/approximate Helmholtz BVPs is not enough to solve/approximate Maxwell BVPs.

We see in the next remark that the decoupling of the scalar components and the reduction of Maxwell’s
problems to Helmholtz ones can be performed when symmetries are present.

Remark 1.18: (TE and TM modes). ([Néd01, p. 5], [CJ77, §86], [BK00, §6.8]) The Helmholtz equation is
important in dimensional reductions of the Maxwell’s equations. Maxwell’s equations simplify when we assume
that the dependence on one of the Cartesian variables of all components of the fields is a given complex
exponential, i.e.

E(x1, x2, x3) = Ẽ(x1, x2)eiηx3 , H(x1, x2, x3) = H̃(x1, x2)eiηx3 . (11)

This is relevant when we consider the propagation of waves through very long objects such as optical fibres. In
this case the curl becomes

curl H = eiηx3

(∂H̃3

∂x2
− iηH̃2, iηH̃1 −

∂H̃3

∂x1
,
∂H̃2

∂x1
− ∂H̃1

∂x2

)
.

Maxwell’s equations (9) (with σ = 0) become

∂Ẽ3

∂x2
− iηẼ2 − iωµH̃1 = 0,

iηẼ1 −
∂Ẽ3

∂x1
− iωµH̃2 = 0,

∂Ẽ2

∂x1
− ∂Ẽ1

∂x2
− iωµH̃3 = 0,

∂H̃3

∂x2
− iηH̃2 + iωεẼ1 = 0,

iηH̃1 −
∂H̃3

∂x1
+ iωεẼ2 = 0,

∂H̃2

∂x1
− ∂H̃1

∂x2
+ iωεẼ3 = 0.

If Ẽ3 = 0, with some manipulation one can see that all other field components can be computed from H̃3

(Ẽ1 = −(iωε − iη2

ωµ )−1 ∂H̃3

∂x2
, Ẽ2 = (iωε − iη2

ωµ )−1 ∂H̃3

∂x1
, H̃1 = − η

ωµ Ẽ2, H̃2 = η
ωµ Ẽ1, and therefore (H̃1, H̃2) =

iη
ω2εµ−η2∇H̃3) and that H̃3 itself is solution of the 2D Helmholtz equation ∆H̃3 + (ω2εµ− η2)H3 = 0. These
solutions are called “transverse-electric (TE) modes”, since the electric field is perpendicular to the x3 axis,
along which the wave propagates. Similarly, the “transverse-magnetic (TM) modes” are solutions with
H̃3 = 0, which can be computed by solving the same Helmholtz equation for Ẽ3. All Maxwell solutions in form
(11) are sum of a TE and a TM mode.

Now assume that we want to compute the solutions of Maxwell’s equation in an infinite cylinder Ω× R =
{x = (x1, x2, x3) ∈ R3 : (x1, x2) ∈ Ω, x3 ∈ R}, where Ω ⊂ R2, and PEC boundary conditions are imposed
on ∂Ω× R. A given TE mode satisfies the PEC conditions H̃ · n = 0 if the Neumann condition n · ∇H̃3 = 0
holds, while a TM mode has to satisfy the Dirichlet one Ẽ3 = 0. Thus there exists an electromagnetic wave
propagating through the “waveguide” Ω × R with frequency η in the x3 direction only if the 2D Helmholtz
problem admits a non-trivial solution. This is the same as saying that ω2εµ − η2 is either a Dirichlet (TM)
or a Neumann (TE) eigenvalue for the 2D Laplacian in Ω. 3D Maxwell’s problems have been reduced to 2D
Helmholtz ones.

Exercise 1.19: (TEM modes). Assume that the (non-trivial) pair (E,H) is a “TEM mode”, which means
that it is simultaneously a TE and a TM mode: it is in the form (11) with Ẽ3 = H̃3 = 0. Show the following
facts.
• η2 = ω2εµ, i.e. η = k: the wavenumber in the x3 direction coincide with the free-space wavenumber.

• H =
√
ε/µ e3×E, where e3 = (0, 0, 1). This means that E and H are orthogonal vectors in the x1x2-plane.

• If φ is a 2D harmonic function (∆φ = 0), then E = ∇φ(x1, x2)eikx3 and H =
√
ε/µ e3 × E constitute a

TEM mode.

• If the domain Ω ⊂ R2 is simply connected then there is no non-trivial TEM mode with PEC conditions
propagating through Ω× R. (This is a main motivation for the use of coaxial cables.)
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The Helmholtz equation is used in place of the Maxwell equations when the effects of the wave po-
larisation (the direction in which the field points) are neglected. This is often done, for example, in the
Fresnel, Fraunhofer and Kirchhoff descriptions of light diffraction by apertures.

Remark 1.20: (Reality is more complicated than this!). The setting considered in this section is a special
case of much more general ones, which are needed in many applications. If different materials are present in the
region considered, or the properties of the material vary in space, then ε, µ, σ are function of position. In this
case, for instance, to obtain (10) we cannot simply move µ to the second term and find componentwise solution
of the Helmholtz equation, but we obtain some more general elliptic equations. If the material is anisotropic,
then the coefficients are modelled by symmetric positive definite matrices (semi-definite in case of σ). Since
the polarisation of a material given an impinging electromagnetic field is not immediate, the multiplications εE
and µH in (8) are more precisely modelled as convolutions in time between E/H and suitable kernels; however
in frequency-domain these give rise to standard products ε(ω)E and µ(ω)H where now the coefficients depends
on the frequency ω. In some materials and regimes (e.g. in lasers) the coefficients ε and µ need to be modelled
as non-linear operators acting on E and H: this is the field of non-linear optics.

1.4 Elastodynamics
Mechanical vibrations propagating in solids have more complicated behaviour than those in fluids, as two
different types of waves can be present. The relevant PDEs are similar to the wave and the Helmholtz
equations, with some complications due to the fact that the unknown is a vector field and the differential
operator (in the space variable x) is not as simple as the Laplacian. The Navier’s equations are the
system of PDEs that describes small-amplitude vibrations in (homogeneous, isotropic) solid objects:

ρ
∂2U

∂t2
= (λ+ 2µ)∇ div U− µ curl curl U + F.

Here U(x, t) is the displacement vector field, describing the position of a material point of the object
with respect to the rest position; F are the forces per unit of volume (e.g. gravity forces); the positive
parameters λ and µ are the Lamé constants4, describing the elastic properties of the material; and
ρ > 0 is the mass density of the medium at rest. These are the main equation of “linear elastodynamics”,
while “elastostatics” studies the equilibrium case where U is independent of time (e.g. it studies small
deformations of an object under a static load). In absence of external forces acting in the volume of
the body (F = 0), and if the waves are time-harmonic with angular frequency ω (i.e. (7) holds for each
component of U), the Navier’s equations become

(λ+ 2µ)∇div u− µ curl curl u + ω2ρu = 0. (12)

We define the wavenumber of pressure (longitudinal) and shear (transverse) waves, respectively, as:

kP := ω

√
ρ

λ+ 2µ
, kS := ω

√
ρ

µ
.

We define the scalar and vector potential, respectively, as

χ := −λ+ 2µ

ω2ρ
div u = −div u

k2
P

, ψ :=
µ

ω2ρ
curl u =

curl u

k2
S

. (13)

From (12), we can use these potentials to represent u:

u = −λ+ 2µ

ω2ρ
∇div u +

µ

ω2ρ
curl curl u = ∇χ+ curlψ, (14)

which is a “Helmholtz decomposition” of the displacement field. With some manipulation we obtain

∆χ+ k2
Pχ

(13),∆=div∇
= −div∇div u

k2
P

− div u
(12)
= − 1

k2
P

div
( µ

λ+ 2µ
curl curl u− k2

Pu
)
− div u

div curl=0
= 0,

curl curlψ − k2
Sψ

(13)
= curl curl

curl u

k2
S

− curl u
(12)
=

1

k2
S

curl
(λ+ 2µ

µ
∇ div u + k2

Su
)
− curl u

curl∇=0
= 0.

4Sometimes these equations are written in terms of the Poisson ratio ν and Young’s modulus E, which are other relevant
material parameters related to the Lamé constants by the relations λ = Eν

(1+ν)(1−2ν)
and µ = E

2(1+ν)
.
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This means that the scalar and vector potentials satisfy Helmholtz and Maxwell’s equations, respectively.
The decomposition (14) shows that any solution u of Navier’s equations (12) is sum of two terms. The

first one is a curl-free, longitudinal, time-harmonic wave propagating at speed cP = ω
kP

=
√

λ+2µ
ρ ; this

is called pressure wave (P-wave). The second one is a divergence-free, transverse, time-harmonic wave
propagating at (lower) speed cS = ω

kS
=
√

µ
ρ ; this is called shear wave (S-wave). In seismology, P-waves

and S-waves are called primary and secondary waves, respectively, because after an earthquake they reach
a give point the surface in this order, due to their different speeds.

In particular, all time-harmonic elastic waves can be ‘assembled’ from solutions of two copies of the
Helmholtz equation with different wavenumbers. In some applications, such as seismic imaging for oil
retrieval, Navier’s equations are sometimes approximated by the scalar Helmholtz equation, neglecting
shear waves.

The limit µ → 0 corresponds to a fluid material, elasticity reduces to acoustics and shear waves
disappear: Navier’s equations tend to ∇ div u + k2

Pu = 0, which is the equation satisfied by the acoustic
displacement and the acoustic velocity.

The Dirichlet boundary condition for the Navier’s equations consists in imposing a given displacement
on the bondary: u = g. The Neumann boundary condition requires the traction operator T(u) :=
2µ∂u∂n + λn div u + µn × curl u, with n the outward-pointing unit normal; setting T(u) = g on the
boundary corresponds to imposing the action of a force on the surface of the body.

When an elastic solid is in contact with a fluid, elastic vibration in the solid generate acoustic waves
in the fluid, and vice versa. The simulation of this interaction is important for noise mitigation in vehicles
and aircraft. On the boundary between the fluid and the solid domain, one has to impose “transmission
conditions”, to ensure the continuity of pressure and particle displacement (in formulas: pn = −T(u)
and n · ∇p = ω2ρu · n, where p is the fluid pressure), see [Ihl98, §1.3]. This is sometimes called “strong
coupling”. If the pressure forces of the fluid on the solid are negligible, then one can impose a “weak
coupling”: first compute the elastic vibrations of the solid and use them as input for the computation of
the acoustic field.

All properties mentioned here have an analogue in time-domain, as opposed to frequency-domain.
More information can be found e.g. in [BK00, §5] and [Ihl98, §1.2].

Remark 1.21: (Navier’s equations with strain and stress tensors). We give some more notation and write
Navier’s equations in different equivalent forms to help relate other references to this section. Using identity
(3), equation (12) can also be written as (λ+µ)∇div u+µ∆u+ω2ρu = 0. We denote by Dv the Jacobian of
the vector field v, by DSv := 1

2 (Dv + D>v) the symmetric gradient, by div the (row-wise) vector divergence
of matrix fields, and by Id the 3 × 3 identity matrix. The symmetric gradient of the displacement DS(u) is
called “Cauchy strain tensor” and often denoted ε: it is a matrix field measuring the deformation of the solid
body. Using the identity 2 div DS = ∇div +∆ = 2∇ div− curl curl, equation (12) can be written in the form

divσ + ω2ρu = 0, where σ := 2µDSu + λ (div u)Id = 2µ ε+ λTr(ε)Id

is called “Cauchy stress tensor”. Then the traction operator on the boundary can be written as T(u) = σn
(the matrix–vector product between the stress tensor and the unit normal to the boundary). The elastic wave
equations for more general anisotropic linear materials are still written in the form divσ + ω2ρu = 0 but the
strain and stress tensors are related by the more general relation σ = Cε, where C is the fourth-order “stiffness
tensor”.

We mention a few other examples of oscillatory phenomena where the Helmholtz equation plays a role.

Remark 1.22: (Membrane vibrations). The small-amplitude vibrations of a membrane are described by the
scalar wave equation (4) in two variables and, in the time-harmonic case, by the Helmholtz equation. This
model is accurate under the assumptions that the rest position is flat, the displacement is small and vertical
(so the vertical component of the displacement is the unknown, the horizontal components are zero), the
membrane is perfectly flexible and elastic, in particular it does not resist to bending, and tension forces act only
tangentially to the membrane. Typical examples are drums, loudspeakers, microphones and our own eardrums.

Exercise 1.23: (Helmholtz equation and Kirchhoff–Love plates). In mechanical engineering, flat, thin,
elastic structures are called “plates” and often modelled by Kirchhoff–Love theory. The flat three-dimensional
object is represented by a domain in R2. In the “pure bending” time-harmonic case, the plate displacement in
the direction perpendicular to the plate satisfies the fourth-order equation −∆2u+ k4u = 0, where ∆2 = ∆∆
is the bi-Laplacian operator.
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• Show that solutions of the Helmholtz equation ∆u + k2u = 0 and of the reaction–diffusion equation
∆u− k2u = 0 solve also the fourth-order equation.

• Let u be a smooth solution of −∆2u+k4u = 0. Define two fields w± := ∆u±k2u. Show that they satisfy
∆w± ∓ k2w± = 0 and that u = 1

2k2 (w+ − w−).

This means that all time-harmonic Kirchhoff–Love solutions can be written as sums of oscillatory and
boundary-layer components, that are solution of Helmholtz and reaction–diffusion equations, respectively.

Remark 1.24: (Helmholtz for water waves). The “shallow water equations” are a non-linear model for
the propagation of small-amplitude water waves in the sea when the horizontal length scale is much greater
than the sea depth, [BK00, §4.7]. Their linearisation leads to the two-dimensional wave equation, so under
time-harmonic assumptions we obtain the Helmholtz equation once again, possibly with varying coefficients.
In this setting the Helmholtz equation is sometimes called “Berkhoff equation”.

2 Particular solutions of the Helmholtz equation

We now focus on the construction of some simple analytical solutions of the Helmholtz equation ∆u+k2u =
0 in 2D and we study some of their qualitative properties. This is useful to understand some typical features
of all Helmholtz solutions.

Plots and time-harmonic animation are available on the course webpage
https://euler.unipv.it/moiola/T/MNAPDE2022/MNAPDE2022anim.html

2.1 The one-dimensional case

Figure 1: Panel 1: the real and the imaginary part of the one-dimensional propagative wave u(x) = eikx

over the interval (−1, 1), with k = 10.
Panel 2: the real part of the corresponding solution of the wave equation U(x, t) = <{eikxe−iωt}, plotted
as function of x (horizontal axis) and t (vertical axis). Here we are taking ω = k and c = 1. The wave
propagates towards the right endpoint of the space interval.
Panels 3 and 4: the same plots for the stationary wave u(x) = cos(kx) = 1

2 (eikx + e−ikx). The waves
oscillates in time but does not propagate: the peaks (yellow parts) appear at the same locations in
space.

We begin with the (boring) simpler case of one space dimension (n = 1). In this case, the Helmholtz
equation reduces to the ordinary differential equation: u′′ + k2u = 0. All solutions are in the form

u(x) = c1 cos(kx) + c2 sin(kx) for some c1, c2 ∈ C.

Equivalently
u(x) = C1eikx + C2e−ikx for some C1, C2 ∈ C.

All 1D Helmholtz solutions are periodic with period λ = 2π
k ; this value is called wavelength.

Let us fix c = 1, so ω = kc = k. When we expand the time-dependence of the corresponding solutions
(7) of the wave equation, we see that u(x) = eikx corresponds to U(x, t) = <{eikx−ikt} = cos(k(x − t)),
which is a wave propagating to the right. On the other hand, u(x) = cos(kx) corresponds to U(x, t) =
<{cos(kx)e−ikt} = cos(kx) cos(kt), which oscillates in time but maintains the same space profile and does
not propagate. See Figure 1 and the animations.

https://euler.unipv.it/moiola/T/MNAPDE2022/MNAPDE2022anim.html
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2.2 Plane waves
We have seen in Exercise 1.3 that the space–time field U(x, t) = F (x ·d− ct), propagating in the direction
of d at speed c, is solution of the wave equation (here d ∈ R2 is a unit vector and F a smooth real function).
To have a Helmholtz solution, we want U to be time-harmonic, i.e. U(x, t) = <{u(x)e−iωt}. A simple
way to reconcile these two expressions is to choose F (z) = <{eikz} so that U(x, t) = <{ei(kx·d−ωt)} =
cos(kx · d− ωt) (recalling that ω = kc) and

u(x) = eikx·d = cos(kx · d) + i sin(kx · d).

This is a time-harmonic propagative plane wave, which propagates in the direction d. Plane waves are
arguably the simplest solutions of the Helmholtz equation.

Another way to obtain plane waves is to look for Helmholtz solutions that are independent of one of
the Cartesian variables. If u(x1, x2) = ũ(x1), then ũ has to satisfy ũ′′+ k2ũ = 0, so ũ(x1) = c1 cos(kx1) +
c2 sin(kx2) for some c1, c2 ∈ C. Propagative plane waves correspond to the choice c1 = 1, c2 = i.

Plane waves have constant amplitude |u(x)| and are constant on the lines perpendicular to d. Their
complex argument arg(u(x)) = kx·d in a point x is called phase. Plane waves are periodic in the direction
d with period (the distance in space between two peaks) λ = 2π

k ; this value is called wavelength. A
translation along a vector v corresponds to a multiplication by a complex factor of absolute value 1, i.e.
it is a phase shift: u(x + v) = eik(x+v)·d = eikv·du(x).

The sum and the difference of two plane waves with opposite directions are called stationary, or
standing, plane waves:

eikx·d + e−ikx·d = 2 cos(kx · d), eikx·d − e−ikx·d = 2i sin(kx · d).

As in the one-dimensional case of §2.1, the reason why these are called stationary while eikx·d is called
propagative is clear if one looks at the evolution in time of the corresponding time-domain wave U(x, t) =
<{u(x)e−iωt}; see Figure 2 and the animations.5

Exercise 2.1: (Conjugate of a plane wave). Show that the complex-conjugate of a plane wave is a plane
wave propagating in the opposite direction, in accordance with Exercise 1.7.

Exercise 2.2: (Vector plane waves). Show that the vector plane wave E(x) = Aeikx·d is solution of
Maxwell’s equations curl curl E −k2E = 0 if and only if d · d = 1 and d · A = 0. This means that the
amplitude vector is orthogonal to the propagation direction, i.e. electromagnetic plane waves are transverse
waves. (The formula u× (v ×w) = v(u ·w)−w(u · v) might help.)

Show that Navier’s equations (12) support both transverse plane waves AeikSx·d, with d · A = 0, and
longitudinal ones deikPx·d. Longitudinal elastic waves are faster and have longer wavelengths than transverse
ones.

Here A ∈ C3. If <A and =A are parallel to one another, then the plane wave u(x) = Aeikx·d is said
to have linear polarisation. If <A and =A are perpendicular to one another and |<A| = |=A| (so that
=A = ±<A × d), then the polarisation is circular. In all other cases the polarisation is called elliptical.
To understand the meaning of these names, draw the graph of t 7→ U(x, t) = <{u(x)e−iωt} in the plane
perpendicular to d, for a given x. See also [BK00, §6.5].

2.2.1 Evanescent plane waves

Propagative and stationary waves are not the only solutions of the Helmholtz equation that are “separable”
in Cartesian coordinates (i.e. that can be written as u(x) = u1(x1)u2(x2)). If we look for functions in the
form u(x) = eik·x = ei(k1x1+k2x2) satisfying ∆u + k2u = 0, we see that we need a “wavevector” k ∈ C2

with k · k = k2
1 + k2

2 = k2. If both k1 and k2 are real then we obtain again the plane waves. If at least
one of the two is not real then we have a new kind of waves, called evanescent (plane) waves. Expanding
k = kR + ikI with kR,kI ∈ R2, we have u(x) = eik·x = eikR·xe−kI ·x : this field oscillates in the direction
kR with wavenumber |kR| ≥ k and decays exponentially in the orthogonal direction kI (|u(x)| = e−kI ·x).
The orthogonality of kR and kI is a consequence of k · k ∈ R. See Figure 2 for a representation.

5In one of the animations available online you can observe a sketch of the motion of the fluid particles subject to a
time-harmonic plane wave: each particle oscillates back and forth harmonically around a fixed position, and never moves far,
even if the wave propagates over the whole space. This happens for all solutions of the Helmholtz and the wave equations:
pressure, energy and momentum are transported while matter oscillates but does not move away.



Circular waves and Bessel functions |12| A. Moiola — February 28, 2022

Figure 2: Plane waves of propagative, stationary and evanescent type.

Evanescent (non-plane) waves typically appear at the interface between different materials or near
boundaries; important examples in elasticity are Rayleigh waves, which include the surface waves generated
by earthquakes.

Exercise 2.3: (Evanescent plane wave computations). Verify the statements made in the paragraph.

Exercise 2.4: (Complex parametrisation of plane waves). Show that all 2D plane waves, either propagative
or evanescent, can be written in the form eik(x1 cos θ+x2 sin θ) = e

k
2 (i(ν+ 1

ν )x1+(ν− 1
ν )x2), parametrised by 0 6= ν ∈

C or θ ∈ C, with ν = eiθ.

2.3 Circular waves and Bessel functions
We have seen Helmholtz solutions that are separable in Cartesian coordinates, we now look for those that
are separable in the polar coordinates (r, θ), where (x1, x2) = (r cos θ, r sin θ). The 2D Laplacian in polar
coordinates reads

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

If we have a separable Helmholtz solution u(x) = f(r)g(θ), the functions f, g have to satisfy

f ′′(r)g(θ) +
1

r
f ′(r)g(θ) +

1

r2
f(r)g′′(θ) + k2f(r)g(θ) = ∆u+ k2u = 0.

The angular component g has to be periodic of period 2π, so we take the circular harmonic g(θ) = ei`θ, for
` ∈ Z. Then g′′(θ) = −`2g(θ), so we can cancel g from the expression above, multiply by r2, and obtain
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Figure 3: The deformation of an elastic medium perturbed by plane waves. Left: the unperturbed
medium. Centre: a longitudinal plane wave deikx·d. Right: a transverse plane wave Aeikx·d with
A · d = 0. In this example the wave propagates horizontally (d = (1, 0, 0)) and A = (0, 0, 1). See §1.4
and Exercise 2.2. Acoustic waves are longitudinal waves, since fluids cannot support transverse waves.

that f satisfies
r2f ′′(r) + rf ′(r) + (r2k2 − `2)f(r) = 0. (15)

For k = 1, this is called Bessel differential equation: it is a linear, second-order ODE with variable
coefficients, it depends on the index ` and degenerates at r = 0. Two linearly independent real-valued
solutions are the Bessel functions of the first kind and order `, denoted J`(r) , and the Bessel

function of the second kind (or Neumann functions) and order `, denoted Y`(r) . Explicit expressions
(e.g. as power series or integral representations), plenty of useful formulas and graphs can be found online
on the “NIST Digital Library of Mathematical Functions” [DLMF]. See also Appendix B.

Figure 4: The Bessel functions of first and second kind, and the Hankel functions, for ` = 0, . . . , 4.

The Bessel functions of the first and second kind for ` = 0, . . . , 4 are plotted in Figure 4. We see
that both families of functions oscillate around 0 and decay slowly for r →∞. The distance between two
successive zeros of either J` or Y` is slightly shorter than π for ` = 0 and slightly longer than π for ` 6= 0.
The main difference is that the J`(r)s are smooth over R, while the Y`(r)s have a singularity at r = 0; the
higher ` the stronger the singularity. Useful formulas are J−`(r) = (−1)`J`(r) and Y−`(r) = (−1)`Y`(r).

The Hankel functions (sometimes called Bessel functions of the third kind) are the complex-valued
linear combinations

H
(1)
` (r) := J`(r) + iY`(r), H

(2)
` (r) := J`(r)− iY`(r) = H

(1)
` (r). (16)

The right panel of Figure 4 shows the first few Hankel functions: the argument r is one of the axis, the
real and the imaginary parts of H(1)

` (r) are on the other two axes. An important property of the Hankel
functions is that the magnitude r 7→ |H(1)

` (r)| is a monotonically decreasing function (|H(1)
` (r)| ≈

√
2/(πr)

for large r). For increasing r the complex number H(1)
` (r) spirals clockwise towards the origin.

Bessel and Hankel functions can be used in Matlab with the commands besselj, bessely and besselh.

Exercise 2.5: (Bessel equation). Verify that if f1 is solution of (15) for k = 1, then, for any k > 0,
fk(r) := f1(kr) solves (15).
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Exercise 2.6: (Bessel function asymptotics). Compare numerically the plots of the Bessel functions against
the asymptotics for small and large (positive) arguments (from [DLMF, §10.7]):

J`(z) ∼
z`

`! 2`
` ∈ N0, Y0(z) ∼ 2

π
log z, Y`(z) ∼ −

(`− 1)! 2`

πz`
` ∈ N, z → 0,

J`(z) ∼
√

2

πz
cos
(
z − `π

2
− π

4

)
, Y`(z) ∼

√
2

πz
sin
(
z − `π

2
− π

4

)
` ∈ N0, z →∞.

(17)

Figure 5: The Fourier–Bessel function J3(kr)ei3θ, the Fourier–Hankel function H
(1)
5 (kr)ei5θ, and the

sum of two Fourier–Hankel functions with opposite indices H(1)
5 (kr)ei5θ + H

(1)
−5 (kr)e−i5θ. Since the

Hankel functions are unbounded at the origin, the field has been truncated to zero in the region where
its absolute value is larger than 2.

From what we have said, we deduce that for any ` ∈ Z the two fields

J`(kr)e
i`θ, Y`(kr)e

i`θ

and their linear combinations are the solutions of the Helmholtz equations that are separable in polar
coordinates. They are called circular waves or Fourier–Bessel functions. Of all the elements of the
2-dimensional space span{J`(kr)ei`θ, Y`(kr)e

i`θ}, only J`(kr)ei`θ is defined in the whole of R2, while all the
others are defined in the punctured plane R2 \ {0}. They are all of class C∞ in their domain of definition.
From the angular dependence, we see that all these function are invariant under rotations of an angle
multiple of 2π/|`|; a rotation by an angle α corresponds to a multiplication by a complex factor ei`α.

https://dlmf.nist.gov/10.7
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Special circular waves are the Fourier–Hankel functions, namely

H
(1)
` (kr)ei`θ = J`(kr)e

i`θ + iY`(kr)e
i`θ, H

(2)
` (kr)ei`θ = J`(kr)e

i`θ − iY`(kr)e
i`θ, ` ∈ Z.

We will see soon why the the Fourier–Hankel functions H(1)
` (kr)ei`θ are important for problems posed in

unbounded domains.
Plotting the time evolution (7) of these fields, one notes that the Fourier–Bessel functions J`(kr)ei`θ

and Y`(kr)ei`θ rotate around the origin (anticlockwise if ` > 0, clockwise if ` < 0) and do not propagate
in the radial direction. The Fourier–Hankel functions H(1)

` (kr)ei`θ rotate and move towards infinity, while
the H(2)

` (kr)ei`θ towards the origin. This can be seen in the animations on the course webpage. Figure 5
shows some circular waves.

Exercise 2.7: (Singular circular waves are not in H1). Show that the Fourier–Bessel functions Y`(kr)ei`θ

and all the Fourier–Hankel functions do not belong to H1(Ω), for any domain Ω containing the origin 0,
because of the singularity at that point.

Use the small-argument asymptotics (17), the derivative formula Y ′` = 1
2 (Y`−1−Y`+1) [DLMF, eq. 10.6.1],

and recall how to compute gradients and integrals in polar coordinates.

Remark 2.8: (Special Helmholtz solutions in 3D). Plane waves in R3 are defined exactly as in 2D.
The 3D analogous of circular waves are called “spherical waves”. In their expression, Bessel and Hankel

functions are substituted by the similar “spherical Bessel functions” and “spherical Hankel functions”, denoted
j`, y`, h

(1)
` , h

(2)
` . The angular component ei`θ is substituted by the “spherical harmonics” Y m` , which are smooth

functions defined on the unit sphere and indexed by two indices ` and m. All these functions are described in
details in e.g. [Néd01, §2.4, 2.6] or [CK2, §2.3, 2.4].

2.4 Other remarks on the Helmholtz equation

Remark 2.9: (Herglotz functions). For g ∈ L2(0, 2π), the field u(x) =
∫ 2π

0
g(ϕ)eik(x1 cosϕ+x2 sinϕ) dϕ ∈

C∞(R2) is called Herglotz function with kernel g. It can be thought as a continuous linear combination of
plane waves with different directions (cosϕ, sinϕ) weighted by g(ϕ). Some interesting cases are the following.
• When g approximates a Dirac δ function centred at ϕ? then u approximates the plane wave with direction

d = (cosϕ?, sinϕ?).

• When g is constant in a small interval of (0, 2π) and 0 otherwise, then u approximates a plane wave in a
strip of the plane and decays away from it. In some applications this is more realistic than a plane wave,
which has an infinite propagating front. You can see the plot of such a Herglotz function in Figure 6.

• When g is a circular harmonic g(ϕ) = ei`ϕ we obtain a Fourier–Bessel function u(x) = (2πi`)J`(kr)e
i`θ.

(Prove this fact using the Jacobi–Anger formula eiz cosα =
∑
`∈Z i`J`(z)e

i`α and the L2(0, 2π)-orthogonality
of circular harmonics.)

If u is a Herglotz function with kernel g, its translate ũ(x) = u(x + c) is also a Herglotz function with kernel
g̃(ϕ) = eik(c1 cosϕ+c2 sinϕ)g(ϕ).

Plot with Matlab some Herglotz functions with different kernels.

Figure 6: The Herglotz function with kernel g(ϕ) = 1 if 0 < ϕ < π
6 and 0 otherwise, on (−1, 1)2. See

Remark 2.9.
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Exercise 2.10: (PDEs for phase and amplitude). Let c, ω be positive constants. Assume that the real-valued
phase function φ satisfies the non-linear “eikonal equation” |∇φ| = c−1 and that the complex-valued amplitude
A satisfies the complex, φ-dependent, diffusion–transport–reaction equation ∆A+2iω∇φ·∇A+(iω∆φ)A = 0.

This can be interpreted as saying that φ varies at constant speed and that A is advected in the direction of
variation of φ and it spreads. (Note that differently from Exercise 1.5 here we allow A to take complex values.)
• Prove that u(x) = A(x)eiωφ(x) solves the Helmholtz equation (with k = ω

c ).

• Show that some affine φ and any constant A satisfy these conditions and allow to construct plane waves.

• Show φ(x) = |x| and A(x) = H
(1)
0 (k|x|)e−ik|x| satisfy the eikonal equation and the diffusion–transport–

reaction equation in R2 \ {0}, respectively (with c = 1 and k = ω). (Use Bessel differential equation 15.)

Check numerically that A does not oscillate.
Careful: not all Helmholtz solutions can be written in this form; often u is a sum of terms u =

∑
j Aje

iωφj ,
each of them with well-defined phase and amplitude.

Exercise 2.11: (Helmholtz and Schrödinger equations). Let u be a Helmholtz solution defined on a domain
in the xy-plane. Fix a number k0 > 0.
• Assume that u(x, y) = eik0yψ(x, y), where the “envelope” ψ is a field that varies slowly in the variable y,

more precisely that |∂
2ψ
∂y2 | � |k ∂ψ∂y |. Show that ψ approximately satisfies the Schrödinger equation

2ik0
∂ψ

∂y
+
∂2ψ

∂x2
+ (k2 − k2

0)ψ = 0.

• Now assume that u can be written in polar coordinates as u(r, θ) = H
(1)
0 (k0r)Ψ(r, θ) where Ψ varies

slowly in the radial variable: |∂
2Ψ
∂r2 | � |k ∂Ψ

∂r |. Using the approximation (17) for k0r � 1, show that Ψ
approximately satisfies the Schrödinger equation with (r, θ) in place of (x, y).
This equation is used to model waves propagating in directions close to a leading one (either the y direction

or the radial one). This regime is called “paraxial approximation”. We factored out the leading term (either a
plane or a circular wave), and showed that the if the remainder behaves smoothly in the dominant direction,
then we can approximate it with a PDE that is first-order in this variable (y or r).

This PDE is also called “parabolic wave equation” and has the same mathematical form of the linear
Schroedinger equation used in quantum mechanics, where the variable y is the time variable.

Exercise 2.12: (The Helmholtz Poynting vector). The Poynting vector S := <{E ×H} (often defined
with a multiplicative constant) denotes the direction in which the energy of a time-harmonic electromagnetic
field (E,H) flows. Note the conjugation on H.
• Compute the Poynting vector of the plane wave in Exercise 2.2 (you first need to compute H).

• Show that the Poynting vector of a TE and a TM mode ((11) with Ẽ3 = 0 and H̃3 = 0, respectively) are

STE =<
{ iωµ

η2 − ω2εµ
H̃3∇H̃3 +

η

ωµ
(|Ẽ1|2 − |Ẽ2|2)ê3

}
,

STM =<
{ iωε

ω2εµ− η2
Ẽ3∇Ẽ3 +

ωεη

(η2 − ωεµ)2
|∇Ẽ3|2ê3

}
.

Show that if η = 0 then STE = ={ 1
ωεH̃3∇H̃3} and STM = ={ 1

ωµ Ẽ3∇Ẽ3} lie in the x1x2-plane.

Recalling that H̃3 and Ẽ3 are Helmholtz solutions in two dimensions, this suggests to define the Poynting
vector for a 2D Helmholtz solution u as

S = S(u) := =
{1

k
u∇u

}
= =

{
− 1

k
u∇u

}
= <

{ 1

ik
u∇u

}
.

Verify the following facts.
• If u is Helmholtz solution, its Poynting vector is solenoidal: ∇ · S = 0.

• If u is a complex multiple of a real field, i.e. a standing wave, then S = 0.

• The Poynting vector of a propagating or evanescent plane wave identifies the propagation direction:
S(eikx·d) = d and S(eikR·xe−kI ·x) = e−2kI ·x

k kR.

• For a field written in polar coordinates as u(x) = f(r)g(θ), we have ∇u = f ′gr̂ + 1
rfg

′θ̂, so that S =
1
k={f

′f |g|2r̂ + 1
r |f |

2g′gθ̂}.
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• S
(
ei`θJ`(kr)

)
=

`

kr
|J`(kr)|2θ̂, S

(
ei`θH

(1)
` (kr)

)
=

`

kr
|H(1)

` (kr)|2θ̂ +
2

πkr
r̂.

This is consistent with the fact that smooth Fourier–Bessel functions rotate around the origin (anticlockwise
for ` > 0 and clockwise for ` < 0) and do not propagates radially, while Fourier–Hankel functions rotate
and simultaneously propagate outwards.

Hint: use the Wronskian identity J`(z)Y ′` (z)− Y`(z)J ′`(z) = 2
πz ([DLMF, eq. 10.5.E2]).

Compare the results with the animations on the webpage.

3 Analytical tools

We introduce a few mathematical tools that will be useful in the following. Much more detail on the
content of this section can be found e.g. in the first part of [SBH19].

3.1 Lipschitz domains

We say that an open set Ω ⊂ R2 with bounded boundary is Lipschitz if (1) there is a finite family of
open sets {Wj}j=1,...,J that cover ∂Ω (i.e. ∂Ω ⊂

⋃
j=1,...,JWj), (2) there is a family of rotated Lipschitz

hypographs {Ωj}j=1,...,J (i.e. Ωj = {(x′1, x′2) : x′2 < fj(x
′
1)}, where (x′1, x

′
2) is a system of rotated Cartesian

coordinates in R2 and fj is a Lipschitz function), and (3) Wj ∩ Ω = Wj ∩ Ωj .
Intuitively, for each x ∈ ∂Ω, there is a neighbourhood where the boundary can be represented as the

graph of a Lipschitz function, and Ω lies only on one side of ∂Ω. Smooth domains and polygons are
Lipschitz. Domains with cusps (such as {0 < √x2 < x1 < 1}) or cracks (such as {|x| < 1, x2 6= 0}) are
not allowed.

We also say that Ω is of class Cm, m = 0, 1, . . . ,∞, if the functions fj are of class Cm.
An important property of Lipschitz domains is that the unit normal vector field n is defined almost

everywhere on their boundary (a.e. with respect to the 1-dimensional measure). E.g. on a polygon the
unit normal is defined everywhere except that at corners.

3.2 Function spaces on Lipschitz domains

To study boundary value problems we need some function spaces. Let Ω ⊂ R2 be an open, Lipschitz set.
We denote by D(Ω) the space of the “test functions”: complex-valued C∞ functions defined on Ω whose
support is compactly contained in Ω.

We denote by L2(Ω) the usual Lebesgue space of complex-valued, square-integrable functions. This

is a Hilbert space with inner product (v, w)L2(Ω) =
∫

Ω
vw dx and norm ‖v‖2L2(Ω) =

∫
Ω
|v|2 dx. Since

we are dealing with complex-valued functions, the inner product is a sesquilinear form (with a complex
conjugation on the second entry) and the norm requires the use of the absolute value of the argument.

Definition 3.1: (H1(Ω) and H1
0 (Ω)). The Sobolev space H1(Ω) is space of complex-valued L2(Ω)

functions, whose first (distributional) partial derivatives are in L2(Ω). It is provided with the following
seminorm, norm, and inner product:

|v|2H1(Ω) := ‖∇v‖2L2(Ω)2 =

∥∥∥∥ ∂v∂x1

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ ∂v∂x2

∥∥∥∥2

L2(Ω)

, ‖v‖2H1(Ω) := |v|2H1(Ω) + ‖v‖2L2(Ω) ,

(v, w)H1(Ω) :=
( ∂v
∂x1

,
∂w

∂x1

)
L2(Ω)

+
( ∂v
∂x2

,
∂w

∂x2

)
L2(Ω)

+ (v, w)L2(Ω) =

∫
Ω

(∇v · ∇w + vw) dx.

The space H1
0 (Ω) is the subspace of H1(Ω) of the elements that can be approximated in H1(Ω) norm by

a sequence of elements of D(Ω).

Remark 3.2: (Distributional derivatives). When we say that a partial derivative “in the sense of distributions”
∂v
∂x1

of an L2(Ω) function is in L2(Ω), we mean that there is a function w ∈ L2(Ω) such that
∫

Ω
v ∂ϕ∂x1

= −
∫

Ω
wϕ

for all ϕ ∈ D(Ω).

https://dlmf.nist.gov/10.5.E2
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6 We define also the subspace of H1(Ω) of the functions with square-integrable (distributional) Lapla-
cian: H1(Ω; ∆) = {v ∈ H1(Ω) : ∆v ∈ L2(Ω)}.

Finally, we say that u ∈ H1
loc(Ω) if the restriction of u to any bounded open subset D of Ω belongs

to H1(D), [Sayas06, p. 12]. If Ω is bounded, then H1
loc(Ω) = H1(Ω), while if Ω is unbounded then the

“local space” H1
loc(Ω) includes functions that do not decay at infinity. For instance, all plane and circular

waves belong to H1
loc(Ω) \H1(Ω) if Ω is the complement of a bounded set (which must contain the origin,

if the circular waves are the singular ones). We haven’t defined a norm on H1
loc(Ω), so this is not a Hilbert

space; on the other hand the H1(D) norms are seminorms on H1
loc(Ω). Similarly, u ∈ H1

loc(Ω; ∆) if the
restriction of u to any bounded open subset D of Ω belongs to H1(D; ∆).

The elements of H1(Ω) are in general not continuous, so their point evaluation is not well-defined.
However we will see that their values on the boundary of Ω, or any other Lipschitz curve, are well-defined.

3.3 Spaces on boundaries

3.3.1 The circle

We will need spaces of functions defined on boundary of Lipschitz sets with regularity weaker than H1

and stronger than L2. How to define functions with “half derivative”?
Let S1 = {x ∈ R2, ‖x‖ = 1} be the unit circle. For a function v defined on S1 we write v(θ), with

θ ∈ [0, 2π], for its value in polar coordinates. We say that v ∈ L2(S1) if ‖v‖2L2(S1) :=
∫ 2π

0
|v|2 dθ <∞ and

v ∈ H1(S1) if ‖v‖2H1(S1) :=
∫ 2π

0
(|v|2 + |v′|2) dθ <∞, where v′ is the derivative in the angular coordinate.

The expansion of v in circular harmonics is v(θ) =
∑
`∈Z v̂`e

i`θ, for a sequence of coefficients v̂` ∈ C.
We can compute the L2(S1) scalar product and the L2(S1)/H1(S1) norms using this expansion, exploiting
the orthogonality

∫ 2π

0
ei`θe−i`′θ dθ = 2πδ`,`′ and the derivation formula ∂

∂θ ei`θ = i`ei`θ:

(v, w)L2(S1) =

∫ 2π

0

v(θ)w(θ) dθ =

∫ 2π

0

∑
`∈Z

v̂`e
i`θ
∑
`′∈Z

ŵ`′ei`′θ dθ = 2π
∑
`∈Z

v̂`ŵ`, (18)

‖v‖2L2(S1) =

∫ 2π

0

|v|2 dθ = 2π
∑
`∈Z
|v̂`|2, ‖v‖2H1(S1) =

∫ 2π

0

(|v|2 + |v′|2) dθ = 2π
∑
`∈Z
|v̂`|2(1 + `2).

(Write down the intermediate computations.) Thus, a function defined on the circle is in L2(S1) if the
sequence of its Fourier coefficients is an element of the sequence space l2(Z) = {(a`), ` ∈ Z, ‖(a`)‖2l2 :=∑
`∈Z |a`|2 <∞}, and in H1(S1) if its Fourier coefficients weighted with (1 + `2)1/2 are in l2(Z).
This suggests a way to define Sobolev spaces with other regularities:

‖v‖2Hs(S1) := 2π
∑
`∈Z
|v̂`|2(1 + `2)s, Hs(S1) :=

{
v(θ) =

∑
`∈Z

v̂`e
i`θ : ‖v‖Hs(S1) <∞

}
∀s ∈ R. (19)

For s = 0 and s = 1 we recover H0(S1) = L2(S1) and H1(S1) as defined above. High-order Fourier
coefficients correspond to rapidly oscillating components: imposing that they decay faster in ` is the same
as imposing some regularity on v. So the higher s the smoother are the elements of Hs(S1): for any
real s− < s+, Hs+(S1) ⊂ Hs−(S1) and ‖v‖Hs− (S1) ≤ ‖v‖Hs+ (S1). If s > 1/2, the elements of Hs(S1) are
continuous functions, if s ≥ 0 they are L2(S1) classes of equivalence, for s < 0 they can only be understood
as distributions.

Exercise 3.3: (Dense embeddings). Show that for all s− < s+ the space Hs+(S1) is a dense subspace of
Hs−(S1). This means that for all v ∈ Hs−(S1) and ε > 0 there is w ∈ Hs+(S1) with ‖v − w‖Hs− (S1) ≤ ε.
Show also that Hs+(S1) 6= Hs−(S1).

Hint: look for a common subspace of all Hs(S1) that is dense in each of them.

Exercise 3.4: (Special elements of Hs(S1)).

• Compute the Fourier series of χ(θ) =

{
1 0 < θ < π,

0 π < θ < 2π.
Show that χ ∈ Hs(S1) if and only if s < 1

2 .

6The two terms in the definition of theH1(Ω) norm and inner product are not dimensionally homogeneous, so when dealing
with Helmholtz problems we often weigh the norm with the wavenumber k > 0 as ‖v‖2

H1
k

(Ω)
:= |v|2H1(Ω) + k2 ‖v‖2L2(Ω).
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• Can you find a v ∈ H 1
2 (S1) \ C0(S1)?

• Show that a delta function δθ? , θ∗ ∈ [0, 2π], belongs to Hs(S1) if and only if s < − 1
2 .

Exercise 3.5: (Random Sobolev functions on boundaries). We want to visualise how the decay of the
Fourier coefficients v̂` affects the regularity of v(θ) =

∑
`∈Z v̂`e

i`θ. To this purpose, generate and plot a
function v on S1 with random Fourier coefficients that decay in such a way that v ∈ Hs−ε(S1) \Hs(S1). Of
course you need to truncate the series after a finite number of terms. Observe the behaviour of v for different
values of s.

3.3.2 General boundaries

Given a Lipschitz bounded domain Ω, if there is a bi-Lipschitz map Φ : B1 = {|x| ≤ 1} → Ω that
maps S1 in ∂Ω, we can define the space Hs(∂Ω) as the space of functions v defined on ∂Ω whose
pullback v∗(x) = v(Φ(x)) is an element of Hs(S1). For −1 ≤ s ≤ 1 this gives a well-defined space
Hs(∂Ω) independently of the choice of Φ. Different maps Φ give equivalent norms. The space H1(∂Ω)
is precisely the space of L2(∂Ω) functions whose tangential first derivative ∇T v is in L2(∂Ω); moreover
v 7→ (

∫
∂Ω

(|v|2 + |∇T v|2) ds)1/2 is an equivalent norm on H1(∂Ω).
If we do not have such a map Φ, Hs(∂Ω) (for −1 ≤ s ≤ 1) can be defined in a slightly more complicated

way, using the cover of ∂Ω from the definition of a Lipschitz set and a so-called “partition of unity”.
Several other definitions of the spaces Hs(∂Ω) exist and can be found in the literature. The norms

obtained with different definitions are equivalent (for −1 ≤ s ≤ 1) but not necessarily equal.
In most of these notes we will use Hs(∂Ω) only for s = ±1/2: H

1
2 (∂Ω) ⊂ L2(∂Ω) ⊂ H− 1

2 (∂Ω).

3.3.3 Duality product

An important property of these spaces is that H−s(∂Ω) can be identified to the anti-dual space of Hs(Ω),
i.e. the space of anti-linear continuous functionals on Hs(∂Ω). Let us look at what this means in the case
of S1. If v, w ∈ L2(S1), we have seen in (18) that we can write their scalar product as the scalar product of
the Fourier coefficients in the sequence space l2(Z) (times 2π). We want to use the same l2(Z) product of
Fourier coefficients also when either v or w is not in L2(S1). The Fourier coefficients of this function decay
slowly, thus for the series in (18) to be finite we need the other function (w or v) to have fast-converging
Fourier coefficients, i.e. to be smoother. We define the duality product

〈v, w〉S1 =
〈∑
`∈Z

v̂`e
i`θ,
∑
`∈Z

ŵ`e
i`θ
〉
S1

:= 2π
∑
`∈Z

v̂`ŵ`

whenever the sum is bounded. If v ∈ Hs(S1) and w ∈ H−s(S1) for some s ∈ R then this series is bounded:
by the Cauchy–Schwarz inequality in l2(Z),

|〈v, w〉S1 | ≤ 2π
∑
`∈Z

(1 + `2)s/2|v̂`|(1 + `2)−s/2|ŵ`| ≤ ‖v‖Hs(S1) ‖w‖H−s(S1) .

Moreover, if v, w ∈ L2(S1), then the duality product coincides with the L2 inner product: 〈v, w〉S1 =∫
S1 v(θ)w(θ) dθ.

Similarly, it is possible to define a duality product 〈·, ·〉∂Ω on ∂Ω, i.e. a sesquilinear form acting on
Sobolev functions defined on ∂Ω such that

|〈v, w〉∂Ω| ≤ C ‖v‖
H

1
2 (∂Ω)

‖w‖
H−

1
2 (∂Ω)

∀v ∈ H 1
2 (∂Ω), w ∈ H− 1

2 (∂Ω), and

〈v, w〉∂Ω =

∫
∂Ω

vw ds, if w ∈ L2(∂Ω).

Because of this, we sometimes abuse the notation and write the duality product simply as
∫
∂Ω
vw ds,

even when one of the two distributions is not in L2 and the product is not strictly speaking an inte-
gral. We write 〈v, w〉∂Ω also when v ∈ H− 1

2 (∂Ω) and w ∈ H 1
2 (∂Ω). To be more clear we might write

〈v, w〉
H

1
2 (∂Ω)×H−

1
2 (∂Ω)

and 〈v, w〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

, depending on the regularity of the arguments.

Exercise 3.6: (Dual norms). Let the domain Ω admit a bi-Lipschitz map Φ : B1 → Ω as above. For each v, w
defined on ∂Ω let v∗, w∗ be their pullbacks on S1 and define ‖v‖Hs(Γ) := ‖v∗‖Hs(S1) and 〈v, w〉Γ := 〈v∗, w∗〉S1 .

Show that ‖v‖Hs(Γ) = sup06=w∈H−s(Γ)
|〈v,w〉Γ|
‖w‖H−s(Γ)

.

Hint: show it first for Γ = S1.
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3.3.4 Trace operators

These spaces are closely related to trace operators. Given a smooth function v ∈ C1(Ω), we define its
Dirichlet and Neumann traces, respectively, as

γv := v|∂Ω, ∂nv := n · γ(∇v)

where n is the outward-pointing unit normal vector field on ∂Ω (which is defined almost everywhere if
the domain is Lipschitz, by Rademacher theorem). Can we define these traces for more general functions,
such as elements of Sobolev spaces?

Theorem 3.7: (Trace theorem). The Dirichlet trace γ can be extended to a surjective continuous operator
mapping γ : H1(Ω)→ H

1
2 (∂Ω). The kernel of γ is H1

0 (Ω).
The Neumann trace ∂n can be extended to a surjective continuous operator ∂n : H1(Ω; ∆)→ H−

1
2 (∂Ω).

This theorem says that the spaces H
1
2 (∂Ω) and H−

1
2 (∂Ω) are precisely the spaces of the Dirichlet and

the Neumann traces of H1(Ω) and H1(Ω; ∆) functions, respectively. See [Spence14, p. 6] for more details.
The trace operators are local, i.e. γv and ∂nv depend only on the value of v in an arbitrary small

neighbourhood of ∂Ω. Thus, if Ω is unbounded (but ∂Ω is still bounded), in the trace theorem we can
substitute H1(Ω) and H1(Ω; ∆) with H1

loc(Ω) and H1
loc(Ω; ∆), respectively.

Exercise 3.8: (Equivalent norms on boundaries). Prove that the following are equivalent norms on
H±

1
2 (∂Ω):

‖u‖
H

1
2
# (∂Ω)

:= inf{‖U‖H1(Ω) : γU = u}, ‖u‖
H
− 1

2
# (∂Ω)

:= inf{‖U‖H1(Ω;∆) : ∂nU = u}.

Hint: use that all continuous linear surjective operators between Hilbert spaces admit continuous right inverses
[SBH19, Lemma 4.1].

3.4 Green’s identities

The divergence theorem says that for any F ∈ C1(Ω)2 we have
∫

Ω
div F dx =

∫
∂Ω

F · n ds, where n is
the outward pointing unit normal vector field on ∂Ω. The product rule for the divergence is div[wG] =
∇w ·G + w div G. The combination of these two ingredients gives Green’s first and second identity
for the Helmholtz equation: for u,w ∈ C2(Ω), k ∈ R∫

Ω

(∆u+ k2u)w dx =

∫
∂Ω

∂nu γw ds+

∫
Ω

(k2uw −∇u · ∇w) dx, (20)∫
Ω

(
(∆u+ k2u)w − u(∆w + k2w)

)
dx =

∫
∂Ω

(∂nu γw − γu ∂nw) ds. (21)

Exercise 3.9: (Complete proof). Write in detail the proof of (20)–(21) for u, v ∈ C2(Ω).

Do these identities hold for Sobolev functions?

Proposition 3.10: (Green’s identities in Sobolev spaces). If Ω is a bounded Lipschitz domain, Green’s
first identity (20) holds for u ∈ H1(Ω; ∆) e w ∈ H1(Ω). Green’s second identity (21) holds for u, v ∈
H1(Ω; ∆).
The boundary integrals must be understood as the duality products 〈∂nu, γw〉∂Ω and 〈γu, ∂nw〉∂Ω.

Green’s identities are the main tools in the derivation of boundary integral equations. This is the
reason why the Sobolev spaces we need are H1(Ω), H1(Ω; ∆) and their trace spaces H±

1
2 (∂Ω).

3.5 Variational problems, Fredholm theory, Gårding inequality
As we do for Laplace equation, we typically write Helmholtz problems in variational form. The abstract
linear variational problem in the (complex) Hilbert space H is

find u ∈ H such that A(u,w) = F(w) ∀w ∈ H, (22)
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where A is a sesquilinear form in H and F is a anti-linear functional in H. We recall that an anti-linear
functional satisfies F(λv + µw) = λF(v) + µF(w) for all λ, µ ∈ C and v, w ∈ H. A sesquilinear form is
linear in the first argument and anti-linear in the second one.

Given a variational problem such as (22), the (conforming) Galerkin method consists of choosing
an N -dimensional subspace VN ⊂ H and a basis ϕ1, . . . , ϕN , and of looking for a solution of the problem
restricted to VN :

find uN ∈ VN such that A(uN , wN ) = F(wN ) ∀wN ∈ VN . (23)

This is achieved computationally by solving the N ×N linear algebraic system AU = F where Aj,m :=

A(ϕm, ϕj), Fj := F(ϕj) and uN =
∑N
j=1 Ujϕj .

Given a continuous sesquilinear form A, we can associate a linear bounded operator A : H → H∗

by (Au)(w) = 〈Au,w〉H∗×H = A(u,w) for all u,w ∈ H, where H∗ is the anti-dual of H, [Spence14,
Lemma 5.4]. The operator A admits a continuous inverse if and only if, for all F ∈ H∗, the variational
problem (22) is well-posed.

In the case of Laplace equation, the crucial result from functional analysis is Lax–Milgram theorem:
if A is continuous (|A(u,w)| ≤ CA ‖u‖H ‖w‖H ∀u,w ∈ H) and coercive7 (<{A(w,w)} ≥ γA ‖w‖2H
∀w ∈ H), and F is continuous (|F(w)| ≤ CF ‖w‖H ∀w ∈ H), then the corresponding variational problem
is well-posed. Moreover, several good properties of all Galerkin discretisations follow (well-posedness,
stability bounds, quasi-optimality, bounds on the number of linear solver iterations, . . . ).

Unfortunately, for most variational formulations of the Helmholtz equation coercivity does not hold,
so we cannot rely on Lax–Milgram. The branch of functional analysis that we need is called “Fredholm
theory” and studies compact perturbations of operators. We recall the definitions of two classes of bounded
linear operators between Hilbert (or Banach) spaces; see e.g. [Sayas06, p. 21].

Definition 3.11: (Compact and Fredholm operators). A linear operator K : H1 → H2 is compact if
the image of a bounded sequence admits a converging subsequence ((vj)j∈N ⊂ H1, ‖vj‖H ≤ C ∀j ∈ N ⇒
∃jm →∞, w ∈ H2 such that Kvjm → w).
A bounded linear operator is a Fredholm operator if it is sum of an invertible one and a compact one (more
precisely, we should say it is a Fredholm operator of index 0).

8 We can think at Fredholm operators as “small” perturbations of invertible operators. The main
result is the “Fredholm alternative”, which, in its simplest form, reads as follows; [Brezis11, Thm. 6.6(d)],
[SBH19, §8.1, 8.6].

Theorem 3.12: (Fredholm alternative). Let T : H1 → H2 be a Fredholm operator.
T is injective if and only if it is surjective. In this case its inverse T−1 is bounded.

This theorem has this name because it states that when we have a Fredholm operator T then only
two “alternatives” are possible: either T is injective and surjective, or is neither injective nor surjective.
Fredholm alternative says that if we want to prove that a Fredholm operator is invertible, then it suffices
to prove its injectivity. A useful idea to keep in mind is that, under this respect, Fredholm operators
behave like square matrices.9

How do we use Fredholm alternative? The general strategy is the following. We will show that some
linear operator T mapping “problem solution” to “problem data” are Fredholm. When we can show that

7Here terminology can be confusing. Coercivity is sometimes called “sign-definiteness”, “V -ellipticity”, “strong ellipticity”,
or “strict coercivity”, see [Spence14, §5.2]. In some of these cases, the word “coercive” is used for sesquilinear forms satisfying
a Gårding inequality, which is a weaker condition. Here we follow the convention of [Spence14].

8Well, this is not exactly the definition you find in functional analysis textbooks. E.g. [Brezis11, p. 168] defines T : H1 →
H2 (continuous operator between Hilbert spaces, for simplicity) as “Fredholm with index Ind(T )” if dim(kerT ),dim(ImT )⊥ <
∞ and Ind(T ) := dim(kerT )− dim(ImT )⊥. Let us check that this definition, with index 0, is equivalent to ours.

An invertible operator is Fredholm with index 0; then by [Brezis11, p. 169, ?1(c)] any operator in the form invert-
ible+compact as in Definition 3.11 is Fredholm with index 0.

Conversely, assume that T : H1 = (kerT ⊕ (kerT )⊥)→ H2 = (ImT ⊕ (ImT )⊥) is Fredholm with index 0. Let {φ1, . . . , φn}
be an orthonormal basis of kerT and {ψ1, . . . , ψn} be an orthonormal basis of (ImT )⊥ (which are both finite-dimensional
and have the same dimension). Define K : H1 → H2 as Kφj = ψj and Kv = 0 ∀v ∈ (kerT )⊥; this operator has finite rank,
so it is compact. Then L = T +K is an invertible operator and T = L−K is in the form invertible+compact, as desired.
To verify that an operator is Fredholm we will always use Definition 3.11.
9Indeed, an invertible linear operator between finite-dimensional spaces corresponds to a square matrix. All finite-range

operators are compact because all bounded sequences of Rn and Cn admit converging subsequences. Thus the operators
between finite-dimensional spaces that are Fredholm are precisely those associated to square matrices. We know from linear
algebra that a square matrix is injective if and only if it is surjective. This proves the Fredholm alternative in the case of
operators between finite-dimensional spaces.

(In this Cn → Cn case, Fredholm operators are compact, but in infinite dimensions a Fredholm operator is not compact.)
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the homogeneous problem (with data equal to 0) only admits the trivial solution (i.e. T is injective),
Fredholm alternative guarantees that all data admit a solution (i.e. T is surjective), which is unique
by injectivity, and that the solution is controlled by the data (i.e. T−1 is bounded). A linear problem
whose “solution-to-data” operator is Fredholm is well-posed if the same operator is injective.

Typically, in time-harmonic problems, sesquilinear forms are not coercive but satisfy a weaker inequal-
ity, called Gårding inequality.

Definition 3.13: (Gårding inequality). Let H ⊂ V be two Hilbert spaces provided with the norms ‖·‖H
and ‖·‖V , and let the embedding H ↪→ V be continuous. A sesquilinear form satisfies a Gårding inequality
if there exists two positive constants α and CV such that

<
{
A(v, v)

}
≥ α ‖v‖2H − CV ‖v‖

2
V ∀v ∈ H. (24)

10 Here we follow the notation of [Spence14, §5.3], where the letters H and V are swapped with respect
to the classical choice for Hilbert triples (as in [Brezis11, p. 136]).

The main use of Gårding inequality comes from the next result, see [Spence14, Theorem 5.20].

Proposition 3.14: (Gårding⇒ Fredholm). Assume that H and V are as in Definition 3.13, the embedding
H ↪→ V is compact and the continuous sesquilinear form A(·, ·) satisfies the Gårding inequality (24).
Then the operator A : H → H∗ associated to A(·, ·) is Fredholm.

Proof. Let i : H → V be the (compact) inclusion map, and T : V → H∗ defined by 〈Tv,w〉H∗×H =
(v, iw)V , for v ∈ V and w ∈ H, where (·, ·)V is the scalar product in V . Then, by Cauchy–Schwarz
in V , T is continuous: ‖Tv‖H∗ = supw∈H

|〈Tv,w〉H∗×H |
‖w‖H

≤ supw∈H
‖v‖V ‖iw‖V
‖w‖H

≤ ‖v‖V ‖i‖H→V . Define
B := A+CV T ◦ i : H → H∗, where CV > 0 is the value in (24). Since T ◦ i is compact, in order to prove
that A is Fredholm, it is enough to see that B is invertible. Then the sesquilinear form

B(u,w) := 〈Bu,w〉H∗×H = 〈Au,w〉H∗×H + CV 〈T ◦ iu, w〉H∗×H = A(u,w) + CV (iu, iw)V , u, w ∈ H,

is continuous and coercive in H, which, by Lax–Milgram, implies that B is invertible. (Actually we have
proved something stronger, that A is sum of a compact operator and a coercive one.)

Proposition 3.14 and Theorem 3.12 imply that, in order to prove well-posedness of a variational problem
(22) whose sesquilinear form A(·, ·) satisfies a Gårding inequality, it suffices to study the homogeneous
problem (with F = 0):

Corollary 3.15: (Well-posedness from Gårding). Assume that:
• H ⊂ V are Hilbert spaces and the embedding H ↪→ V is compact,

• the sesquilinear form A(·, ·) is continuous in H and satisfies the Gårding inequality (24),

• the homogeneous variational problem, A(u0, w) = 0 for all w ∈ H, admits only the trivial solution u0 = 0.
Then also the inhomogeneous problem (22) is well-posed, for any F ∈ H∗.

To be able to exploit Corollary 3.15, we need to know when the embedding between two function
spaces is compact. A classical result, called Rellich embedding theorem, says that H1(Ω) ↪→ L2(Ω) is
compact, when Ω is a bounded Lipschitz domain11. Similarly, one can show that Hs+(∂Ω) ↪→ Hs−(∂Ω)
is compact for all s+ > s−, [Néd01, Theorem 2.5.7].

Exercise 3.16: (Compactness of Sobolev embeddings). Let s− < s+ be real numbers. Show the com-
pactness of Sobolev embedding i : Hs+(S1) → Hs−(S1), in the simple case of the boundary of the unit
circle.

The key tool to use is [Brezis11, Cor. 6.2]: given a linear operator T : H1 → H2 and Tj : H1 → H2

finite-rank operators (i.e. with finite-dimensional image) for j ∈ N, if ‖T − Tj‖H1→H2
→ 0 then T is compact.

Construct a sequence of finite-rank “truncated embedding” operators iL : Hs+(S1)→ Hs−(S1) for L ∈ N,
such that

‖i− iL‖2Hs+ (S1)→Hs− (S1) ≤
1

(1 + L2)s+−s−
.

10We could take a more general definition using the inequality <{σA(v, v)} ≥ α ‖v‖2H − CV ‖v‖
2
V for some 0 6= σ ∈ C

(the same σ for all v). Then all consequences of the Gårding inequality would follow precisely in the same way. However all
variational problems with A(·, ·) that satisfy this inequality can be reduced to equivalent problems satisfying (24) simply by
multiplying the sesquilinear form and the linear functional by σ.

11See e.g. [Brezis11, Thm. 9.16] and [SBH19, Prop. 7.5] for a more general version.
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Exercise 3.17: (Compact and Fredholm operators in sequence spaces). Let l2 be the Hilbert space of
squared-summable complex sequences x = (xj)j∈N, xj ∈ C, equipped with ‖x‖2l2 =

∑
j∈N |xj |2.

• Define the right and left complex shift operators R,L : l2 → l2 as (Rx)1 = 0, (Rx)j+1 = xj and
(Lx)j = xj+1 for j ∈ N. Show that R and L are neither Fredholm nor compact.

Are the composition LR and RL either Fredholm or compact? Which of L,R,LR,RL is invertible?

• Show that for any J ∈ N the truncation operator TJ : l2 → l2 defined by (TJx)j = xj if j ≤ J and
(TJx)j = 0 if j > J is compact.

• Show that the operator T : l2 → l2 defined by Tx = (x3, 0,−x3, 2x4, 2x5, . . . , (Tx)j = 2xj , . . .) is
Fredholm.

An extensive description of the relations between variational problems satisfying Lax–Milgram assump-
tions, Gårding inequality or the inf-sup inequality, and the consequences for the Galerkin method, can be
found in [Spence14, §5.3].

4 Boundary value problems for the Helmholtz equation

4.1 Plane waves reflected by a straight line

To understand what happens when a wave hits an impenetrable obstacle we start with
a very simple case that can be solved analytically. Let uInc(x) = eikx·d be a plane wave
with |d| = 1, d1 ≥ 0 and d2 ≤ 0 (i.e. propagating rightward and downward in the plane,
↘). This is called the “incoming field”, or “incident field”. Assume that we truncate
the domain of propagation to the upper half plane Ω+ = {x2 > 0} and on the horizontal
line Γ = {x2 = 0} we impose some boundary conditions that reflect the impinging wave.
We call uScat the reflected wave, i.e. the “scattered field”, and uTot = uInc + uScat the
“total field”. uTot is the physical field we would measure in a point of the half plane.

uInc uScat

n

Ω+

Γ

Given uInc, which is a datum, we now want to find uTot that satisfies the Helmholtz equation in the
upper half plane, and satisfies some desired homogeneous boundary conditions on Γ. This is the same as
saying that we want uScat that satisfies the Helmholtz equation in the same region, and satisfies boundary
conditions that depend on uInc on Γ.

By the law of reflection, we expect uScat to propagate upwards and to make with the horizontal line
Γ the same angle as uInc, ↗. This means that uScat is a plane wave with direction d̃ = (d1,−d2):
uScat(x) = Aeikd̃·x = Aeik(x1d1−x2d2) for some reflection coefficient A ∈ C that gives the amplitude and
the phase of uScat itself. The coefficient A depends on the particular type of boundary condition chosen.
• When the line Γ is sound-soft, the Dirichlet trace of the total field uTot vanishes on Γ:

0 = uTot(x1, 0) = uInc(x1, 0) + uScat(x1, 0) = eikx1d1 +Aeikx1d1 ∀x1 ∈ R ⇒ A = −1.

• When the line Γ is sound-hard, the Neumann trace of the total field uTot, i.e. its normal derivative,
vanishes on Γ:

0 =
∂uTot

∂x2
(x1, 0) =

∂

∂x2

(
uInc(x1, 0)+uScat(x1, 0)

)
= ikd2eikx1d1−Aikd2eikx1d1 ∀x1 ∈ R ⇒ A = 1.

• To impose the impedance boundary condition ∂uTot

∂n − ikϑuTot = 0 with ϑ > 0, we recall that n is the
outward-pointing unit normal vector on Γ so n = (0,−1). In this case we have

0 =
∂uTot

∂n
− ikϑuTot = −∂u

Tot

∂x2
− ikϑuTot =

(
ikd2(−1 +A)− ikϑ(1 +A)

)
eikx1d1 .

This vanishes for d2(−1 +A) = ϑ(1 +A), i.e. A = d2+ϑ
d2−ϑ .

Summarising, the fields are

uInc(x) = eik(x1d1+x2d2),

uScat(x) = Aeik(x1d1−x2d2),

uTot(x) = eik(x1d1+x2d2) +Aeik(x1d1−x2d2),

with A =


−1 for sound-soft Γ,

1 for sound-hard Γ,
d2+ϑ
d2−ϑ ∈ (−1, 1) for impedance Γ.
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The plane waves reflected by sound-soft or sound-hard interfaces have the same amplitude of the incoming
plane waves and either opposite (sound-soft) or the same (sound-hard) phase. On the other hand, since
|A| < 1, the waves reflected by an impedance line have amplitude smaller than the incoming wave:
the impedance boundary absorbs some of the wave energy. The amount of wave that is reflected and
the amount that is absorbed depend on the direction of the incoming wave; in particular, if ϑ ≤ 1
the impedance boundary does not reflect (but absorbs completely) the impinging waves propagating in
direction d = (

√
1− ϑ2,−ϑ). An impedance boundary with ϑ = 1 does not reflect the waves hitting

perpendicularly.
For ϑ → 0 the impedance boundary condition converges to the sound-hard one, and consistently

A→ 1; for ϑ→∞ it converges to the sound-soft boundary condition and A→ −1.
Here we have considered a wave with infinite front hitting an infinite obstacle: clearly this is not a

very realistic problem, but it helps to get an intuition of what happens when a wave hits an impenetrable
obstacle.

Remark 4.1: (On unbounded domains: PDE + BCs 6→ BVP). When we solve a well-posed boundary
value problem the solution is typically determined by the PDE and by the boundary conditions. Here we
have used something more. Let us look for example at the sound-soft case. Given uInc, any combination
uScat
λ (x) = −λeik(x1d1+x2d2)−(1−λ)eik(x1d1−x2d2) satisfies the Helmholtz equation and the boundary condition
uScat
λ = −uInc on Γ. We have chosen the case λ = 0 because from the law of reflection we expect the scattered

field to propagate upwards. We will see that in all problems posed on unbounded domains we need to select
the waves propagating in the desired direction, and that this is equivalent to imposing conditions “at infinity”.

Remark 4.2: (General wave reflected by a straight line). The same reasoning made above shows that
if uInc is any wave propagating downwards, then the reflected wave uScat

D (x) = −uInc(x1,−x2) propagates
upwards and uInc +uScat

D vanishes on Γ. So uTot
D = uInc +uScat

D is the total field in the presence of a sound-soft
line.

You can see the reflection of the Herglotz function uInc(x) =
∫ −π/6
−π/3 eik(x1 cosϕ+x2 sinϕ) dϕ by a sound-soft

horizontal line in Figure 7 and in the animation on the course webpage.
Similarly, uScat

N (x) = uInc(x1,−x2) propagates upwards and ∂
∂n (uInc + uScat

N ) vanishes on Γ, so uTot
N =

uInc + uScat
N is the reflection of any downward uInc by a sound-hard line.

For an impedance line Γ, the argument is slightly more complicated: since the reflection coefficient A
depends on the direction of the incoming wave, to compute uScat we need to be able to decompose uTot in
plane waves with different directions and reflect each one of them with its own coefficient. This is possible if
uInc is a Herglotz function with kernel supported in the lower half of the unit circle (g(ϕ) = 0 for 0 < ϕ < π).

Figure 7: Reflection of the Herglotz function with kernel g(ϕ) = χ(−π3 ,−
π
6 )(ϕ) by the sound-soft line

{x2 = 0}. See Remark 4.2.

Exercise 4.3: (Neumann reflection of Herglotz function). Plot the total field when the incoming field is
the same Herglotz function as in Figure 7 and in Remark 4.2, but the horizontal line Γ acts as a Neumann
boundary. Start from the Matlab file provided.

Repeat the same for an impedance boundary.

Exercise 4.4: (Neumann traces on sound-soft boundaries and vice versa). For the problem of a plane
wave uInc impinging on Γ = {x2 = 0} as described above, show that, ∀x ∈ R,
• if Γ is a sound-soft boundary then ∂nuScat(x, 0) = ∂nu

Inc(x, 0) and ∂nuTot(x, 0) = 2∂nu
Inc(x, 0);
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• if Γ is a sound-hard boundary then uScat(x, 0) = uInc(x, 0) and uTot(x, 0) = 2uInc(x, 0);

• if Γ is an impedance boundary then (∂n − ikϑ̃)uScat = (∂n − ikϑ̃)uInc for ϑ̃ = (d2)2

ϑ .

Exercise 4.5: (Reflection of vector plane waves). Consider a vector plane wave Aeikd·x that is solution
of Maxwell’s equations (10) as in Exercise 2.2. Compute the plane wave reflected by the horizontal plane
{x ∈ R3, x3 = 0} equipped with PEC boundary conditions E × n = 0. Recall that the amplitude of the
reflected wave must be orthogonal to its propagation direction.

The reflection of elastic waves is more complicated: an impinging pressure (or shear) wave generates a
reflected waves that is sum of a pressure and a shear wave. This phenomenon is called “mode conversion” and
is due to the boundary conditions, which involve all three Cartesian components of the fields.

4.2 Boundary value problems in bounded domains

Let Ω ⊂ R2 be a bounded, open, Lipschitz set. The Dirichlet BVP for the Helmholtz equation is: given a
source term f defined in Ω and a boundary datum gD defined on ∂Ω find u on Ω such that

∆u+ k2u = −f in Ω, γu = gD on ∂Ω. (25)

We know that the Dirichlet problem for the Poisson equation (problem (25) with k = 0) is well-posed
when the data f, gD are sufficiently smooth. Despite the Helmholtz equation looks like an innocuous
low-order perturbation of the Laplace equation, well-posedness of the Helmholtz Dirichlet problem is not
guaranteed.

We start from a simple example. Let Ω be the rectangle (0, L1) × (0, L2). Then for all j1, j2 ∈ N
the field uj1,j2(x) = sin( j1πL1

x1) sin( j2πL2
x2) vanishes on ∂Ω and is solution of ∆u + k2

j1,j2
u = 0 with

k2
j1,j2

=
j21π

2

L2
1

+
j22π

2

L2
2
. So there are infinitely many values of k such that the homogeneous (f = 0 and

gD = 0) Helmholtz Dirichlet BVP admits non-trivial solutions. It follows that for these values of k the
problem (25) is not well-posed: if there is a solution then it cannot be unique.

Solutions of the homogeneous Helmholtz Dirichlet problem are called Dirichlet eigenfunctions of
the Laplacian with eigenvalue Λ = k2, as they satisfy the eigenproblem −∆u = Λu, γu = 0.

As a second example, if Ω is a disc of radius R, then the circular waves J`(kr)e±i`θ are Dirichlet
eigenfunctions for Λ = k2 and k such that kR is a zero of the `th Bessel function J` (recall the plots in
the left panel of Figure 4 and the top panel of Figure 5: each J` has infinitely many zeros).

In other domains we find the same situation as in the two examples described, even if we cannot
compute eigenvalues and eigenfunctions explicitly; see [SBH19, §9] for the spectral theory of elliptic
operators.

To understand the problem in more general bounded Lipschitz domains, we study the problem from
a variational point of view. From Green’s first identity (20), the variational problem for the Helmholtz
Dirichlet BVP (25) with homogeneous boundary conditions gD = 0 is

find u ∈ H1
0 (Ω) such that A(u,w) :=

∫
Ω

(∇u ·∇w−k2uw) dx =

∫
Ω

fw dx =: F(w) ∀w ∈ H1
0 (Ω). (26)

The sesquilinear form A(·, ·) and the linear functional F(·) are continuous in H1
0 (Ω). On the other hand,

A(·, ·) is not coercive (for k sufficiently large), as the two terms (∇u∇w and −k2uw) have opposite signs,
see Exercise 4.8 or [Spence14, Lemma 6.2]. However, it satisfies a Gårding inequality (24) with α = 1 and
CV = k2 + 1:

<
{
A(w,w)

}
= A(w,w) = ‖w‖2H1(Ω) − (k2 + 1) ‖w‖2L2(Ω) ∀w ∈ H1(Ω).

Proposition 3.14, together with the compactness of H1
0 (Ω) in L2(Ω), gives that the operator A : H1

0 (Ω)→
(H1

0 (Ω))∗, A : u 7→ f , is Fredholm .12 Corollary 3.15 of Fredholm alternative then implies that, given Ω

and k, only two situations can happen:
12If A is Fredholm, what are the invertible and the compact operators that sum to A : H1

0 (Ω)→ (H1
0 (Ω))∗?

We can split the sesquilinear form as A(u,w) = A0(u,w) + K(u,w) with A0(u,w) :=
∫
Ω∇u · ∇w dx and K(u,w) :=

(−k2)
∫
Ω uw dx. Then A0(·, ·) is the sesquilinear form associated to the (well-posed) Laplace–Dirichlet BVP in H1

0 (Ω), so it
is continuous and coercive (by Poincaré inequality), thus the operator A0 associated, i.e. 〈A0u,w〉(H1

0 (Ω))∗×H1
0 (Ω) = A0(u,w),

is invertible. This operator is simply the Laplacian A0 = −∆ : H1
0 (Ω) → (H1

0 (Ω))∗. The operator K : H1
0 (Ω) → (H1

0 (Ω))∗

associated to the second sesquilinear form, i.e. 〈Ku,w〉(H1
0 (Ω))∗×H1

0 (Ω) = K(u,w), is −k2 times the embedding of H1
0 (Ω) in

(H1
0 (Ω))∗, which is a compact operator (the dual is a space larger than L2(Ω)).
The trick, hidden in Proposition 3.14, to decompose the Helmholtz “solution-to-data” operator A is to write the analogous

operator for the Laplace equation (A0, invertible) and to verify that the remainder (K = A − A0) is compact as it comes
from the lower-order term in the PDE. We will use again the “Helmholtz = Laplace + compact low-order perturbation” trick.
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• If Ω and k are such that the homogeneous (f = 0) problem (26) admits only the trivial solution u = 0,
then also problem (26) with any f ∈ L2(Ω) (or more generally F ∈ (H1

0 (Ω))∗) admits a unique solution.

• On the other hand, if there is a u 6= 0 such that A(u,w) = 0 ∀w ∈ H1
0 (Ω), then the problem (26) is

not well-posed for any f . It might have no solutions for some f , and many solutions for some other f .
We have proved part of the following proposition. To prove the remaining part (the existence, discrete-

ness and divergence at infinity of the eigenvalues), one needs the spectral theory of self-adjoint compact
operators, see e.g. [Brezis11, §6]. To treat inhomogeneous Dirichlet boundary conditions gD 6= 0, one uses
a “lifting”, i.e. a uD ∈ H1(Ω) such that γuD = gD (which exists because of the surjectivity of the trace
operator), and then solves for u0 = u− uD ∈ H1

0 (Ω).

Proposition 4.6: (Well-posedness of the Helmholtz–Dirichlet BVP). For a Lipschitz bounded domain
Ω, there exist a sequence of positive numbers k1 < k2 < . . ., with kj →∞, such that:
• If k = kj for some j, then the Dirichlet problem (25) is not well-posed.

In particular, the homogeneous case with f = 0 and gD = 0 admits non-trivial solutions.

• If 0 < k 6= kj for all j, then the Dirichlet problem (25) is well-posed in H1
0 (Ω) for all f ∈ L2(Ω) and

gD ∈ H
1
2 (∂Ω).

The smallest of the values kj equals the inverse of the Poincaré constant of Ω: the smallest value CP
such that ‖u‖L2(Ω) ≤ CP ‖∇u‖L2(Ω) for all u ∈ H1

0 (Ω) is CP = 1/k1 (this is an easy consequence of the
existence of an orthogonal basis of H1

0 (Ω) made of eigenfunctions).

Exercise 4.7: (Helmholtz–Neumann BVP).
• What are the eigenvalues and the eigenfunctions for the Laplacian with Neumann boundary conditions
∂nu = 0 on the rectangle and on the disc?

• Show that the positive Neumann eigenvalues for a rectangle coincide with the Dirichlet eigenvalues but the
eigenfunctions differ. (On the contrary, using subtle properties of the Bessel functions it is possible to see
that there are no Neumann eigenvalues of the disc that are also Dirichlet eigenvalues.)

• Write the variational formulation of the Helmholtz–Neumann BVP with inhomogeneous conditions ∂nu =
gN ∈ H−

1
2 (∂Ω): the sesquilinear form coincides with that in (26) but the linear functional and the function

space differ.

Exercise 4.8: (No coercivity for k > k1). Let u1, u2 be Dirichlet eigenfunctions in Ω, associated to different
eigenvalues k2

1 and k2
2 and normalised as ‖u1‖L2(Ω) = ‖u2‖L2(Ω) = 1. Let k1 < k < k2, and define w =

u1 ±
√

k2−k2
1

k2
2−k2 u2. Show that A(w,w) = 0.

Deduce that A(·, ·) is not coercive for all k2 larger than the first Dirichlet eigenvalue.
Hint: recall (or prove) that eigenfunctions associated to different eigenvalues are orthogonal both in L2(Ω)

and in H1(Ω) norms.

Exercise 4.9: (Absorption gives well-posedness.). Show that the Dirichlet and the Neumann problems

∆u+ k2u = −f in Ω, γu = 0 on ∂Ω, or

∆u+ k2u = −f in Ω, ∂nu = gN on ∂Ω,

are well-posed if =k > 0, f ∈ L2(Ω) and gN ∈ H−
1
2 (∂Ω).

Hint: First write the two BVPs as variational problems A(u,w) = F(w) in H1
0 (Ω) and H1(Ω), respectively.

Then use Lax–Milgram theorem. To prove the coercivity |A(w,w)| ≥ c ‖w‖2H1(Ω) of the sesquilinear form
obtained, first control the L2 norm of u, then the H1 seminorm by using the triangle inequality.

Deduce a bound on ‖u‖H1(Ω). The bounding constant C will blow up for =k ↘ 0.

If instead of sound-soft and sound-hard conditions we have impedance ones we obtain a different result.
Consider the impedance BVP:

∆u+ k2u = −f in Ω, ∂nu− ikϑ γu = gI on ∂Ω, (27)

for ϑ > 0, f ∈ L2(Ω), gI ∈ H−
1
2 (∂Ω). Its variational form is: find u ∈ H1(Ω) such that

AI(u,w) :=

∫
Ω

(∇u·∇w−k2uw) dx−ikϑ

∫
∂Ω

γu γw ds =

∫
Ω

fw dx+

∫
∂Ω

gI γw ds =: FI(w) ∀w ∈ H1(Ω).

(28)
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As before, the sesquilinear form is continuous, coercive only for small k, and satisfies a Gårding inequality.
So to check the well-posedness we only have to look at the homogeneous problem. If u0 satisfies (28) with
FI = 0 (i.e. f = 0 and gI = 0), taking the imaginary part of AI(u0, u0) = 0, we see that γu0 = 0 on
∂Ω, and from the boundary condition that also ∂nu0 = 0 on ∂Ω. We will see in Corollary 5.12 that this
implies that the impedance BVP is always well-posed. A different proof can be found in [SBH19, §8.8].

Remark 4.10: (What kind of waves are the eigenfunctions?). We have observed in §4.1 that Dirichlet and
Neumann boundary conditions reflect waves without losing energy. Roughly speaking, we can interpret Dirichlet
and Neumann eigenfunctions as waves that bounce around in Ω forever, without any damping. At the right
wavenumber the interference of the wave with itself is constructive (after a full round of bounces the wave has
precisely the same phase it started with), so, in a sense, it can exist without a source; see Exercises 4.11–4.12.
For example, if Ω is a disc, one can imagine a wave propagating along a regular polygon inscribed in Ω, reflected
by ∂Ω at every corner of the polygon. These are called creeping waves, as they “crawl” around ∂Ω and are
small in the centre of Ω, or whispering gallery modes (from some circular buildings where a whisper can be
heard in any place close to the wall but not in the centre); see Figure 8.

On the other hand, impedance boundary conditions and complex wavenumbers entail some energy absorp-
tion: in this case the waves cannot propagate forever and there are no eigenfunctions for any k > 0.

For high frequencies k ↗∞ Helmholtz solutions resemble more and more trajectories of particles, or billiard
balls on a table, or light rays if the particles are photons. The study of the relationships between the dynamics of
“billiard trajectories” and the properties of PDEs with a vanishingly small parameter (h = k−1 in h2∆u+u = 0)
is the topic of “semiclassical analysis” (the name comes from the analogy with the relation particles : waves =
classical physics : quantum physics).

Figure 8: The Dirichlet eigenfunction J9(kr)ei9θ with k = 13.3543 on the unit disc. This is a typical
“creeping wave” or “whispering gallery mode”, as it is concentrated along the boundary of the domain.

Exercise 4.11: (Billiards and eigenfunctions). Show that for all pairs j1, j2 ∈ N there is a closed “billiard
trajectory” in the unit square Ω = (0, 1)2 whose length is an integer multiple of the wavelength λj1,j2 =

2π
kj1,j2

= 2√
j21+j22

of the Dirichlet eigenfunction with indices j1, j2.

A “billiard trajectory” is the trajectory of a particle leaving from a point in Ω, moving in a straight
line, that is reflected when it hits ∂Ω with the equal-angle law, and that never hits the corners of
Ω. It is closed if it is a loop, i.e. the particle repeats it infinitely many time.

Exercise 4.12: (Plane waves and eigenfunctions of the square).
Fix j1, j2 ∈ N and define the plane wave u↘(x) = eiπ(j1x1−j2x2). Write the wave u↗ defined as
the sound-soft reflection of u↘ on the line {x2 = 0}, using the rules learned in §4.1. Extend these
rules to write the wave u↖ defined as the reflection of u↗ on the line {x1 = 1}, and u↙ as the
reflection of u↖ on the line {x2 = 1}. Show that the reflection of u↙ on the line {x1 = 0} is u↘.

We have found a wave that after four sound-soft reflections on the lines corresponding to the sides of the
square (0, 1)2 is identical to itself.

Show that u↘ + u↗ + u↖ + u↙ is (a multiple of) one of the eigenfunctions of (0, 1)2 described at the
beginning of this section.

4.3 Exterior boundary value problems
A typical problem in computational wave propagation is that of scattering. In a scattering problem we
want to compute how a given incoming wave is perturbed by the interaction with an obstacle. Here we
consider only sound-soft obstacles.
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We fix some notation. Let Ω− ⊂ R2 be a bounded Lipschitz domain, denote Ω+ := R2 \ Ω− and

Γ = ∂Ω−. We will always assume that Ω+ is connected, i.e. Ω− has no holes. We choose the unit normal
vector field n on ∂Ω that points out of Ω− and into Ω+. We need to take traces of fields defined in Ω−

and in Ω+: for clarity we write γ± and ∂±n for the traces taken from Ω+ and Ω−. If u ∈ H1
loc(R2) then

γ+u = γ−u (and we may write γu); if instead u ∈ H1
loc(Ω− ∪ Ω+) then γ+u and γ−u might differ. The

same holds for the Neumann traces ∂±n and the H1(·; ∆) spaces.
Let uInc be the incoming wave, or incident wave, a given Helmholtz solution which will be the datum

of our scattering problem. We want to find the field uScat scattered by Ω−, that is a Helmholtz solution
in the exterior domain Ω+ and such that γ(uTot) = 0 on Γ, where uTot = uInc + uScat. We see in the next
section that these two conditions are not enough to determine uScat.

4.3.1 Example: scattering by a disc

Let us consider a simple example using separation of variables. Assume that (i) Ω− is a disc of radius
R > 0, centred at the origin and (ii) the trace of uInc on Γ is a circular harmonic, in polar coordinates
(γ+uInc)(R, θ) = ei`θ for some ` ∈ Z. From §2.3, we know that all fields in the form13

uScat
λ (r, θ) = −λ

H
(1)
` (kr)

H
(1)
` (kR)

ei`θ − (1− λ)
H

(2)
` (kr)

H
(2)
` (kR)

ei`θ, λ ∈ C,

are Helmholtz solutions in Ω+ and satisfy γ+(uInc + uScat
λ ) = 0 on the circle Γ. Which value of λ should

we choose?
The scattered field is produced by the interaction of the obstacle Ω− and the incoming field uInc. So

it should look like a wave propagating away from Ω− towards infinity.
First of all, we would like |u(x)| to decrease to zero for r →∞ (the further we are from a sound source,

the weaker the sound we hear). In particular if |u(x)|2 ∼ r−1 for r →∞, then the “energy”
∫
{|x|=R} |u|

2 ds

is bounded for R→∞. All Fourier–Bessel and Fourier–Hankel functions decay as
√

2/πkr for r →∞, so
this does not help choosing λ.

If we plot uScat in a position x very far from Ω−, we expect it to point away from
Ω−, i.e. radially towards infinity. We would like uScat close to x to look like a plane
wave pointing away from Ω−, i.e. in the direction d = x

r :

x d

uScat(x) ≈ Aeikx· xr = Aeikr x = (r cos θ, r sin θ).

Here A ∈ C includes the amplitude, proportional to 1√
r
, and the phase of the wave.

We recall that Bessel functions with large arguments can be approximated by the following formulas,
[CK2, (3.82)]:

J`(z) =

√
2

πz
cos
(
z − `π

2
− π

4

)(
1 +O

(1

z

))
, Y`(z) =

√
2

πz
sin
(
z − `π

2
− π

4

)(
1 +O

(1

z

))
, z →∞.

Recalling the relations (16) between Bessel and Hankel functions, we can write the scattered field as

uScat
λ (x) ≈ −

√
2

πkr

(
λ

ei(kr− `π2 −
π
4 +`θ)

H
(1)
` (kR)

+ (1− λ)
ei(−kr+ `π

2 +π
4 +`θ)

H
(2)
` (kR)

)(
1 +O

( 1

kr

))
. (29)

We see that the H(1)
` term gives a factor eikr, while H(2)

` term gives a factor e−ikr. This means that only
the first component is propagating outward, while the second one is directed towards the origin. So we
want to keep the first term only and choose λ = 1.

Another way to see that the eikr terms are outgoing is to recall the meaning of time-harmonic waves,
as described in §1.2. For u(x) = r−1/2eikr, the time-dependent field (7) is U(x, t) = r−1/2 cos(kr − ωt) =
r−1/2 cos(k(r−ct)) which spreads (in time) radially from the origin. Conversely, ũ(x) = r−1/2e−ikr = u(x)
gives Ũ(x, t) = r−1/2 cos(kr+ωt) = U(x,−t) which moves towards the origin. See also Figure 9 for another
way of reading the direction of propagation of a Fourier–Hankel function.

Exercise 4.13: (Circular wave motion). Using the Matlab code provided, make time-harmonic animations
of different combinations of Fourier–Bessel and Fourier–Hankel functions and observe in which direction they
propagate.

13Here we have chosen the Hankel functions, as opposed to J` and Y`, because they are different from 0 for all values of
kR, so we can normalise as written.
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Figure 9: How can we see that u(x) = H
(1)
` (kr)ei`θ moves outwards from its definition? In this figure we

compare the real part (blue continuous lines) and the imaginary part (red dashed line) of these circular
waves for ` = 1, 2, 3, 4 and k = 1 along a ray from the origin (0, 0) (left) to the point (50, 0) (right).
We see that the imaginary part is always slightly “ahead” of the real part. Recall Exercise 1.9: the
time-dependent wave U(x, t), after taking value <u(x) will take value =u(x). From the figures we see
that this means that u is moving from left to right, i.e. from the origin towards infinity.
For comparison, in the first row we see the real and the imaginary parts of a plane wave propagating to
the right.

For a general uInc, we can expand its trace on the circle Γ in circular harmonics as uInc(R, θ) =∑
`∈Z a`e

i`θ. The scattered field and the total field are then

uScat(r, θ) = −
∑
`∈Z

a`
H

(1)
` (kr)

H
(1)
` (kR)

ei`θ, uTot(x) = uInc(x) + uScat(x).

This choice ensures that (i) uScat is Helmholtz solution in Ω+, (ii) γ+uTot = 0 on ∂Ω, and (iii) uScat is
made of outgoing waves only. This is an example of “Mie series”.

You can see an example of scattered field computed with this formula in Figure 10 and on the webpage.

Exercise 4.14: (Scattering of a plane wave by a disc). Let uInc be a plane wave with direction d.
Compute the field scattered by a disc of radius R using Jacobi–Anger formula eiz cosα =

∑
`∈Z i`J`(z)e

i`α.
Reproduce the plots in Figure 10.

4.3.2 Sound-soft scattering problems

We have seen how to select “outgoing” waves using the expansion in polar coordinates. How to do the
same when this expansion is not available, namely when Ω− is not a circle?

The radial dependence of all the outgoing terms in the circular wave approximation (29) is 1√
r
eikr

(ignoring high-order terms). Deriving with respect to the radial direction r we have ∂r(
1√
r
eikr) =

ik 1√
r
eikr − 1

2r
−3/2eikr. So, if uScat is a linear combination of H(1)

` (kr)ei`θ for different `s, then it sat-

isfies ∂ruScat − ikuScat = O(r−3/2). On the other hand, the bad terms H(2)
` (kr)ei`θ satisfy only the

condition with the opposite sign ∂ru + iku = O(r−3/2) (recall that H(2)
` = H

(1)
` ). This suggests the

following classical definition.



Exterior boundary value problems |30| A. Moiola — February 28, 2022

Figure 10: (Ex. 4.14.) Scattering of a plane wave with direction d = (
√

3
2 ,

1
2 ) by a a sound-soft disc with

radius 0.25 at k = 30. Top: scattered field; bottom: total field. We can observe that the uScat field is
strongest in the shadow region, and has phase opposite to uInc, so that uTot is minimal there. In uTot

we see the complicated pattern produced by the interference between uScat and uInc.

Definition 4.15: (Radiating/outgoing solution). Let u be an H1
loc(R2 \ BR) solution of the Helmholtz

equation in the complement of a ball. We say that u is radiating, or outgoing, if it satisfies the Sommerfeld
radiation condition:

|∂ru− iku| = o(r−1/2) r →∞. (30)

Sommerfeld condition is meant to hold uniformly in all directions, namely

lim
r→∞

sup
θ∈[0,2π]

√
r
∣∣∂ru(r, θ)− iku(r, θ)

∣∣ = 0.

Since radiating solutions can be expanded in series of Fourier–Hankel functions, Sommerfeld condition (30)
is equivalent (for Helmholtz solutions only) to the apparently stronger condition

∃C,R > 0 such that
∣∣∂ru(r, θ)− iku(r, θ)

∣∣ ≤ Cr−3/2 ∀r > R, θ ∈ [0, 2π].

Sommerfeld condition also implies that limR→∞
∫
∂BR
|∂ru − iku|2 ds = 0, ∂BR = {x : |x| = R}. The

approximation (29) implies that all linear combinations of H(1)
` (kr)ei`θ that converge outside of some

ball are radiating. On the the other hand, no H(2)
` (kr)ei`θ term is allowed in radiating functions. The

complex-conjugate of a radiating function is not radiating.
A more rigorous derivation of the Sommerfeld radiation condition can be done using the “limiting

absorption principle”: first consider the problem with absorption, i.e. =k > 0, where the eikr behaviour
corresponds to solutions decaying towards infinity, then study the limit for =k ↘ 0.

We can now define the class of exterior boundary value problems that we will consider in the following.

Definition 4.16: (Exterior Dirichlet problem—EDP). Let Ω− be a bounded Lipschitz domain, k > 0

and gD ∈ H
1
2 (Γ). We say that u ∈ H1

loc(Ω+) satisfies the exterior Helmholtz Dirichlet problem if

∆u+ k2u = 0 in Ω+,

γ+u = gD on Γ,

u is radiating.

(31)
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In the language of scattering theory:

Definition 4.17: (Sound-soft scattering problem—SSSP). Let Ω− a bounded Lipschitz domain, k > 0
and uInc is a Helmholtz solution in a neighbourhood of Γ. We say that uScat ∈ H1

loc(Ω+) satisfies the
sound-soft scattering problem if

∆uScat + k2uScat = 0 in Ω+,

γ+(uScat + uInc) = 0 on Γ,

uScat is radiating.

(32)

The sound-soft scattering problem is an exterior Dirichlet problem with u = uScat and gD = −γ+uInc.
We will see in §4.4 that problems (31) and (32) are well-posed.
In Definition 4.17 we have assumed that uInc is defined only in a neighbourhood of the scatterer’s

boundary. If the incoming wave is a plane wave, then of course it is defined in the whole of R2, but
this definition allows to include more realistic incoming waves such as “point sources”, i.e. Fourier–Hankel
functions centred at some point of Ω+.

The EDP and the SSSP are defined and analysed in details in, e.g., [CK2, §3.2]. However, [CK2]
considers the 3D case (so the powers of r in Sommerfeld condition are different) and Cm spaces rather
than Sobolev spaces.

Ω−
Sommerfeld

radiation condition
∂ru

Scat−ikuScat=o(r−1/2)
∆uScat + k2uScat = 0

Ω+

γ+(uScat + uInc) = 0 on ΓuInc

uScat

uScat

n

Figure 11: Diagram of the sound-soft scattering problem (32).

Remark 4.18: (Truncated problems). Often one does not want to deal with BVPs posed on unbounded
domains such as in Definition 4.17, for example because one wants to approximate the solution with a finite
element method. A possibility to reduce this problem to one posed on a bounded domain is to choose a large
ball BR (or a different shape) with Ω− ⊂ BR and solve a Helmholtz BVP on the truncated domain BR ∩Ω+.
On Γ we impose the Dirichlet condition as above. On the artificial boundary ΓR = ∂BR one has to impose some
artificial boundary condition that mimics the Sommerfeld radiation condition. The simplest choice is to choose
impedance conditions ∂ruScat − ikuScat = 0 (compare with (30)). Many more efficient and more complicated
boundary conditions exist. They are called absorbing, non-reflecting, radiation, generalised-impedance boundary
conditions (ABC, NRBC, GIBC. . . ). The quality of an artificial boundary condition depends on the ability to
absorb the waves coming from the domain and to not reflect them back. See some examples in [Ihl98, Ch. 3].

Remark 4.19: (Far-field pattern). It is possible to prove (e.g. [CK2, eq. (3.86)]) that if u is a radiating
Helmholtz solution, then it satisfies

u(x) =
eikr

√
r

(
u∞(θ) +O(r−1)

)
for r = |x| → ∞,

for a function u∞ ∈ C∞(S1) (recall that S1 is the unit circle, and that θ denotes the angular polar coordinate
of x). This means that, up to factoring out the phase factor eikr and the decay factor 1√

r
, when we move

towards infinity along a straight line in the direction θ, a radiating field converges to a given value u∞(θ). The
function u∞ is called far-field pattern. If u is defined in Ω+ and admits Dirichlet and Neumann traces on Γ,
the far-field pattern can be computed using the formula

u∞(θ) =
eiπ4
√

8πk

∫
Γ

(
γ+u(y)∂+

n e−iky·d − ∂+
n u(y)e−iky·d

)
ds(y) d = (cos θ, sin θ). (33)

The far-field pattern is one of the main quantities of interest in remote-sensing applications, for example to
quantify the amount of radiation “backscattered” by an obstacle when it is hit by a wave. You can see the
far-field pattern of the wave scattered by a triangle in Figure 14.
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Figure 12: Scattering of a plane wave with direction d = ( 1
2 ,
√

3
2 ) by a sound-soft triangle. Here k = 20

(so λ = π
10 ), the cathetus of the triangle has length 1 and the fields are plotted on a square of side 3.

Exercise 4.20: (Far-field pattern of a plane wave scattered by a disc). Compute (as a circular harmonic
expansion) and plot with Matlab the far-field pattern of the field scattered by a disc hit by a plane wave. Use
the Fourier expansion computed in Exercise 4.14. Study how the far-field pattern vary with k, R and the
propagation direction of uInc. Denote u∞(θ, ξ) the far-field for uInc(x) = eik(x1 cos ξ+x2 sin ξ): can you find any
symmetry between the two angles? See [CK2, Thm. 3.15].

Remark 4.21: (Direct and inverse scattering). The SSSP is a direct scattering problem: we know the
incoming wave, we know the obstacle, we want to compute the scattered field. In applications (such as medical
imaging, oil retrieval, seismic and atmospheric remote sensing, fault detection in materials, radar and sonar. . . )
it is very important to consider also inverse scattering problem: given the scattered field or the far-field (typically
from measurements), one wants to compute the obstacle and/or the incoming wave. Inverse problems are ill-
posed and much harder than direct ones, both theoretically and computationally. Most numerical methods for
the approximation of inverse problems require the numerical solution of many direct problems: this is one of
the main motivations for the study of efficient methods to simulate direct scattering problems. Most of the
book [CK2] is devoted to inverse scattering problems.

4.4 Well-posedness of the exterior Dirichlet problem (EDP)
The most common proof of the well-posedness of the EDP (31) relies on properties of BIOs and BIEs,
e.g. [CK1, Thm. 3.21] and [CK2, Thm. 3.11]. Here instead we prove well-posedness using a variational
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Figure 13: The Poynting vector S(uScat) for the scattering problem in Figure 12. See Exercise 2.12.

Figure 14: Some polar logarithmic plots (Matlab’s polarplot command) of the magnitudes of far-
field patterns log10 |u∞|. In this scattering problem, a plane wave with direction π

3 hits a sound-soft
triangular scatterer with vertices (0, 0), (1, 0) and (0, 1), as in Figure 12. Each plot corresponds to a
different wavenumber (k = 5, 10, 20, 40): for increasing frequencies the far field becomes more complex
and focused in few directions. The far-field pattern has maximal intensity in the direction π

3 of the
incoming wave (up right), where the triangle projects its shadow. Two other peaks are in directions
−π3 and 2π

3 , corresponding to the wave reflected by the two illuminated sides. The field in all other
directions is due to the diffraction by the corners. The far-field patterns were computed numerically
with the BEM described in §5.2.

formulation on a truncated domain and the “DtN map”. However, both proofs rely on the same main
tools: Fredholm theory and a “Rellich lemma”, which ensures uniqueness.

4.4.1 DtN map

Let R > 0 be the radius of an open ball BR centred at the origin such that Γ ⊂ BR. We define the operator
DtN, which acts on functions defined on ∂BR by multiplying each terms in their Fourier expansion by the
ratio of the radial derivative of the corresponding Fourier–Hankel function and the value of the Fourier–
Hankel function itself:

DtN(v) = DtN
(∑
`∈Z

v̂`e
i`θ
)

=
∑
`∈Z

T`v̂`e
i`θ, for T` :=

kH
(1)
`

′
(kR)

H
(1)
` (kR)

. (34)

This operator is calledDirichlet-to-Neumann (DtN) map or capacity operator (see [Néd01, (2.6.92)]
for the 3D version).

If u is a radiating solution in Ω+, then in R2 \BR it can14 be expanded as u(x) =
∑
`∈Z a`H

(1)
` (kr)ei`θ.

14We haven’t proved that all radiating solutions can be expanded in Fourier–Hankel series; see [CK1, Thm. 3.6] for a proof
(in the 3D case) which relies on Green’s representation (which we will see later).
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Then its traces on ∂BR are

γ+
∂BR

u =
∑
`∈Z

a`H
(1)
` (kR)ei`θ and ∂+

n ∂BR
(u) =

∑
`∈Z

a`kH
(1)
`

′
(kR)ei`θ thus DtN(γ+

∂BR
u) = ∂+

n ∂BR
(u).

In words: the DtN operator maps the Dirichlet trace (on ∂BR) of a radiating solution to its
Neumann trace (on ∂BR).

From the formulas ([DLMF, 10.6i and 10.19E2]) for the derivative and the large-index asymptotics of
the Hankel functions

H
(1)
`

′
(z) =

H
(1)
`−1(z)−H(1)

`+1(z)

2
, H

(1)
` (z) ∼ −i

√
2

π

( 2

ez

)`
``−

1
2 for `→∞

we have

T` = k
H

(1)
`−1(kR)−H(1)

`+1(kR)

H
(1)
` (kR)

∼ k
(ekR

2`
− 2`

ekR

)
= O(`) `→∞.

From the definition of the fractional norms (19) on the circle we have that DtN is continuous as an operator
DtN : Hs(∂BR)→ Hs−1(∂BR) for any s ∈ R: for some C > 0,

‖DtNv‖2Hs−1(∂BR) = 2π
∑
`∈Z
|v̂`|2 |T`|2︸︷︷︸

∼`2

(1 + `2)s−1 ≤ C
∑
`∈Z
|v̂`|2(1 + `2)s ≤ C ‖v‖2Hs(∂BR) .

4.4.2 Truncated problem

The EDP (31) is equivalent to the following problem on the
truncated domain ΩR := BR ∩ Ω+:

∆u+ k2u = 0 in ΩR,

γu = gD on Γ,

DtN(γu)− ∂nu = 0 on ∂BR.
(35)

Γ
Ω−

ΩR = BR ∩ Ω+

∂BR

n

n

The last condition on the exterior boundary ∂BR is equivalent to the Sommerfeld radiation condition.
To write this BVP as a variational problem we define the space H1

0,R(ΩR) := {u ∈ H1(ΩR) : γu = 0 on Γ}
(the H1 functions whose trace vanishes on the interior boundary Γ but not necessarily on ∂BR).

From the surjectivity of the trace operator (Theorem 3.7) there exists a lifting uD ∈ H1(ΩR) such that
γ+uD = gD; it is possible to choose uD ∈ H1(ΩR; ∆) (e.g. by solving an auxiliary Laplace BVP). If we
can solve the problem

∆u0 + k2u0 = −f in ΩR,

γu0 = 0 on Γ,

DtN(γu0)− ∂nu0 = gR on ∂BR,
f := −∆uD − k2uD, gR := −DtN(γuD) + ∂nuD,

then u = uD + u0 would solve (35). (We could also choose uD such that gR = 0.) Using Green’s first
identity it is easy to deduce a variational problem for u0:

find u0 ∈ H1
0,R(ΩR) such that AR(u0, w) = FR(w) ∀w ∈ H1

0,R(ΩR) where (36)

AR(u0, w) :=

∫
ΩR

(∇u0∇w − k2u0w) dx−
∫
∂BR

(DtNγu0)(γw) ds,

FR(w) :=

∫
Ω

fw dx−
∫
∂BR

gRγw ds.

Using the continuity of the trace operator (γ : H1
0,R(ΩR) → H

1
2 (∂BR)) and the DtN map (DtN :

H
1
2 (∂BR)→ H−

1
2 (∂BR)) we deduce the continuity of AR and FR in H1

0,R(ΩR).

https://dlmf.nist.gov/10.6i
https://dlmf.nist.gov/10.19E2
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4.4.3 Gårding inequality

We first look at the real part of the boundary sesquilinear form associated to DtN: for all v(x) =∑
`∈Z v̂`e

i`θ ∈ H 1
2 (∂BR) we have

<
∫
∂BR

(DtNv)v ds(x) = R <
∫ 2π

0

(∑
`∈Z

T`v̂`e
i`θ
)(∑

`∈Z
v̂`e
−i`θ

)
dθ = 2πR

∑
`∈Z
|v̂`|2<{T`}.

For any complex-valued differentiable function f of a real variable we have

<
{f ′(t)
f(t)

}
= <

{f ′(t)f(t)

|f(t)|2
}

=
f ′(t)f(t) + f ′(t)f(t)

2|f(t)|2
=

1

2|f(t)|2
∂
(
f(t)f(t)

)
∂t

=
1

2|f(t)|2
∂(|f(t)|2)

∂t
.

Choosing f(r) = H
(1)
` (kr) we have

<{T`} = <
{f ′(R)

f(R)

}
=

1

2|H(1)
` (kR)|2

∂(|H(1)
` (kr)|2)

∂r

∣∣∣∣
r=R

< 0

since the absolute value of the Hankel function is monotonically decreasing. Combining all these ingredients
we see that the sesquilinear form satisfies a Gårding inequality:

<{AR(w,w)} =

∫
ΩR

(|∇w|2 − k2|w|2) dx−<
∫
∂BR

(DtNγw)γw ds

= ‖∇w‖2L2(ΩR)2 − k2 ‖w‖2L2(ΩR) − 2πR
∑
`∈Z
|ŵ`|2<{T`}︸ ︷︷ ︸

≤0

≥ ‖∇w‖2L2(ΩR)2 − k2 ‖w‖2L2(ΩR) = ‖w‖2H1(ΩR) − (k2 + 1) ‖w‖2L2(ΩR) ,

where we have expanded (γw)(θ) =
∑
`∈Z ŵ`e

i`θ on ∂BR. Moreover, H1
0,R(ΩR) is compactly embedded

in L2(ΩR). From Corollary 3.15 we have that if the homogeneous version of the variational problem (36)
(find u0 ∈ H1

0,R(ΩR) such that AR(u0, w) = 0 for all w ∈ H1
0,R(ΩR)) admits only the trivial solution

u0 = 0, then (36) is well-posed for any right-hand side.

4.4.4 Uniqueness

We first prove the following important result, [CK1, Thm. 3.12].

Theorem 4.22: (Rellich’s lemma). If u is a radiating Helmholtz solution in Ω+ then

=
∫
∂BR

∂nu γuds ≤ 0 ⇒ u = 0 in Ω+.

Proof. As before, we assume that u admits a Fourier–Hankel expansion u =
∑
`∈Z û`e

i`θH
(1)
` (kr), [CK1,

Thm. 3.6]. With this normalisation, on ∂BR we have

=
∫
∂BR

∂nu γuds = R =
∫ 2π

0

(∑
`∈Z

û`e
i`θkH

(1)
`

′
(kr)

)(∑
`∈Z

û`e
−i`θH

(1)
` (kr)

)
dθ

= 2πR
∑
`∈Z
|û`|2={kH(1)

`

′
(kR)H

(1)
` (kR)}

= 2πR
∑
`∈Z
|û`|2k

(
Y ′(kR)J(kR)− Y (kR)J ′(kR)

)
= 2πR

∑
`∈Z
|û`|2

2

πR
= 4

∑
`∈Z
|û`|2 ≥ 0,

from the Wronskian identity [DLMF, eq. 10.5.E2]. Since all terms in the series are positive, if the series
is ≤ 0 then it is 0 and û` = 0 for all ` ∈ Z, so u = 0.

If we choose u0 to be the solution of the homogeneous variational problem (36) with FR = 0, then

0 = ={FR(u0)} = ={AR(u0, u0)} = −=
∫
∂BR

(DtNγu0)γu0 ds = −=
∫
∂BR

∂nu0 γu0 ds

https://dlmf.nist.gov/10.5.E2
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and u0 = 0 by Rellich’s lemma 4.22.

We can now complete the proof of the well-posedness. The homogeneous variational problem ((36)
with FR = 0) admits only the trivial solution u0 = 0 (§4.4.4) and its sesquilinear form satisfies a Gårding
inequality (§4.4.3). By Corollary 3.15 the problem (36) is well-posed for all f and gR. Thanks to the
equivalence with (35), also the EDP (31) and the special case of the SSSP (32) are well-posed.

5 Boundary integral equations and the boundary ele-
ment method

5.1 Single-layer potential, operator and the first BIE
15We define the 2D Helmholtz fundamental solution:

Φk(x,y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y ∈ R2. (37)

For a given point y, this is a radiating Fourier–Hankel function of order 0 centred at y. It is a smooth
Helmholtz solution in R2 \{y} and has a logarithmic singularity at y. The roles of x and y are symmetric.
It represents the field produced by a point source located in y. The value of Φk(x,y) only depends on
the distance |x − y| between the arguments (more precisely: it depends on the number of wavelengths
contained in that distance: |x−y|λ = k|x−y|

2π ).
We will see in Exercise 5.20 that the normalisation factor i

4 in (37) gives that, for all y ∈ R2, ∆Φk(·,y)+
k2Φk(·,y) = δy, in the sense of distributions, where δy is the Dirac delta centred at y. Moreover this
coefficient will allow to write a simple Green’s integral representation in §5.3.

Any linear combination
∑
j ψjΦk(·,yj) of fundamental solutions centred at points y ∈ Ω− satisfies

the Helmholtz equation in Ω+ and is radiating.16 We can also take a continuous linear combination of
fundamental solutions, which we write as

(Sψ)(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Ω+, (38)

where ψ is a function on Γ. We can think at ψ as the density of acoustic sources17 generating the field
Sψ. The function x 7→ Φk(x,y)ψ(y) belongs to C∞(Ω+) for any given y ∈ Γ. Thus, by the differentiation
under integral sign theorem, the function Sψ belongs to C∞(Ω+), is radiating and is a solution of the
Helmholtz equation, [CGLS12, Thm. 2.14]. The operator S is called (acoustic) single-layer potential or,
sometimes, simple-layer potential. It is possible to prove that the single-layer potential is continuous
as a mapping S : H−

1
2 (∂Ω)→ H1

loc(Ω+), [CGLS12, Thm. 2.15].
This suggests to look for a solution of the EDP (31) in the form u(x) = (Sψ)(x) for some “density” ψ.

But, how can we find ψ? We need to relate Sψ to the boundary condition.
We first introduce the single-layer operator S:

(Sψ)(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Γ. (39)

The only difference between the single-layer potential S and operator S is that the former is evaluated
in points off the boundary, and the latter on the boundary Γ. When ψ ∈ C0(Γ), then the evaluation of
(Sψ)(x) is the integral of a continuous function. On the other hand, no matter the regularity of ψ, the
evaluation of (Sψ)(x) is a singular integral, because of the singularity of Φ(x,y) at x = y. The single-
layer operator is a first example of boundary integral operator (BIO), in particular it is a weakly
singular integral operator, as the singularity of Φk is logarithmic.

15This section closely follows [Sayas06, §3]. However we use the notation S, S of [Spence14], while [Sayas06] uses SΓ, VΓ.
16This suggests a numerical method consisting in choosing N points y1, . . . ,yN ∈ Ω− and in searching the coefficients

ψ1, . . . , ψN that minimise
∥∥∥∑N

j=1 ψjΦk(·,yj)− gD(·)
∥∥∥
L2(Γ)

(or some other norm on Γ). This is a well-known scheme

called the “method of fundamental solutions” (MFS). It can give extremely good accuracy but has some drawbacks: it is
very sensitive with respect to the location of the yjs, the minimisation generally leads to ill-conditioned linear systems, it
struggles to approximate solutions for scatterers with corners.

17The terminology (“potential”, “layer”, “density”, . . . ) comes from electrostatics, i.e. the Laplace equation case k = 0. In
this case ψ represents the surface density of electric charges generating, by Coulomb’s law, the electrostatic potential Sψ.
For a simple and very brief summary see https://cims.nyu.edu/~oneil/courses/sp19-math2840/electrostatics.pdf

https://cims.nyu.edu/~oneil/courses/sp19-math2840/electrostatics.pdf
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The Dirichlet trace operator relates S and S:

Sψ = γ+(Sψ). (40)

This fact seems obvious from the definitions (38)–(39) of single-layer potential and operator, but its justi-
fication requires some care because of the singularity of the fundamental solution Φk, which appears in the
definition of S and S. 18 We will see in §5.4 (equation (56)) another boundary integral potential/operator
pair defined by similar formulas, where the operator is not the trace of the potential.

If we are able to find ψ on Γ such that

Sψ = gD on Γ, (41)

where gD is the Dirichlet datum of the EDP (31), then

u = Sψ in Ω+ (42)

is a radiating Helmholtz solution in Ω+ with γ+u = γ+Sψ = Sψ = gD by (40), thus u itself is a solution
of the EDP (31).

Equation (41) is the first example of boundary integral equation (BIE) and (42) is the correspond-
ing representation formula. The unknown of the BIE is ψ, which is a distribution supported on Γ and
does not need to have a physical meaning: for this reason this is called indirect method. If we could
solve the BIE and compute ψ, then the solution u of the EDP could be obtained from the representation
formula, which amounts to the computation of an integral on Γ for each point x ∈ Ω+ where we want to
evaluate u.

We will see in §6.1 that the BIE (41) is well-posed under some conditions on Γ and k.

Remark 5.1: (Continuity of the single-layer operator). From the continuity of the single-layer potential
S : H−

1
2 (Γ) → H1

loc(Ω+), the trace formula (40) and the trace theorem 3.7, it follows that the single-layer
operator is continuous as a mapping S : H−

1
2 (Γ)→ H

1
2 (Γ).

We can verify this continuity for a circular boundary Γ = ∂BR = {x : |x| = R} for R > 0, where these
norms can be computed from Fourier coefficients. Let v(θ) =

∑
`∈Z v̂`e

i`θ be a function (or distribution)

18We show this (intuitively very plausible) fact when ψ ∈ C0(Γ) and Γ is a polygon.
Using [DLMF, eq. 10.8.E2] and the smoothness of J0, one can show that Φk(x,y) = − 1

2π
log(k|x− y|) +R(|x− y|) for a

function R ∈ C1(R). We denote by LR := supt∈[0,diam Γ] |R′(t)| the Lipschitz constant of R.
We fix a point x ∈ Γ and a sequence (xj)j∈N ⊂ Ω+ ∩B1/4(x) with xj → x. We denote εj := 2|x− xj |1/2. Then

|Sψ(x)− Sψ(xj)| =
∣∣∣∣∫

Γ
[Φk(x,y)− Φk(xj ,y)]ψ(y) ds(y)

∣∣∣∣
≤ ‖ψ‖L∞(Γ)

(∫
Γ

∣∣R(|x− y|)−R(|xj − y|)
∣∣ds(y) +

1

2π

∫
Γ

∣∣ log(k|x− y|)− log(k|xj − y|)
∣∣ds(y))

)
≤ ‖ψ‖L∞(Γ)

(
|Γ|LR|x− xj |+

∫
Γ\Bεj (x)

∣∣ log |x− y| − log |xj − y|
∣∣ds(y) +

∫
Γ∩Bεj (x)

∣∣ log |x− y| − log |xj − y|
∣∣ds(y)

)
.

The first term clearly vanishes in the limit xj → x. Using that | log t− log s| ≤ |t−s|
min{t,s} for all t, s > 0 also the second term

vanishes in the same limit:∫
Γ\Bεj (x)

∣∣ log |x− y| − log |xj − y|
∣∣ds(y) ≤

∫
Γ\Bεj (x)

∣∣|x− y| − |xj − y|
∣∣

min{|x− y|, |xj − y|}
ds(y) ≤

2|Γ|
εj
|x− xj | = |Γ||x− xj |1/2.

Now assume that x belongs to a side of Γ (which was assumed to be a polygon) and that εj is smaller than the distance
between x and the closest vertex of Γ (which is true for sufficiently large j). Let tj ∈ (0, εj/2) be the distance between x
and the point of Γ closest to xj . Then the last integral term can be bounded as∫

Γ∩Bεj (x)

∣∣ log |x− y| − log |xj − y|
∣∣ds(y)

≤
∫ εj

−εj

∣∣ log |t|
∣∣+
∣∣ log |t− tj |

∣∣ dt
= 2εj | log εj − 1|+ (εj + tj)| log(εj + tj)− 1|+ (εj − tj)| log(εj − tj)− 1| ≤ Cεj | log εj |.

Γ
x

εj xjtj

(If x is instead a vertex of Γ one can proceed in a similar way treating separately the two segments of Γ∩Bεj (x).) From the
definition of εj , all three terms in the bound on |Sψ(xj) − Sψ(x)| converge to 0 for j → ∞, so limj→∞ Sψ(xj) = Sψ(x).
We have also shown that x 7→

∫
Γ Φk(x,y)ψ(y) ds(y) is a continuous function on Ω+ ∪ Γ (actually it is continuous on R2).

See [SS11, Thm. 3.3.5] for a more general proof.

https://dlmf.nist.gov/10.8.E2
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Figure 15: A log–log plot of the multipliers A` =
(̂Sv)`
v̂`

in the circular-harmonic expansion of the
single-layer operator S on the boundary of a circle. They decay proportionally to 1

` , demonstrating the
continuity of S : Hs(Γ)→ Hs+1(Γ). Each colour correspond to a wavenumber k. See Remark 5.1.

defined on Γ. Then, for x = (R cos θ,R sin θ) ∈ ∂BR,

(Sv)(x) =

∫
∂BR

Φ(x,y)v(y) ds(y) =
i

4
R

∫ 2π

0

H
(1)
0 (k|(R cos θ,R sin θ)− (R cosα,R sinα)|)

∑
`∈Z

v̂`e
i`α dα

=
i

4
R
∑
`∈Z

v̂`

∫ 2π

0

ei`αH
(1)
0

(
kR
√

(cosα− cos θ)2 + (sinα− sin θ)2
)

dα

=
i

4
R
∑
`∈Z

v̂`

∫ 2π

0

ei`αH
(1)
0

(
kR
√

2(1− cos(α− θ))
)

dα

=
i

4
R
∑
`∈Z

v̂`e
i`θ

∫ 2π

0

ei`αH
(1)
0

(
kR
√

2(1− cosα)
)

dα

⇒ (̂Sv)` = A`v̂`, A` :=
iR

4

∫ 2π

0

ei`αH
(1)
0

(
kR
√

2(1− cosα)
)

dα.

We say that S “diagonalises” in the Fourier basis: expanding the argument v in the ei`θ basis, the action of S
corresponds to a multiplication of each coefficient v̂` by a factor A` (exactly as when we multiply a diagonal
matrix and a vector). The “multiplier” A` is computed as an integral, whose integrand is singular at α = 0.
In Figure 15 we show the log–log plot of the factors A` for 0 ≤ ` ≤ 100, R = 1 and different values of k,
computed by approximating the integral with a quadrature formula. The important observation is that the
coefficients decay as A` ∼ `−1.

Recalling the definition of the fractional Sobolev norms (19) on the circle, this gives that ‖Sv‖Hs+1(∂BR) ≤
C ‖v‖Hs(∂BR) for all s ∈ R and all v ∈ Hs(Γ), or equivalently S : Hs(∂BR)→ Hs+1(∂BR). This bound can
be proved rigorously for all boundaries Γ and for a range of s that depends on the boundary regularity.

The continuity property S : H−
1
2 (Γ)→ H

1
2 (Γ) lets us write a variational form of the BIE (41). Recall

from §3.3.3 that H
1
2 (Γ) is the anti-dual of H−

1
2 (Γ). So we can seek ψ ∈ H− 1

2 (Γ) such that

A(ψ, ξ) := 〈Sψ, ξ〉
H

1
2 (Γ)×H−

1
2 (Γ)

= 〈gD, ξ〉
H

1
2 (Γ)×H−

1
2 (Γ)

=: F(ξ) ∀ξ ∈ H− 1
2 (Γ). (43)

A(·, ·) and F(·) are the sesquilinear and the antilinear form of the variational problem. When ξ ∈ L2(Γ)
the duality products 〈·, ·〉Γ in (43) can be written as integrals over Γ. Recall that when we deal with
BVPs for PDEs we obtain sesquilinear forms from integration by parts; with BIEs we simply multiply the
equation by a test function and integrate (using the duality product) over Γ.

Exercise 5.2: (Quasi-self-adjointness of S). Formula [CK2, (3.84)] for the singularity of Φk implies that
there is a constant C > 0 such that supx,y∈Γ |Φk(x,y)− 1

2π log 1
|x−y| | ≤ C.

• (Difficult!) Deduce that the function Γ→ R, x 7→ ‖Φk(x, ·)‖L2(Γ) is bounded.

You can use the definition of Lipschitz domain.
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• (Easier.) Show that the single-layer operator S is “quasi-self-adjoint” [CGLS12, p. 120], i.e. for ψ, φ ∈ L2(Γ)
it holds ∫

Γ

(Sψ)φds(y) =

∫
Γ

ψ(Sφ) ds(y).

Careful: to use Fubini theorem you need to verify that the integrand is integrable (L1) on a suitable Cartesian
product set.

• Show that S is not self-adjoint, i.e., in general,
∫

Γ
(Sψ) φ ds(y) 6=

∫
Γ
ψ (Sφ) ds(y).

5.2 Piecewise-constant BEM for the single-layer BIE
We have seen that if we were able to find a solution ψ to the BIE (41) then we would have a solution
u = Sψ of the EDP. In general we cannot solve the BIE analytically, thus we resort to a numerical method.

The boundary element method (BEM) consists of choosing an N -dimensional space VN ⊂ H−
1
2 (Γ)

and looking for a ψN ∈ VN that approximately solves the BIE (41). There are two ways of imposing the
BIE.
• Collocation-BEM. We choose N points x1, . . . ,xN on Γ and look for

ψN ∈ VN such that (SψN )(xj) = gD(xj), j = 1, . . . , N.

• Galerkin-BEM. We restrict the variational form (43) to the finite-dimensional space VN , as in (23).
In practice, all discrete functions we may want to consider belong to L2(Γ), so we can write the
Galerkin-BEM as: find ψN ∈ VN such that

A(ψN , ξN ) =

∫
Γ

(SψN )ξN ds =

∫
Γ

gDξN ds = F(ξN ) ∀ξN ∈ VN .

We recall that H−
1
2 (Γ) is a space larger than L2(Γ), so it accommodates discontinuous functions. This

makes the construction of the discrete space VN simpler. The simplest choice of VN is the following:
we partition the curve Γ in a mesh TN (Γ) of N (possibly curvilinear) segments K1, . . . ,KN ⊂ Γ (with⋃N
j=1Kj = Γ and Kj ∩ Kj′ = ∅ for j 6= j′) and choose VN to be the space of piecewise constant

functions on TN (Γ).
The obvious basis {ϕj}Nj=1 of VN is defined by ϕj(x) = 1 if x ∈ Kj and ϕj(x) = 0 if x ∈ Γ \Kj .

We expand the BEM solution in coordinates as ψN =
∑N
j=1 Ψjϕj , where Ψj = (Ψ)j is the jth element

of the vector Ψ ∈ Cn. So ψN (x) = Ψj if x ∈ Kj .
With this discrete space and basis, in the collocation-BEM we choose the collocation nodes xj such

that xj ∈ Kj for all j = 1, . . . , N and obtain the linear system AColΨ = FCol , where

ACol
j,m := (Sϕm)(xj) =

∫
Γ

Φk(xj ,y)ϕm(y) ds(y) =

∫
Km

Φk(xj ,y) ds(y), FCol
j := gD(xj). (44)

Indeed, by the linearity of S, if ψN is the collocation-BEM solution then its coefficient vector Ψ solves
AColΨ = FCol:

FCol
j = gD(xj) = (SψN )(xj) =

(
S

N∑
m=1

Ψmϕm

)
(xj) =

N∑
m=1

Ψm(Sϕm)(xj) = (AColΨ)j .

To be able to evaluate the collocation-BEM right-hand side vector FCol we need gD ∈ C0(Γ), which is
typically satisfied if the EDP comes from a scattering problem such as (32).

Similarly, if ψN is the Galerkin-BEM solution, its coefficient vector Ψ solves AGalΨ = FGal with

AGal
j,m : = A(ϕm, ϕj) = 〈Sϕm, ϕj〉Γ =

∫
Γ

(Sϕm)(x)ϕj(x) ds(x) =

∫
Γ

∫
Γ

Φk(x,y)ϕm(y)ϕj(x) ds(y) ds(x)

FGal
j : = F(ϕj) = 〈gD, ϕj〉Γ =

∫
Γ

gD(x)ϕj(x) ds(x). (45)
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Choosing piecewise-constant basis functions on the elements Kj , these expressions simplify to

AGal
j,m =

∫
Kj

∫
Km

Φk(x,y) ds(y) ds(x), FGal
j =

∫
Kj

gD(x) ds(x).

Multiplying each row of ACol and FCol by the length of the corresponding element, we see that the
collocation-BEM is a Galerkin-BEM with a simple 1-point quadrature. Formally, one can also think at
the collocation method as a Petrov–Galerkin method with delta functions as test functions, but this is
not mathematically correct in the H±

1
2 (Γ) framework because delta functions do not belong to H−

1
2 (Γ).

Exercise 5.3: (Testing against constants is taking means). Show that the Galerkin-BEM with piecewise-
constant functions is equivalent to impose that the integral averages of SψN and gD coincide on each element.

Both matrices ACol and AGal are dense: this is a major difference between the BEM and the finite
element method (FEM). The Galerkin matrix is also complex-symmetric, but not Hermitian.

This shortcoming of the BEM with respect to the FEM is compensated by a dimensional reduction:
to solve a 2D problem we only need to mesh a 1D object, the boundary Γ. Thus typically BEM requires
much fewer degrees of freedom (DOFs) than FEM for comparable problems and accuracies.

Another advantage of BEM is that it deals with a BVP posed on the unbounded domain Ω+ by
discretising only a bounded object, Γ. To treat the EDP with FEM one has to truncate Ω+ as in
Remark 4.18, introducing additional errors, [Ihl98, §3].

The collocation-BEM is simpler to implement than the Galerkin-BEM. However, in many situations the
choice of the collocation nodes adversely affects the performance of the method. To improve the numerical
stability of the collocation method, often one chooses M collocation nodes with M > N (oversampling)
and solves an overdetermined rectangular linear system in the least-squares sense. If the datum gD is
discontinuous (which is possible since H

1
2 (Γ) 6⊂ C0(Γ)), then the computation of FCol is not well-defined;

on the other hand, for typical scattering problems gD is continuous and piecewise smooth. Moreover, the
stability and convergence theory for the Galerkin-BEM is much more complete.

5.2.1 BEM and quadrature

From (44) and (45) we see that to compute each entry of the system matrix we need to compute an
integral of the fundamental solution: it is a single integral on a mesh element for the collocation-
BEM and a double integral on the Cartesian product of two elements for the Galerkin-BEM. To compute
each entry of the right-hand side vectors, in the collocation-BEM we only need to evaluate the boundary
datum gD while for the Galerkin-BEM we need an integral over an element.

All these integrals require accurate quadrature formulas: these are among the main difficulties in a
BEM implementation. In particular, for both matrices, the diagonal entries require the approxima-
tion of singular integrals, because of the (logarithmic) singularity of Φk(x,y) at x = y.

Let us assume that Ω− is a connected polygon and each mesh element is a straight segment.
For j = 1, . . . , N , the element Kj has endpoints pj and pj+1 and length hj := |pj+1 − pj | (of course
pN+1 = p1). The element is parametrised by Xj : (0, hj)→ Kj , Xj(s) := pj +sτ j , where τ j :=

pj+1−pj
|pj+1−pj |

is the unit tangent vector to Kj .
Recalling the definition of the fundamental solution (37), the entries of the BEM matrices and vectors

are then computed as integrals over intervals and rectangles:

ACol
j,m =

i

4

∫ hm

0

H
(1)
0 (k|pm + sτm − xj |) ds, FCol

j = gD(xj), FGal
j =

∫ hj

0

gD(pj + sτ j) ds,

AGal
j,m =

∫ hj

0

(∫ hm

0

Φk(pj + tτ j ,pm + sτm) ds

)
dt =

i

4

∫ hj

0

(∫ hm

0

H
(1)
0

(
k|pj − pm + tτ j − sτm|

)
ds

)
dt.

Each diagonal entry of the collocation-BEM matrix is a singular integral, as xj ∈ Kj for all j. A
simple recipe to compute ACol

j,j is to split the element in the two components of Kj \ {xj} and apply
Gauss quadrature on each side. To this purpose a Gauss–Legendre quadrature is a good choice, while
Gauss–Lobatto rules cannot be used as they involve the value of the integrand at the endpoints, where
the singularity is located. The obvious choice for the collocation nodes is to take the element midpoints:
xj = 1

2 (pj + pj+1).
The jth diagonal entry of the Galerkin-BEM matrix is a double integral on the square (0, hj)

2 = {0 <
s, t < hj}, whose integrand has a singularity along the diagonal s = t. One can use a quadrature formula
for triangles (e.g. based on Duffy transform) on each half of the square. Alternatively, splitting the square
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in four triangle, exploiting the symmetries, and using the isometric change of variables ξ = s−t√
2
, η = s+t√

2

(s = ξ+η√
2
, t = η−ξ√

2
), we obtain

AGal
j,j =

∫ hj

0

∫ hj

0

i

4
H

(1)
0

(
k|s− t|

)
dsdt = 4

∫ hj√
2

0

(∫ hj√
2

ξ

i

4
H

(1)
0 (
√

2kξ) dη

)
dξ

=

∫ hj√
2

0

i
( hj√

2
− ξ
)
H

(1)
0 (
√

2kξ) dξ
(hjζ=

√
2ξ)

=
ih2
j

2

∫ 1

0

(1− ζ)H
(1)
0 (khjζ) dζ.

s

t

ξ

η
hj

hj

This is a one-dimensional integral with a weak singularity at the endpoint ζ = 0. Its approximation with
a Gauss–Legendre quadrature rule gives good results.

If all elements are identical, e.g. straight segments of the same length, then also the diagonal terms are
identical and they need to be computed only once: hj = hj′ ⇒ Aj,j = Aj′,j′ .

In the Galerkin-BEM, also when two element share an endpoint we have a singularity. For example, if
the segments Kj and Kj+1 are aligned (τ j = τ j+1), we have

AGal
j,j+1 =

∫ hj

0

(∫ hj+1

0

i

4
H

(1)
0

(
k|hj − s+ t|

)
dt

)
ds.

s
hj

t
hj+1

integrand
singularities

t = s− hj

This is a double integral on the rectangle {0 < s < hj , 0 < t < hj+1} with a logarithmic singularity at
the vertex s = hj , t = 0. Again, since the since the weak singularity is at the boundary of the domain of
integration, Gauss rules can be used.

Exercise 5.4: (BEM on non-polygonal Γ). Write the entries of the collocation- and Galerkin-BEM when Ω−
is not a polygon but a general Lipschitz domain and its boundary is defined by a parametrisation X : [0, L]→ Γ.

Remark 5.5: (Singularity extraction quadrature). A typical technique to compute the singular integrals is
the “singularity extraction”. The small-argument asymptotics of the Hankel function (H(1)

0 (z) ∼ 2i
π log z for

z ↘ 0) give Φk(x,y) = − 1
2π log |x− y|+R(x,y) for a reminder R of class C1. Inserting this in the expression

of ACol/Gal
j,j one can compute analytically the terms coming from the log and use a standard quadrature for the

remainder R.

Once we have assembled and solved the BEM linear system, we have an approximation ψN ∈ VN of the
solution ψ ∈ H− 1

2 (Γ) of the BIE (41). However to approximate the solution of the EDP (31)/SSSP (32),
we need to approximate u in the unbounded domain Ω+. Recalling the representation formula u = Sψ
(42), the BEM approximation of u is

uN (x) := (SψN )(x) =

∫
Γ

Φk(x,y)ψN (y) ds(y) =

N∑
j=1

Ψj

∫
Kj

Φk(x,y) ds(y) x ∈ Ω+.

Again, each term in this sum is an integral that needs to be approximated with a quadrature formula.
For all x ∈ Ω+ the integrand is C∞. However, if x lies very close to Γ the accurate evaluation of uN (x)
requires a careful use of the quadrature as the integral is near-singular.

Remark 5.6: (Resolution of oscillations). Another difficulty is the oscillatory behaviour of both Φk and
the solution for large values of the wavenumber k.

A first issue is that to approximate the solution one needs to use more DOFs for larger values of k. See
Figure 16 for a simple visual justification of this statement. A typical recipe for “engineering accuracy” (a
few percent relative errors) is to use at least 10 DOFs per wavelength λ. This means that the length of
each element should not exceed λ

10 = π
5k . (Sometimes the rule of thumb is to use 6 DOFs per wavelength,

corresponding roughly to khj ≤ 1, for 10%/15% error.) This implies that the number of DOFs must grow like
N = O(k) for increasing k: high-frequency problem are computationally very expensive. On the other hand, a
2D FEM needs at least O(k2) DOFs as the wavelength has to be resolved in two dimensions, which is a much
stronger requirement; the difficulties encountered by FEM in solving high-frequency problems are described e.g.
in [Ihl98].

The fundamental solution oscillates with wavelength close to λ = 2π
k . Thus, even for elements Kj , Km

far from each other, in the assembly of the matrices AC/G one has to use a sufficiently accurate quadrature
formula to take into account the oscillations.
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Figure 16: The piecewise-constant (top) and the continuous piecewise-linear (bottom) interpolants of
the Bessel function J0(kx) for different wavenumbers k = 1 (left) and k = 10 (right). In all examples,
the domain (0, 5) is divided in a uniform mesh made of 10 segments. It is clear that at low frequencies
(k = 1) the interpolant is able to describe the shape of the function, while for high frequencies (k = 10)
it completely misses it. This tells us that when solving problems at higher frequencies with the BEM
we need to refine the mesh (at least) proportionally to k, see Remark 5.6.

Obvious improvements of the piecewise-constant BEM use piecewise-polynomial discrete spaces of
higher order. They can be discontinuous, or C0(Γ) or of higher continuity (at least away from corners of
Γ) such as splines. The choice of basis functions, collocation points and quadrature rules is in general non-
trivial. When Γ is smooth one can use also global functions such as mapped trigonometric functions, in
the spirit of spectral methods. Close to the corners of Γ, if it is not smooth, the solution has a singularity:
to approximate it efficiently one can use a graded mesh, i.e. a mesh whose elements are smaller the closer
they are to a corner.

5.2.2 BEM coding project

Implement the collocation-BEM method for the scattering of a plane wave by a polygon Ω−.
Use a discrete space VN of piecewise-constant functions. Choose a mesh such that the elements on a
given side of Γ have equal length. Plot the scattered field uN and the total field on a portion of Ω+.
You can use the quadrature routine provided.

A possible suggestion for the main steps in the code:
1. Prepare the geometric data structure. Given the vertices of the polygon, decide the number of elements

on each side, and generate (for each element Kj) the endpoint pj , the length hj , the tangent vector
τ j , and the collocation point xj , chosen as the element midpoint. Choose elements with roughly the
same size.

(In Matlab it might be convenient to treat points and vectors in the plane as complex numbers with
the usual identification C ∼ R2; then the abs function allows for immediate computation of distances.)

2. Assemble the matrix ACol (being careful with the quadrature) and the right-hand side FCol.

You can use the Gauss–Legendre quadrature routine provided.

3. Solve the linear system.

4. Evaluate the near-field uN on a grid of points in 2D using the representation formula and plot it.

To generate the grid of points for the plot use meshgrid. To plot the field you can use one of the
Matlab commands pcolor (used for Figure 12), surf, mesh or contour. To hide the grid points that
lie inside Ω− you can locate them with inpolygon and set them to 0 or NaN (or use the command
patch).
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Plot the total field uTot
N = uN + uInc: if it doesn’t vanish approaching Γ then the code is not correct.

Plenty of interesting extensions are possible:
• Choose as incident wave uInc a fundamental solution centred in some x0 ∈ Ω+. (The total field

cannot be plotted close to x0.) You can also try more exotic incident waves, such as Herglotz functions.

• Implement the problem of the scattering by multiple polygons, i.e. with Ω− made of several compo-
nents. Here Matlab’s “cell arrays” are useful to store vectors with different lengths in a single variable,
e.g., the coordinates of the vertices of polygons with different numbers of sides.

• Implement the Galerkin-BEM for the same problem, on the same mesh. The only difference is in the
assembly of the matrix and the right-hand side. Compare the solutions obtained with the two versions
of the scheme.

• Generate a time-harmonic animation of the scattered and total fields.

You can generate a .gif file using the script provided or export a video in various formats such as .avi.

• Implement the singularity-extraction quadrature of Remark 5.5.

• Use meshes that are locally refined towards the corners of Γ.

• Study the dependence of the results on the parameters. You can see how the plots and the norms of
the solution vary when you change the number N of DOFs, the wavenumber k, the product kh, the
quality of the quadrature, the shape of Ω−. . .

You can approximate the error committed by the scheme e.g. as ‖ψN − ψref‖L2(Γ) or ‖uN − uref‖L2(Ω∗)

where Ω∗ is (a subset of) the portion of Ω+ where you plot the near-field and ψref/uref are the reference
solutions obtained with a very fine mesh. You can then plot the convergence of the error against N
or study its dependence on the other parameters. For instance: for increasing k, if the mesh is refined
keeping kh constant, how does the error behave?

Another way to estimate the accuracy of the numerical solution is provided by Remark 5.26.

How does the condition number depends on N?

• Test the code (for a square scatterer) by computing the near-field error against the reference solution
provided.19 This was computed with MPSpack (https://github.com/ahbarnett/mpspack).

• Estimate and plot the Helmholtz Poynting vector S(uScat) defined in Exercise 2.12 (see Figure 13).

The Matlab command quiver may help. Approximate the gradient ∇uScat with finite differences.

• Extend the code to curvilinear polygons and/or smooth scatterers.

The use of the arclength parametrisation of the boundary makes the implementation simpler. Make
sure that the quadrature points lie on the curve Γ.

You can test your code for a circular obstacle against the analytic solution obtained in Exercise 4.14.

• Implement a higher-order version of the BEM with (C0(Γ)) piecewise-polynomial basis functions of
degree p > 0.

• Implement an isogeometric discretisation of the BIE with splines/NURBS.

• Implement a spectral BEM on a smooth curvilinear scatterer.

Choose a smooth scatterer defined by a parametrisation X : [0, 2π] → Γ. E.g. a shape often used as
example for scattering problems is the kite X(t) = (cos t+0.65(cos 2t−1), 1.5 sin t), [CK2, Fig. 3.1]. For
L ∈ N and N = 2L+ 1, choose as basis functions the mapped complex exponentials ϕ`(x) = ei`X−1(x),
−L ≤ ` ≤ L, or the corresponding trigonometric functions sin(`X−1(x)), cos(`X−1(x)).

• . . .
19Load the .mat file provided. The vectors gx, gy contain the coordinates of the nodes of a Cartesian grid in the square

(−1.5, 1.5)2. The matrix ui contains the values of an incoming plane wave with direction d = 1√
2

(1,−1) and wavenumber
k = 20, in the the grid points exterior to the unit circle, and 0 otherwise. The entries of the matrix u are: the values of the
scattered field u = uScat in the grid points exterior to the unit circle, the values of the total field uTot in the points interior
to the unit circle but exterior to the scatterer (−0.5, 0.5)2, and not-a-number nan values inside the scatterer. You can plot
the total field with the commands
load MPSpackBenchmarkSquareScatt.mat; pcolor(gx,gy,real(ui+u)); shading flat; axis square;

https://github.com/ahbarnett/mpspack
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Exercise 5.7: (Build your own quasi-resonance). When a plane wave impinges on a scatterer Ω− with a
simple shape, for example convex or star-shaped, it is possible to prove that some norm of the scattered field
is stable (does not grow) for k → ∞. On the contrary, if Ω− has a cavity (part of Ω+, which is connected)
that can “trap” a wave, the scattered field in the cavity can be extremely large.

Using your BEM code, try to find a polygonal scatterer that traps an incoming plane wave. Recall the
discussion of Dirichlet eigenfunctions (which exist only for bounded regions) in §4.2. With a simple polygon
with 12 sides it is not difficult to obtain a scattered field with magnitude |uScat| > 30 in some region (with∥∥uInc

∥∥
L∞(R2)

= 1).
Careful: for a given domain only some wavenumbers will do. The computations in §4.2 might help you

choosing the right k for your trapping domain.

Exercise 5.8: (BEM vs FEM). Recall the approximation of the SSSP/EDP described in Remark 4.18 and
Exercise 5.13: Ω+ is truncated to ΩR = BR \ Ω− and the homogeneous impedance boundary condition
∂nu

Scat − ikuScat = 0 is imposed on ∂BR.
Use the 2D FEM code you have implemented in the finite element course to discretise this BVP. Careful:

FEM basis functions (e.g. tent functions) are real, but the right-hand side vector and the coefficients of the
discrete solution are complex. Compare the results against those obtained with BEM.

Extra: Instead of the impedance condition, impose the DtN map (34) using circular harmonics. This is
harder and involves the assembly of a dense block in the matrix.

Remark 5.9: (Fast Matlab code). Often, most of the computational time in a simple BEM code is spent
evaluating the fundamental solution for the assembly of ACol and the evaluation of uN . You can check how
much time is spent on each part of your Matlab code using the profile command, for instance

1 profile on; MyFunctionDoingWhatever; profile viewer

A simple implementation of the piecewise-constant collocation-BEM assembles the matrix ACol using a triple
loop: over rows, columns and quadrature points. This requires N2q calls to the function besselh, where q is
the number of quadrature nodes per element (ignoring the different treatment needed for the diagonal terms).
However, we know that Matlab is most efficient if we reduce as much as possible the use of nested loops and
apply functions such as besselh to few vectors (as opposed to many scalars). You can observe this with

1 n = 5000; A=rand(n);
2 B=ones(n)*1i; C=ones(n)*1i; % Initialise complex matrices
3 tic; B=besselh(0,1,A); toc
4 tic; for j=1:n; for jj=1:n; C(j,jj)=besselh(0,1,A(j,jj)); end; end; toc

Keep this in mind to write a fast code: avoid loops and minimise the number of calls to the fundamental
solution.

5.3 Green’s integral representation
The Green’s integral representation, or Green’s third identity, is an important tool to derive new BIEs
and BEMs, and to understand the properties of the corresponding BVPs. It extends Green’s second
identity (21). We write it and prove it for bounded and unbounded Lipschitz domains.

We keep using the notation introduced in §4.3. In particular, we recall that the unit normal n on the
boundary of the bounded domain Ω− is defined to point outwards, into the complement Ω+; this enters
the definition of the Neumann trace ∂n. Since the fundamental solution Φk depends on two variables, we
write ∂Φk(x,y)

∂n(x) and ∂Φk(x,y)
∂n(y) to make clear which is the variable with respect to which we derive and take

the trace. We recall that when we write
∫

Γ
ϕψ ds for ϕ ∈ H− 1

2 (∂Ω) and ψ ∈ H 1
2 (∂Ω) (or vice versa) we

mean the duality product 〈ϕ,ψ〉Γ.

Theorem 5.10: (Green’s representation in Ω−). Let Ω− be a bounded Lipschitz domain and u ∈
H1(Ω−; ∆) ∩ C2(Ω−) be a Helmholtz solution in Ω−. Then:∫

Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
u(x) if x ∈ Ω−,

0 if x ∈ Ω+.
(46)

Proof. If x ∈ Ω+, then both u and Φk are Helmholtz solution in Ω− thus the volume integral in Green’s
second identity (21) vanishes and what is left is (46).
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If x ∈ Ω− we take ε > 0 such that the ball Bε(x) := {z ∈ R2 : |z − x| < ε} ⊂ Ω−. Applying again
Green’s second identity in Ω− \Bε(x) we have∫

Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) = −

∫
∂Bε(x)

(
∂nu(y)Φk(x,y)− γu(y)

∂Φk(x,y)

∂n(y)

)
ds(y),

where n points into the ball (this is why we have a minus sign in front of∫
∂Bε(x)

). We now want to take the limit for ε↘ 0 of the right-hand side,
and see that the first term vanish, while the second converges to u(x). The
advantage of using a ball centred at x, is that on its boundary the value
of Φk(x, ·) and its normal derivative are constant.

n n

Ω−

Γ

x

ε

To this purpose, we need some properties of Hankel functions: the formula for the first derivative of
H

(1)
0 and the asymptotics for small arguments (from [DLMF, §10.7]):

∂

∂z
H

(1)
0 (z) = −H(1)

1 (z), H
(1)
0 (z) ∼ 2i

π
log z, H

(1)
` (z) ∼ − i

π
(`−1)!

2`

z`
, ` ∈ N, z → 0. (47)

(Here a(z) ∼ b(z) for z → 0 means that limz↘0
a(z)
b(z) = 1.)

We take the limit limε→0 of the first term using the expression of the fundamental solution, the
divergence theorem, div∇ = ∆, ∆u = −k2u, the asymptotics (47), the mean value theorem (in the form
lim
ε→0

1
πε2

∫
Bε(x)

f(y) dy = f(x)), the boundedness of u in x:

−
∫
∂Bε(x)

∂nu(y)Φk(x,y) ds(y) = − i

4
H

(1)
0 (kε)

∫
∂Bε(x)

∂nu(y) ds(y)

=
i

4
H

(1)
0 (kε)

∫
Bε(x)

∆u(y) dy

= − i

4
H

(1)
0 (kε)k2

∫
Bε(x)

u(y) dy ∼ − i

4

(2i

π
log kε

)
k2πε2u(x)

ε↘0−−−→ 0.

Using the expression of the radial derivative of Φk, the asymptotics (47), the mean value theorem
(lim
ε→0

1
2πε

∫
∂Bε(x)

f(y) ds(y) = f(x)) we get

∫
∂Bε(x)

u(y)
∂Φk(x,y)

∂n(y)
ds(y) = k

i

4
H

(1)
1 (kε)

∫
∂Bε(x)

u(y) ds(y)

∼ k i

4

(−2i

πkε

)∫
∂Bε(x)

u(y) ds(y) ∼
( 1

2πε

)
2πεu(x) = u(x).

(The first of the two limits limε→0

∫
∂Bε(x)

. . . vanishes, while the second one is non-zero: this is because
the singularity of the first derivative of the fundamental solution Φk is stronger than that of Φk itself, so
it compensates the infinitesimal length of the circle on which it is integrated.)

Green’s representation formula allows to compute any Helmholtz solution from its two traces.
Representation (46) also explains why we chose the coefficient i

4 in the definition (37) of Φk: it allows
to write a simple Green’s representation.

From Green’s representation it follows immediately that:

Corollary 5.11: (At least one trace is non-zero). If u is a Helmholtz solution in Ω− and γ−u = ∂−n u = 0
then u = 0.
In particular, u 6= 0 is not simultaneously Dirichlet and Neumann eigenfunction in Ω− for the Laplacian.

We have seen at the end of §4.2 that the solution of the impedance BVP (27) in Ω− satisfies a Fredholm-
type variational problem. We have also seen that the solution u0 of the homogeneous impedance BVP
has zero traces: γ−u0 = ∂−n u0 = 0. From Green’s representation (46), u0 = 0, so the operator associated
to the sesquilinear form AI(·, ·) is injective. Since the operator is Fredholm, by Theorem 3.12 it is also
invertible and the following corollary holds.

Corollary 5.12: (Well-posedness of interior impedance BVP). The impedance BVP (27) (equivalently,
(28)) in Ω− is well-posed.

https://dlmf.nist.gov/10.7
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The Fredholm alternative implies that the solution of the impedance BVP (27) exists and is unique,
and also that its H1(Ω−) norm is controlled by the norm of the data (f and gI). However, the bounding
constant is not explicit as in the situations where we can use Lax–Milgram theorem.

Exercise 5.13: (Truncated BVP). Let ΩR = BR \ Ω−, where BR is an open ball containing Ω−. Write a
truncation of the EDP (31) to ΩR, as described in Remark 4.18 imposing impedance boundary conditions on
∂BR and sound-soft conditions on Γ. Show that the BVP obtained is well-posed.

Remark 5.14: (Green’s representation with volume term). If u in (46) were not Helmholtz solution we
would need to add to the left-hand side of Green’s representation the volume integral term −

∫
Ω−

(
∆u(y) +

k2u(y)
)
Φk(x,y) dy. When x ∈ Ω− the integrand is weakly singular, see (47), and the integral is well-defined.

Remark 5.15: (Green’s representation in 3D). In the 3-dimensional case all the arguments are similar. The
fundamental solution has the simpler expression Φk(x,y) = eik|x−y|

4π|x−y| , which does not involve Bessel and Hankel
function, so checking the limits for ε↘ 0 is simpler.

To write a Green’s representation formula for unbounded domains,
we denote by BR the ball of radius R > 0 centred at 0 and fix n = x

r
on ∂BR. We work in the bounded region BR ∩ Ω+, for sufficiently
large R and use Sommerfeld condition to take the limit R→∞. The
unit normal n points into BR ∩Ω+ on the inner boundary Γ and out
of BR ∩ Ω+ on the outer boundary ∂BR.

Γ
Ω−

BR ∩ Ω+

∂BR

n

n

Lemma 5.16: (Properties of radiating solutions). Let Ω− be a bounded Lipschitz domain, Γ = ∂Ω−,
Ω+ = R2 \ Ω−, and u,w ∈ H1

loc(Ω+; ∆) ∩ C2(Ω+) be two radiating Helmholtz solutions in Ω+. Then:

lim
R→∞

∫
∂BR

|u|2 ds <∞, =
∫

Γ

∂nu γuds ≥ 0 lim
R→∞

∫
∂BR

(∂nu w − u∂nw) ds = 0. (48)

Proof. We first prove the boundedness of the limit of ‖u‖L2(∂BR). The imaginary part of Green’s first
identity (20) with w = u in BR ∩ Ω+ gives

=
∫

Γ

∂nu γuds = =
∫
∂BR

∂nu γuds+ =
∫
BR∩Ω+

(k2|u|2 − |∇u|2) dx︸ ︷︷ ︸
=0, imaginary part of real value

=
1

2k

∫
∂BR

(
k2|u|2 + |∂nu|2 − |∂nu− iku|2

)
ds,

where we have used the identity |a− ib|2 = |a|2 + |b|2 − 2<{a ib} = |a|2 + |b|2 − 2={ab}, which holds for
all a, b ∈ C, applied to a = ∂nu, b = ku. Taking the limit for R→∞, the term

∫
∂BR
|∂nu− iku|2 ds→ 0,

by the Sommerfeld condition (30). The left-hand side is independent of R, thus

lim
R→∞

1

2k

(
k2 ‖u‖2L2(∂BR) + ‖∂nu‖2L2(∂BR)

)
= =

∫
Γ

∂nu γuds <∞.

Since the norms are non-negative and the limit is finite, each of them is bounded, which is the desired
inequality. In particular u = O(r−1/2) for r → ∞. Moreover the left-hand side is non-negative, so also
the second inequality is proved.

The Sommerfeld condition, together with u,w = O(r−1/2), gives the identity involving w:∫
∂BR

(∂nu w − w∂nu) ds =

∫
∂BR

((
iku+ o(R−1/2)

)
w − u

(
ikw + o(R−1/2)

))
ds

=

∫
∂BR

(
o(R−1/2)O(R−1/2)−O(R−1/2)o(R−1/2)

)
ds =

∫
∂BR

o(R−1) ds
R→∞−−−−→ 0.
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Recall that we have already seen in Theorem 4.22 (Rellich’s lemma) a stronger version of the second
inequality in (48): if this integral is 0 then u = 0 (see the first formula in the proof to relate the integrals
on Γ and on ∂BR).

The Sommerfeld radiation condition can be extended to problems with complex wavenumbers with
=k ≥ 0, Lemma 5.16 holds also in this case, see [CK1, Thm. 3.3].

Theorem 5.17: (Green’s representation in Ω+). Let Ω− be a bounded Lipschitz domain, Γ = ∂Ω−,
Ω+ = R2 \ Ω−, and u ∈ H1

loc(Ω+; ∆) ∩ C2(Ω+) be a radiating Helmholtz solution in Ω+. Then:

−
∫

Γ

(
∂+
n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
0 if x ∈ Ω−,

u(x) if x ∈ Ω+.
(49)

Proof. Let R > 0 be the radius of a ball such that Γ ⊂ BR and, if x ∈ Ω+ also x ∈ BR. Then Green’s
representation (46) applied in Ω+ ∩BR gives

(∫
∂BR

−
∫

Γ

)(
∂+
n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
0 if x ∈ Ω−,

u(x) if x ∈ Ω+.

Taking the limit for R→∞, the integral over ∂BR vanishes by the identity in (48) and we conclude.

Corollary 5.18: (There are no entire radiating solutions). Let u+ ∈ H1
loc(Ω+; ∆) be a radiating

Helmholtz solution and u− ∈ H1(Ω−; ∆) a Helmholtz solution. If they have the same traces on Γ, i.e.
γ+u+ = γ−u− and ∂+

n u+ = ∂−n u−, then u+ = 0 and u− = 0.
In particular, the only radiating Helmholtz solution in the whole of R2 is u = 0.

In this corollary, the assumption that the solution is radiating is necessary: plane waves and smooth
Fourier–Bessel functions are Helmholtz solutions in R2, but not radiating. The radiating Fourier–Hankel
functions are not defined in the whole of R2 as they are singular at the origin. Intuitively, the corollary
says that all radiating solutions “go towards infinity” and they need to have a source somewhere; on the
other hand, plane waves are not radiating and have “a source at infinity”.

We have evaluated the integral in Green’s representation in x ∈ Ω−∪Ω+ = R2 \Γ. What about x ∈ Γ?
We extend Green’s representation (46)/(49) to this case.

For x ∈ Γ define
σ(x) := lim

ε→0

1

2πε

∫
y∈Ω−,|y−x|=ε

ds.

If Γ is C1 in x then σ(x) = 1
2 ; if Γ forms an angle with opening α at x then σ(x) = α

2π . By Rademacher
theorem (Lipschitz functions are differentiable a.e.), for a Lipschitz Γ, σ = 1

2 almost everywhere on Γ.

Lemma 5.19: (Green’s representation on Γ). Let u ∈ H1(Ω−; ∆) ∩ C0(Ω−) be a Helmholtz solution.
Then ∫

Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) = σ(x)u(x) x ∈ Γ. (50)

If u ∈ H1
loc(Ω+; ∆) ∩ C0(Ω+) is a radiating Helmholtz solution then

−
∫

Γ

(
∂+
n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

(
1− σ(x)

)
u(x) x ∈ Γ. (51)

Proof. We prove the first identity, the second one is analogous.
For simplicity we denote the integrand with the shorthand

F := ∂−n u(y)Φk(x,y)− γ−u(y)
∂Φk(x,y)

∂n(y)
.
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For x ∈ Γ, we apply Green’s second identity on Ω− \ Bε(x) (see figure). Its
boundary is decomposed in Γ\Bε(x) and ∂Bε(x)∩Ω−; on both parts we choose
n pointing outwards:

0 =

∫
∂(Ω−\Bε(x))

F ds(y) =

∫
Γ\Bε(x)

Fds(y) +

∫
∂Bε(x)∩Ω−

F ds(y).

n

Ω−
Γ

x
ε

The limit for ε → 0 of the integral over Γ \ Bε(x) is exactly the integral of the same integrand over the
whole Γ, the left-hand side of the assertion (understood as a Cauchy principal value):∫

Γ

F ds(y) = lim
ε→0

∫
Γ\Bε(x)

F ds(y) = − lim
ε→0

∫
∂Bε(x)∩Ω−

F ds(y).

Proceeding as in the proof of Theorem 5.10 we see that limε→0

∫
∂Bε(x)∩Ω−

∂−n u(y)Φk(x,y) ds(y) = 0,
while the last term gives:∫

∂Bε(x)∩Ω−

γ−u(y)
∂Φk(x,y)

∂n(y)
ds(y) = k

i

4
H

(1)
1 (kε)

∫
∂Bε(x)∩Ω−

u(y) ds(y)

∼k i

4

(−2i

πkε

)∫
∂Bε(x)∩Ω−

u(y) ds(y) ∼
( 1

2πε

)
2πσ(x)εu(x) = σ(x)u(x).

We summarise Green’s representations (46), (49), (50) and (51) as follows. With u as in Lemma 5.19:

∆u+ k2u = 0 in Ω− :∫
Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =


u(x) if x ∈ Ω−,

σ(x)u(x) if x ∈ Γ,

0 if x ∈ Ω+,

∆u+ k2u = 0 in Ω+, radiating:

−
∫

Γ

(
∂+
n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =


0 if x ∈ Ω−,(
1− σ(x)

)
u(x) if x ∈ Γ,

u(x) if x ∈ Ω+.

Exercise 5.20: (Fundamental solution and delta function). Show that the fundamental solution deserves
its name: for any y ∈ R2, it satisfies −∆Φk(·,y) − k2Φk(·,y) = δy in distributional sense, where δy is the
Dirac delta at y.

This means that
∫
R2 Φk(x,y)

(
∆ρ(x) + k2ρ(x)

)
dx = −ρ(y) for all ρ ∈ D(R2) and y ∈ R2.

Hint: integrate by parts in R2 \ Bε(y) and take the limit for ε → 0 using the technique of the proof of
Theorem 5.10.

Show that for f ∈ D(R2), u(y) :=
∫
R2 Φk(x,y)f(x) dx is solution of the inhomogeneous Helmholtz

equation −∆u− k2u = f and is radiating.
The operator V : L2(D) → H1

loc(R2), V f(y) :=
∫
R2 Φk(x,y)f(x) dx, for a bounded D ⊂ R2, is called

“volume potential” and is used to construct the “volume integral equations”; see [CK2, Ch. 8].

Exercise 5.21: (Discrete-valued field). Find a field u ∈ C∞(R2) and a bounded, Lipschitz, connected
domain Ω− such that the function Z : x 7→

∣∣∣∫Γ (∂−n u(y)Φk(x,y)− γ−u(y)∂Φk(x,y)
∂n(y)

)
ds(y)

∣∣∣ takes exactly the

values 0, 1, 2, 4 for x ∈ R2.
Despite the function Z is defined by the same formula for all x ∈ R2, it takes exactly 4 different values.

5.4 Double-layer potential and operator
Green’s representation formulas (46) and (49) mean that all Helmholtz solutions in Ω− and all radiating
Helmholtz solutions in Ω+ can be written as boundary integrals over Γ. The integral of ∂nu Φk is the
single-layer potential Sψ for ψ = ∂±n u we already know from (38). Now we are evaluating (Sψ)(x) for
both x ∈ Ω+ and x ∈ Ω−, so we are extending the definition of the single-layer potential (38) to all points
in the complement of Γ:

(Sψ)(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Ω+ ∪ Ω−.
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In particular, for any ψ ∈ H− 1
2 (Γ), Sψ is a Helmholtz solution both in Ω− and Ω+ and is radiating. With

the same reasoning as in (40) (see footnote 18), the Dirichlet traces from both sides of Γ coincide:

γ+(Sψ) = γ−(Sψ) = Sψ.

In particular, if ψ ∈ C0(Γ), then Sψ ∈ C0(R2) but Sψ /∈ C1(R2) because, as we will see, the normal
derivative of Sψ is discontinuous across Γ.

The second term in (46) and (49) is a new potential:

(Dψ)(x) :=

∫
Γ

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) x ∈ Ω− ∪ Ω+. (52)

This is called acoustic double-layer potential.20 For a function ψ on Γ, sufficiently smooth, Sψ is a
smooth Helmholtz solution in both Ω− and Ω+, and satisfies the radiation condition. It can be proved that
it is continuous as mapping D : H

1
2 (Γ)→ H1

loc(Ω−∪Ω+), [CGLS12, Thm. 2.15] (here we need the density
to be in H

1
2 (Γ), while for the single-layer potential H−

1
2 (Γ) was enough, this is because the singularity of

∇Φk is stronger than that of Φk).
Then Green’s representation can be written as:

if u is Helmholtz solution in Ω− : u = S∂−n u−Dγ−u in Ω−,

if u is radiating Helmholtz solution in Ω+ : u = −S∂+
n u+Dγ+u in Ω+.

(53)

This means that any radiating Helmholtz solution is known once we know the “Cauchy data” γu and ∂nu,
i.e. its Dirichlet and Neumann traces.

As we did for the single-layer, we can define the double-layer operator:

(Dψ)(x) :=

∫
Γ

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) x ∈ Γ. (54)

If Γ is of class C2 and ψ ∈ C0(Γ), then Dψ is well-defined as a standard (weakly singular) integral and
Sψ ∈ C0(Γ). On the other hand, if Γ is only Lipschitz and ψ ∈ L2(Γ), then Dψ must be understood as
Cauchy principal value:

(Dψ)(x) = lim
ε→0

∫
Γ∩{y:|y−x|>ε}

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) a.e. x ∈ Γ.

Then Dψ ∈ L2(Γ).

Exercise 5.22: (Double-layer operator on straight segments). Assume that Γ∗ ⊂ Γ is a straight segment
and that ψ ∈ C0(Γ) is supported in Γ∗. Show that (Dψ)(x) = 0 for all for all x ∈ Γ∗.

Hint: you do not need the precise value of Φk but only that it depends only on |x− y|.

We have seen in (40) that S = γS. One might expect that D = γD, but this is not the case.
The assertions of Lemma 5.19, Green’s representation on the boundary, can be written in terms of

layer operators as (compare against (53))

S∂−n u−Dγ−u = σγ−u, Dγ+u− S∂+
n u = (1− σ)γ+u. (55)

Now let u be a Helmholtz solution in Ω− and denote ψ := γ−u ∈ H 1
2 (Γ). We have

ψ = γ−u

Green repr.
(46)
= γ−S∂−n u− γ−Dψ

single-layer
trace (40)

= S∂−n u− γ−Dψ and σψ
(55)
= S∂−n u−Dψ

Taking the difference between these two equations we have the Dirichlet trace formula for the double-
layer potential:

γ−Dψ = Dψ − (1− σ)ψ, γ+Dψ = Dψ + σψ. (56)

20The double-layer potential has this name because it can be thought as the acoustic potential generated by two “sheets” of
charges with opposite signs, parallel to Γ, in the limit when the distance between the sheets decreases to 0 (from ∂Φk(x,y)

∂n(y)
=

limδ→0
1
2δ

(Φk(x,y + δn)− Φk(x,y − δn)). In electrostatics (Laplace equation) this would be a layer of dipoles.
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The second of these equations is obtained similarly using (49) in place of (46) and (51) in place of (50).
Recall that σ = 1

2 in all smooth points, so (56) reads almost everywhere as

γ±Dψ = Dψ ± 1

2
ψ, or, in operator form, γ±D = D ± 1

2
I,

where I is the identity operator. All these formulas tell us that the Dirichlet trace of D is not simply D
but a correction term is needed, due to the singular behaviour of ∂Φk

∂n . Taking the difference between the
two equations in (56), the correction terms ± 1

2ψ give the jump relation:

[[γDψ]] := γ+Dψ − γ−Dψ = ψ.

Given a ψ on the boundary Γ, the double-layer potential Dψ is a radiating Helmholtz solution in the
complement of Γ, whose jump on Γ is ψ itself.

For simplicity, in the following we write 1
2 instead of σ and 1 − σ, with the implicit convention that

equalities on Γ hold almost everywhere (everywhere except at corners).

5.5 Neumann traces of the potentials: two more BIOs and jump
relations

In the previous section we have learned how to construct fields in Ω−∪Ω+ from distributions defined on Γ:

∀ψ ∈ H− 1
2 (Γ), ∀ϕ ∈ H 1

2 (Γ), Sψ, Dϕ ∈ H1(Ω−; ∆)×H1
loc(Ω+; ∆) (57)

are radiating Helmholtz solution in the complement of the boundary Γ. Moreover, the Dirichlet traces of
Sψ coincide: γ+Sψ = γ−Sψ, so Sψ ∈ H1

loc(R2; ∆), while Dϕ is discontinuous on Γ, (56).
We now want to look at the Neumann traces of Sψ, Dϕ. To this purpose, we need to introduce two more

BIOs (the last ones!): the adjoint double-layer operator D′ and the hypersingular operator H:

(D′ϕ)(x) :=

∫
Γ

∂Φk(x,y)

∂n(x)
ϕ(y) ds(y), (Hϕ)(x) :=

∂

∂n(x)

∫
Γ

∂Φk(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ Γ. (58)

Note thatD′ differs fromD only in that the normal derivation is taken with respect to a different variable of
Φk. If Γ is not C2 or ϕ /∈ C0(Γ), the adjoint double-layer operator has to be understood as a principal value
integral, in the same way as D. Its name and notation are due to the identity

∫
Γ
(Dϕ)ψ ds =

∫
Γ
ϕ(D′ψ) ds,

valid for all ϕ,ψ ∈ L2(Γ), which can be proved using Fubini theorem and with some complications due to
the singularity of the integrand, [CGLS12, eq. (2.37)].

The hypersingular operator is more complicated: it has to be understood as a limit (Hϕ)(x) =
limz→x n(x) · ∇(Dϕ)(z), for a suitable choice of the points z. In its definition we are not allowed to move
∂

∂n(x) inside the integral because the second derivatives of Φk are not integrable.
The main properties of the BIOs are their relations with the traces of the two layer potentials:

γ±S = S, γ±D = D ± 1

2
I,

∂±n S = D′ ∓ 1

2
I, ∂±nD = H.

(59)

Here I is the identity operator. We have already derived the formulas of the Dirichlet traces, those for
the Neumann ones are proved in a similar way, [CK1, §2.4–2.5]. Taking the difference between outer and
inner traces we find the jump relations (we have already encountered those for the Dirichlet traces)

[[γSψ]] =γ+Sψ − γ−Sψ = 0, [[γDψ]] = γ+Dψ − γ−Dψ = ψ,

[[∂nSψ]] =∂+
n Sψ − ∂−n Sψ = −ψ, [[∂nDψ]] = ∂+

nDψ − ∂−nDψ = 0.
(60)

From (59), using (57) and the trace theorem 3.7, the mapping (continuity) properties of the BIOs follow:

S : H−
1
2 (Γ)→ H

1
2 (Γ),

D : H
1
2 (Γ)→ H

1
2 (Γ),

D′ : H−
1
2 (Γ)→ H−

1
2 (Γ),

H : H
1
2 (Γ)→ H−

1
2 (Γ).

H−
1
2 (Γ) H

1
2 (Γ)

S

H

D′ D
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From (59) we also see that all four operators are averages of traces of the potentials:

S = {{γS}} =
γ+S + γ−S

2
, D = {{γD}} =

γ+D + γ−D
2

,

D′ = {{∂nS}} =
∂+
n S + ∂−n S

2
, H = {{∂nD}} =

∂+
nD + ∂−nD

2
.

These formulas can be taken as alternative rigorous definitions of the four BIOs, given those of the two
layer potentials (see e.g. [SBH19, §14.2] for a PDE different from Helmholtz).

Remark 5.23: (BIOs notation). There is no universal notation for boundary integral operators and sometimes
the same symbol is used by different authors to mean different BIOs: comparing references can be a nightmare.
To help navigating the literature, we list here the notation used in several good references on BIEs for Helmholtz
(some of these only consider the 3D case).

Φk S D S D D′ H
(37) (38) (52) (39) (54) (58) (58)

[Spence14, p. 36], [CGLS12, pp. 108–113] Φk Sk Dk Sk Dk D′k Hk

[Sayas06, §3,§11.1] φ SΓ DΓ VΓ KΓ Kt
Γ WΓ

[CK1, §2.7], [CK2, (3.8–11)] Φ S K K ′ T
[Néd01, p. 116] E S D D∗ N
[SS11, §3.9] Gk Sk Dk Vk Kk K ′k Wk

[Antoine, notes 2012, §3.3] G L S L N D S
[Hsiao and Wendland 2008, §2.1] Ek Vk Wk Vk Kk K ′k Dk

[Martin 2006, §5.1–5.3] G S D S K K
∗

N

[McLean 2000, pp. 217–218] G SL DL S T T̃ R

[Steinbach 2008, §6.9] (W used for Laplace d.l.p.) U∗k Ṽk Vk Kk K ′k Dk

Moreover, in some cases the hypersingular operator H is defined with the opposite sign, e.g. [Sayas06, §11.1].
In other cases all four BIOs include a factor 2 [CK2, eq. (3.8)–(3.11)] (to avoid the factor 1

2 in the trace
relations). [Martin, (5.1)] defines the fundamental solution as (−2) times our (standard) definition.

Remark 5.24: (Explicit double-layer formulas). Using ∂
∂zH

(1)
0 (z) = −H(1)

1 (z), we can write more explicit
formulas for the double-layer and the adjoint double-layer operators:

(Dψ)(x) =
ik

4

∫
Γ

H
(1)
1 (k|x− y|) (x− y) · n(y)

|x− y|
ψ(y) ds(y),

(D′ψ)(x) =
ik

4

∫
Γ

H
(1)
1 (k|x− y|) (y − x) · n(x)

|x− y|
ψ(y) ds(y).

From this formulas, we see that if Γ is a polygon and E is one of its edges, the points y ∈ E do not
contribute to the computation of (Dψ)(x) for x ∈ E, because (x− y) · n(y) = 0. So H(1)

1 is evaluated only
for |x − y| > dist(x, ∂E), i.e. away from the singularity. The singularity in the integrand has to be treated
carefully when x is very close to a corner, while it is harmless otherwise. If Γ is smooth then (x−y)·n(y)

|x−y| → 0

for y→ x, partially compensating the strong singularity of H(1)
1 .

5.5.1 Single-layer potential in Ω−, value of ψ and far-field pattern

Consider the SSSP (32) and the corresponding single-layer BIE Sψ = gD (41). The representation formula
uScat = (Sψ)|Ω+ (42) gives the value of the scattered field in Ω+ as a single-layer potential. Denote by u−
the same potential evaluated inside the scatterer Ω−, i.e. u− = (Sψ)|Ω− . Then u− is a Helmholtz solution
in Ω− with trace γ−u− = γ−Sψ = Sψ = gD = −γuInc. We now assume that: (i) k2 is not a Dirichlet
eigenvalue and (ii) uInc is an incoming wave that is Helmholtz solution also in Ω−, e.g. a plane wave.
Then, by the uniqueness of the solution of the interior Helmholtz Dirichlet problem (Proposition 4.6),

(Sψ)|Ω− = u− = −uInc|Ω− .

This equality has a few useful consequences.
From one of the jump relations (60) we can relate the BIE density ψ to a “physical” quantity, the

Neumann trace of the total field:

ψ = −[[∂nSψ]] = ∂−n Sψ − ∂+
n Sψ = ∂n(−uInc)− ∂+

n u
Scat = −∂+

n u
Tot.

https://www.researchgate.net/publication/274959860_Introduction_to_integral_equations_for_time_harmonic_acoustic_scattering_problems
https://doi.org/10.1007/978-3-540-68545-6
https://doi.org/10.1017/CBO9780511735110
https://www.cambridge.org/it/academic/subjects/mathematics/differential-and-integral-equations-dynamical-systems-and-co/strongly-elliptic-systems-and-boundary-integral-equations?format=PB&isbn=9780521663755
https://doi.org/10.1007/978-0-387-68805-3
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This allows to compute the Neumann trace of the scattered field from the data and the BIE solution as

∂+
n u

Scat = −ψ − ∂nuInc.

Figure 17: Left: the density ψ = −∂+
n u

Tot for the problem of Figure 12 with k = 20, computed with
the BEM of §5.2. The x-axis represent the curvilinear abscissa along the boundary of the triangle Γ,
starting from the lower-left vertex and proceeding anticlockwise. We observe that ψ oscillates on the
two illuminated sides of Γ, is small (but non-zero) on the shadow side, and has singularities at the three
vertices. Right: the same for k = 40.

We recall from Remark 4.19 that the far-field pattern of the scattered field is the function u∞ ∈ C∞(S1)

such that uScat(x) = eikr
√
r

(u∞(θ) +O(r−1)). Its explicit formula (33) requires the value of ∂+
n u

Scat on Γ.
We can use the formula that we have just obtained to compute the far-field pattern of the scattered field
(solution of the SSSP (32)) from the BIE (41) solution ψ:

u∞(θ) =
eiπ4
√

8πk

∫
Γ

(
γ+uScat(y)∂ne−iky·d − ∂+

n u
Scat(y)e−iky·d

)
ds(y)

=
eiπ4
√

8πk

∫
Γ

(
− γuInc(y)∂ne−iky·d +

(
ψ(y) + ∂nu

Inc(y)
)
e−iky·d

)
ds(y)

=
eiπ4
√

8πk

∫
Γ

ψ(y)e−iky·d ds(y) d = (cos θ, sin θ).

The last equality comes from Green’s second identity (21) in Ω−, applied to uInc and the plane wave
y 7→ e−iky·d (recall that here we have assumed that the datum uInc is a Helmholtz solution in Ω−).

Exercise 5.25: (Far-field pattern with BEM). Use your BEM code to approximate the far-field pattern of
the field scattered by a polygon; see an example in Figure 14.

Remark 5.26: (Checking BEM accuracy). The formula (Sψ+uInc)|Ω− = 0 is useful to check the correctness
of a BEM implementation of the BIE (41). The routine used to evaluate the numerical near-field uN = SψN
in a portion of Ω+ can be used to approximate Sψ in Ω−. The value |SψN + uInc| in Ω− must be small for
an accurate BEM implementation and must decrease to 0 when the BEM mesh is refined.

Choose a simple domain Υ compactly contained in Ω− and test your BEM code by computing the value∥∥SψN + uInc
∥∥
L2(Υ)

/
∥∥uInc

∥∥
L2(Υ)

and see how this ratio depends on the problem parameters and on the
numerical ones (k, Ω−, N , quadrature,. . . ). (The reason for taking Υ instead of Ω− is that the convergence
to zero of (SψN + uInc)(x) for N →∞ is slow for x ∈ Ω− close to Γ.)

Remark 5.27: (Kirchhoff/physical optics approximation). We know from the analysis in §4.1 that, when a
plane wave uInc(x) = eikx·d is reflected by an infinite flat Dirichlet obstacle, then the corresponding total field
satisfies ∂nuTot = 2∂nu

Inc, where n is the unit normal to the obstacle. We can imagine that when the same
wave hits a flat part of a “very large”, convex, bounded, obstacle Ω− then, at least locally, it behaves as if the
obstacle was infinite. For a time-harmonic wave, “very large” means much larger than the problem wavelength
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λ = 2π
k . This suggests to approximate the BIE solution ψ = −∂+

n u
Tot with

ψPO :=

{
−2∂nu

Inc on the part of Γ where d · n ≤ 0 i.e., in the part of Γ illuminated by uInc,

0 on the part of Γ where d · n > 0 i.e., in the shadow part of Γ.

(Recall Exercise 4.4.) Then one can compute uPO = S(ψPO) as an approximation
of uScat. Numerically, this only requires approximating the representation formula,
with no need to solve linear systems or to approximate BIEs. This is called Kirchhoff
or physical optics approximation, see [CK2, pp. 57]. Physically, it corresponds to
taking into account only the reflection of the incoming wave disregarding more
subtle phenomena such as diffraction by the corners and/or the curved parts of Γ.
This can be accurate only for large values of k.

Figure 17 suggests that indeed, for the example with triangular Ω− of Figure 12,
ψ is close to 0 on the hypotenuse (in the shadow) and close to −2∂neikx·d on the
other sides. The physical optics approximation completely misses the singularities
of ψ at the corners of the polygon.

Ω−

shadow

n

d

Exercise 5.28: (Physical optics approximation vs BEM). Compute the physical optics approximation ψPO

and uPO and plot them against ψN and uN for a given convex polygon and uInc. Plot some norm of their
difference as function of the wavenumber.

6 Well-posedness and error analysis

6.1 Well-posedness of the single-layer BIE
We want to study the well-posedness of the single-layer BIE Sψ = gD (41). To this purpose, we want to
verify that the single-layer operator S : H−

1
2 (Γ) → H

1
2 (Γ) is (i) injective and (ii) Fredholm. When both

conditions are satisfied, then Fredholm alternative (Theorem 3.12) implies that S is invertible and the
BIE is well-posed. However, injectivity is not always true: the EDP (31) is always well-posed (§4.4) but
its BIE (41) might fail.

6.1.1 Injectivity of the single-layer operator

As in §4.2, two cases may happen:
• If Λ = k2 is a Dirichlet eigenvalue in Ω−, then there exists an eigenfunction w 6= 0 such that ∆w +
k2w = 0 and γ−w = 0. Define ψ = ∂−n w. By Green’s representation (46), w = S∂−n w − Dγ−w =
S∂−n w = Sψ. Then ψ 6= 0 because a non-trivial Dirichlet eigenfunction has non-trivial Neumann trace
(Corollary 5.11) and Sψ = γ−Sψ = γ−w = 0. In this case the single-layer operator is not injective:
0 6= ψ ∈ kerS. The BIE (41) is not well-posed.
• If Λ = k2 is not a Dirichlet eigenvalue in Ω−, then assume that Sψ = 0 and define u = Sψ. We

have that u− = u|Ω− is Helmholtz solution in Ω− and γ−u− = γ−Sψ = Sψ = 0. But the interior
homogeneous Helmholtz Dirichlet BVP is well-posed by Proposition 4.6 and admits only the solution
u− = 0. Similarly u+ = u|Ω+ is a radiating Helmholtz solution in Ω+ with γ+u+ = γ+Sψ = Sψ = 0.
By the well-posedness of the EDP of §4.4 also u+ = 0. The jump relation (60) gives ψ = [[∂nSψ]] =
∂+
n u

+ − ∂−n u− = 0, so the single-layer operator is injective.
Combining with Proposition 4.6 we obtain the following fact.

Lemma 6.1: (Injectivity of S). For each bounded, Lipschitz Ω− ⊂ R2, there exist a sequence of positive
number k1 < k2 < . . ., limj→∞ kj =∞, such that S is injective if and only if k 6= kj for all j ∈ N.

These values are called spurious resonances or spurious frequencies. Even if the BIE (41) is
not solvable in this case, the EDP (31) is well-posed: the interior eigenvalues affect and spoil the BIE
formulation of the exterior problem. This can be understood as follows: the same BIE solves both an
exterior and an interior Helmholtz Dirichlet problem (with solutions (Sψ)|Ω+

and (Sψ)|Ω−), when the
latter is not well-posed then the BIE cannot be well-posed either. In §6.2 we will see other (slightly more
complicated) BIEs that always admit a solution.

Exercise 6.2: (Spurious frequencies and BEM). Spurious resonances affect numerical computations. Plot
the condition number of the BEM matrix AC/G and the accuracy test of Remark 5.26 (e.g.

∥∥SψN + uInc
∥∥
L2(Υ)

)
for several values of k close to a resonance to see how they blow up.



Well-posedness of the single-layer BIE |54| A. Moiola — February 28, 2022

Hint: choose Ω− as a square, so that the values of kj are easily computed by hand as in §4.2.

6.1.2 The single-layer operator is Fredholm

We now want to show that the single-layer operator S : H−
1
2 (Γ) → H

1
2 (Γ) is Fredholm, i.e. it is sum of

an invertible and a compact operator.
We define the single-layer operator for Laplace equation −∆u = 0 as

(S0ψ)(x) := − 1

2π

∫
Γ

log
|x− y|
d

ψ(y) ds(y), x ∈ Γ, (61)

where d is a positive parameter21 satisfying d > diam(Γ) = supx,y∈Γ |x− y|.
Given a positive number c, we also define the single-layer operator for the homogeneous reaction–

diffusion equation (in this setting sometimes called “Yukawa equation” [SBH19], or “modified Helmholtz
equation” [Spence14]) −∆u+ c2u = 0 as

(Scψ)(x) :=
1

2π

∫
Γ

K0(c|x− y|)ψ(y) ds(y), x ∈ Γ, (62)

where K0(t) := iπ
2 H

(1)
0 (it) for t ≥ 0 is the “modified Bessel function of the second kind”. 22 Formally, Sc

equals the single-layer operator for the Helmholtz equation with purely imaginary wavenumber (i.e. with
ic in place of k).

The following two facts hold:

Lemma 6.3: (Single-layer: compactness of S − Sc and coercivity of Sc). For all c ≥ 0,

• S − Sc : H−
1
2 (Γ)→ H

1
2 (Γ) is compact;

• Sc : H−
1
2 (Γ)→ H

1
2 (Γ) is coercive, i.e. ∃αc > 0 such that 〈Scψ,ψ〉Γ ≥ αc ‖ψ‖2

H−
1
2 (Γ)

∀ψ ∈ H− 1
2 (Γ).

In the next pages we explain where Lemma 6.3 comes from, but we don’t give a complete proof.
Note that we allow also the case c = 0: Sc can stand either for the Laplace or for the reaction–diffusion

operator.
The second item of Lemma 6.3 and Lax–Milgram theorem imply that Sc : H−

1
2 (Γ) → H

1
2 (Γ) is

invertible and that the corresponding BIE (for Laplace or reaction–diffusion) Scψ = g is well-posed for all
g ∈ H 1

2 (Γ). From Definition 3.11, S = Sc + (S − Sc) is a Fredholm operator. Moreover, the sesquilinear
form A(·, ·) defined in (43) and used to define and implement the Galerkin-BEM method is sum of a
coercive and a compact form: A(ψ, ξ) = 〈Sψ, ξ〉Γ = 〈Scψ, ξ〉Γ + 〈(S − Sc)ψ, ξ〉Γ.

By Fredholm alternative 3.12, S is invertible if and only if it is injective. By §6.1.1, the single-layer
BIE Sψ = gD is well-posed (i.e. S is invertible) if and only if −k2 is not a Dirichlet eigenvalue for Ω−.
Combining with what we already know about the eigenvalues, we obtain the following fact.

Theorem 6.4: (Single-layer BIE well-posedness). For each Ω− there exist a sequence of positive number
k1 < k2 < . . ., limj→∞ kj =∞, such that the BIE Sψ = gD is well-posed for all gD ∈ H

1
2 (Γ) if and only if

k 6= kj for all j ∈ N.

We repeat: Theorem 6.4 follows from Lemma 6.3, Lax–Milgram theorem, Fredholm alternative 3.12,
and Lemma 6.1.

Why do we consider both the Laplace (S0) and the reaction–diffusion (Sc) cases? To prove the Fredholm
property of S any of them would be enough. On one hand, the Laplace single-layer S0 is easier to study
because it does not require special functions, while, on the other hand, the coercivity is easier to prove for
Sc than for S0 (in 2D).23

21Different values of d give different “versions” of the single-layer. This corresponds to adding a constant to S0; recall
the following difference between Laplace and Helmholtz solutions: ∆u = 0 ⇒ ∆(u + C) = 0 but (∆ + k2)u = 0 ⇒
(∆ + k2)(u+ C) 6= 0 for all constants C 6= 0. This is related to the fact that the 2D Laplace fundamental solution does not
decay to 0 at infinity. We will see in Remark 6.8 that the precise value of d only matters to ensure the coercivity of S0. This
is not true in 3D, where there is no need for the parameter d.

22This is defined from the complex-analytic extension of H(1)
0 to complex argument, in such a way that K0 is a real-

valued, positive, monotonically decreasing function; see [DLMF, eq. 10.27.E8]. It satisfies K0(t) ∼ − log t for t → 0 and
K0(t) ∼

√
π/2t e−t for t → ∞, [DLMF, eq. 10.25.3 and 10.30.3]. It is easy to see that it satisfies the “modified Bessel

equation” t2K′′0 (t) + tK′0(t) − t2K0(t) = 0 and from this that −∆xΦc(x,y) + c2Φc(x,y) = δy(x) where Φc(x,y) :=
1

2π
K0(c|x− y|) = i

4
H

(1)
0 (ic|x− y|).

23We write also the fundamental solutions of the Helmholtz, Laplace and reaction–diffusion PDEs in R3:

∆u+ k2u = 0 → Φ(x,y) =
eik|x−y|

4π|x− y|
, ∆u = 0 → Φ0(x,y) =

1

4π|x− y|
, −∆u+ c2u = 0 → Φc(x,y) =

e−c|x−y|

4π|x− y|

https://dlmf.nist.gov/10.27.E8
https://dlmf.nist.gov/10.25.3
https://dlmf.nist.gov/10.30.3
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We study the properties of compactness and coercivity in the following, starting from the case of a
circular scatterer.

Remark 6.5: (Helmholtz=Laplace+low-order, once again). This decomposition of the Helmholtz operator
in a “Laplace part” and “whatever is left” should remind you the technique used in §4.2 for Helmholtz problems
on bounded domains. In that case, using the Gårding inequality, we have decomposed the Helmholtz sesquilinear
form (either A of (26) or AI of (28)) in a coercive part corresponding to an elliptic equation and a compact
perturbation term multiple of k2

∫
Ω
uw dx.

Remark 6.6: (Helmholtz vs coercive cases: BIE well-posedness and Galerkin method). The coercivity
of S0 implies that the single-layer BIE for the Laplace equation S0ψ = gD is always well-posed. Moreover, as we
are in a Lax–Milgram setting, every Galerkin-BEM discretisation of the variational problem 〈S0ψ, ξ〉Γ = 〈gD, ξ〉Γ
is well-posed, quasi-optimal and gives symmetric positive-definite matrices.

This is not true in the Helmholtz case. To ensure well-posedness of the Galerkin method, some conditions
on the discrete space are needed (roughly speaking, it must have sufficiently good approximation properties).
Under these conditions, we have a quasi-optimality estimate as in Céa lemma. We sketch this theory in §6.3.

6.1.3 Continuity, compactness and coercivity of single-layer BIOs on a circle

Let K be a BIO on the circle ∂BR with kernel κ : (0,∞)→ C, i.e.

(Kv)(x) =

∫
∂BR

κ(|x− y|)v(y) ds(y), (63)

for v defined on Γ. The distance between two points on the circle can be computed using polar coordinates:

|x− y| = |Reiθx −Reiθy | = R|1− ei(θx−θy)| = R
√

2− 2 cos(θx − θy).

The action of the operator K on a function v can be written as the multiplication of the Fourier coefficients
of the argument v(x) =

∑
`∈Z v̂`e

i`θ by some coefficients K`:

(Kv)(x) =

∫
∂BR

κ(|x− y|)v(y) ds(y) = R

∫ 2π

0

κ(R
√

2− 2 cos(θx − θ))
∑
`∈Z

v̂`e
i`θ dθ (α = θ − θx)

=
∑
`∈Z

v̂`e
i`θx R

∫ 2π

0

κ(R
√

2− 2 cosα)ei`α dα︸ ︷︷ ︸
=:K`

=
∑
`∈Z

v̂`K` ei`θx .

If K` = O(`a) for some a ∈ R then, from the definition (19) of the Sobolev spaces on the circular boundary,
K : Hs(∂BR)→ Hs−a(∂BR) as a bounded operator. But, how to estimate the coefficients K`?

The values K` are the Fourier coefficients of the function α 7→ Rκ(R
√

2− 2 cosα) on (0, 2π). Parseval’s
theorem (

∫ 2π

0
|f(θ)|2 dθ = 2π

∑
`∈Z |f̂`|2) implies that the Fourier coefficients of an L2(0, 2π) function decay

as o(`−1/2). As we have seen in §3.3 using that (ei`θ)′ = i`ei`θ, if f ′ ∈ L2(0, 2π) then f̂` = o(`−3/2).

The function α 7→ R
√

2− 2 cosα is Lipschitz (you can verify that its derivative is ±
√

1+cosα
2 ). Thus,

if κ ∈ L2(0, 2R) then K` = o(`−1/2), if moreover κ′ ∈ L2(0, 2R) then K` = o(`−3/2). So, useful relations
between the properties of the kernel κ and the continuity of the operator K in the form (63) are

κ ∈ L2(0, 2R) ⇒ K : Hs(∂BR)→ Hs+ 1
2 (∂BR), κ ∈ H1(0, 2R) ⇒ K : Hs(∂BR)→ Hs+ 3

2 (∂BR).

(From the formulas above, the properties of κ(t) for t > 2R, the diameter of the circle, are irrelevant.)

What are the kernels of the Helmholtz and Laplace single-layer operators? We have

K = S ⇒ κ(t) =
i

4
H

(1)
0 (kt) ∈ L2(0, 2R),

K = S0 ⇒ κ(t) = − 1

2π
log
|t|
d

∈ L2(0, 2R),

K = S − S0 ⇒ κ(t) =
i

4
H

(1)
0 (kt) +

1

2π
log
|t|
d

∈ H1(0, 2R).

([Spence14, §9.1]). Differently from the 2D case, all three fundamental solutions can be written as special instances of Φc
with complex c (or Φ with complex k). In particular, in 3D the Laplace case is the limit for k ↘ 0 or c↘ 0 of the other two.
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The first line gives S : Hs(∂BR) → Hs+ 1
2 (∂BR). This is not new: we already mentioned that S :

H−
1
2 (Γ)→ H

1
2 (Γ) for all Lipschitz boundaries, which, for s = − 1

2 , is a stronger result. We have also seen
from the numerical computations in Figure 15 and Remark 5.1 that K` ∼ `−1, so we cannot expect any
stronger continuity property than this.

We now look at the difference between Helmholtz and Laplace single-layer operators S−S0 (on ∂BR).
From the asymptotic formula H(1)

0 (z) = i 2
π log z + 1 + i 2

π (γ − 2) + O(z2) by, e.g., [DLMF, eq. 10.8.2]
with the Euler’s constant γ ≈ 0.57721 we have that κ is bounded and κ′ is bounded (with a jump at 0
because of the

√
2− 2 cosα term). So S − S0 : H−

1
2 (∂BR) → H1(∂BR). (In Figure 18 we demonstrate

numerically a stronger continuity property, i.e. that S − S0 : H−
1
2 (∂BR) → H

5
2 (∂BR).) Since the

inclusion ι : H1(∂BR) → H
1
2 (∂BR) is compact, then the difference between the two single-layers

S − S0 : H−
1
2 (∂BR)→ H

1
2 (∂BR) is compact.24

Precisely the same holds with Sc in place of S0: this is because the corresponding kernels κ(t) =

− 1
2π log |t|d and κ(t) = 1

2πK0(c|t|) have the same behaviour at t = 0.

Figure 18: A log–log plot of the Fourier coefficients K` for the operator S − S0, difference between
Helmholtz and Laplace single-layer operators, on a circle. The coefficients decay as K` ∼ `−3, so the
operator appears to be continuous Hs(∂BR)→ Hs+3(∂BR). In particular it is compact H−

1
2 (∂BR)→

H
1
2 (∂BR). Compare with the coefficients of S in Figure 15.

We can use the expansion in circular harmonics also to check the coercivity of an integral operator.
The sesquilinear form associated to K diagonalises in the Fourier basis (recall §3.3):

〈Kv,w〉∂BR =

〈∑
`∈Z

v̂`K`e
i`θx ,

∑
m∈Z

ŵ`e
imθx

〉
∂BR

= 2πR
∑
`∈Z

v̂`K`ŵ`.

If K` ∈ R and K` ≥ c(1+ `2)s for all ` and some c > 0, s ∈ R 25, then |〈Kv, v〉∂BR | ≥ 2πRc
∑
`∈Z |v̂`|2(1+

`2)s = c ‖v‖2Hs(∂BR), i.e. K is coercive in Hs(∂BR).

Now look at the Laplace single-layer, i.e. K with κ(t) = − 1
2π log |t|d . Since κ(R

√
2− 2 cos(t)) is real

and even-symmetric, its Fourier coefficients K` are real.

Exercise 6.7: (Laplace single-layer Fourier coefficients). Compute numerically the coefficients K` for the
Laplace single-layer S0 and verify that they satisfy K`(1 + `2)

1
2 > c. (For R = 1, c ≈ 1

2 .)

From this exercise it follows that the Laplace single-layer operator S0 is coercive in H−
1
2 (∂BR).

The same argument can be repeated for Sc.
We have verified, partly with numerical experiments, both items in Lemma 6.3 for the case Γ = S1.

24Recall that the property of compactness of an operator depends heavily on the norms of the function spaces chosen as
domain and codomain. E.g. the identity operator I : H1(Ω)→ H1(Ω) is not compact for a bounded Lipschitz Ω, but when
we view it as I : H1(Ω) → L2(Ω) (and we call it embedding) then it is compact (Rellich theorem). The technique used in
this section is very standard: we show that an operator K maps in a space that is slightly smoother (here H1(∂BR)) than
the desired domain (here H

1
2 (∂BR)), then we compose the operator with the embedding (here ι : H1(∂BR)→ H

1
2 (∂BR))

and if this embedding is compact the same holds for ι ◦ K. Recall that the composition of a continuous operator and a
compact one is compact; you can prove this from the definition.

25More generally, if the K` are complex we can also take <{σK`} > c(1 + `2)s for some σ ∈ C, |σ| = 1. E.g., K is coercive
in L2(∂BR) (s = 0) if there exists a straight line in the complex plane C that separates the origin from all K`.

https://dlmf.nist.gov/10.8.2
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6.1.4 Compactness of S − S0

We sketch the main ideas used to prove the compactness of (S − S0) : H−
1
2 (Γ) → H

1
2 (Γ). Making them

precise and rigorous is not trivial.
The key result to prove compactness of BIOs is the following: an operator K : L2(Γ)→ L2(Γ) in the

form (Kv)(x) =
∫

Γ
κ(|x− y|)v(y) ds(y) is compact if the kernel κ : [0,diam Γ]→ C is a bounded function

(L∞).
From the asymptotic expansion of the Hankel function at the origin, as in §6.1.3, we see that the

kernel κ(t) = i
4H

(1)
0 (kt) + 1

2π log t
d of S − S0 is bounded (and continuous). The operator T defined by

Tv = (Sv − S0v)′, where the derivative is the tangential derivative along Γ, also has a bounded (but
discontinuous) kernel, for the same reason. From this it follows that S−S0 : L2(Γ)→ H1(Γ) is a compact
operator. However we want to lower the Sobolev exponents of both spaces by 1

2 .
From functional analysis ([Brezis11, Thm. 6.4]) we know that if an operator K : H1 → H2 is compact,

then its adjoint K∗ : H∗2 → H∗1 (defined by (K∗ϕ)(ψ) = ϕ(Kψ) for ϕ ∈ H∗2 and ψ ∈ H1) is also compact.
Fubini’s theorem implies that the single-layer is self-adjoint (up to conjugation) in L2(Γ):

∫
Γ
(Sϕ)ψ ds =∫

Γ
ϕ(Sψ) ds for all ϕ,ψ ∈ L2(Γ) (you can prove this). The same holds for S0. Thus the adjoint of

S − S0 : L2(Γ)→ H1(Γ) is the extension of S − S0 itself to (S − S0)∗ = S − S0 : H−1(Γ)→ L2(Γ), where
H−1(Γ) is the dual of H1(Γ) as in §3.3.3, and is compact.

A technique called “operator interpolation” (see,
e.g., [SBH19, §9.8]) allows to deduce from the com-
pactness of S − S0 in L2(Γ) → H1(Γ) and in
H−1(Γ)→ L2(Γ) the boundedness and the compact-
ness in all intermediate spaces S − S0 : Hs−1(Γ) →
Hs(Γ) for 0 < s < 1, in particular the compactness
of S − S0 : H−

1
2 (Γ)→ H

1
2 (Γ).

L2(Γ) H
1
2 (Γ) H1(Γ)

H−1(Γ) H−
1
2 (Γ) L2(Γ)

S − S0(S − S0)∗

The same reasoning follows verbatim if we take Sc for c > 0 (62) in place of S0 (61): the key point
is the boundedness of the kernel of S − Sc and of v 7→ (Sv − Scv)′. This follows from the fact that all
kernels considered have the same singularity at 0. A different proof of the compactness of S − Sc can be
obtained by adapting that in [SBH19, Thm. 14.12].

6.1.5 Coercivity of Sc

We sketch the proof of the coercivity of the reaction–diffusion single-layer operator Sc. The coercivity of
the Laplace single-layer operator S0 is slightly more complicated; we discuss it in Remark 6.8.

Most of the results derived and stated in the previous sections (traces, jumps, . . . ) for the Helmholtz
equation hold also for the reaction–diffusion equation, using Φc(x,y) = 1

2πK0(c|x − y|) as fundamental
solution.

Fix ψ ∈ H− 1
2 (Γ) and denote u = Scψ ∈ H1(Ω−,∆) × H1

loc(Ω+,∆), Sc being the reaction–diffusion
single-layer potential. Then −∆u + c2u = 0 in Ω− ∪ Ω+, [[γu]] = 0 and [[∂nu]] = −ψ, in analogy to (60).
From the properties of K0, both u and its radial derivative decay exponentially to 0 for |x| → ∞.

Integration by parts (Green’s first identity (20) with k = ic) on Ω− gives the identity

‖∇u‖2L2(Ω−) + c2 ‖u‖2L2(Ω−) =

∫
Ω−

(∇u · ∇u+ c2uu) dx =

∫
Γ

∂−n u γ
−uds.

Proceeding similarly to §5.3 and exploiting the decay of u and ∂u
∂r , the same holds in Ω+:

‖∇u‖2L2(Ω+) + c2 ‖u‖2L2(Ω+) = lim
R→∞

(
‖∇u‖2L2(Ω+∩BR) + c2 ‖u‖2L2(Ω+∩BR)

)
(64)

= lim
R→∞

∫
Ω+∩BR

(∇u · ∇u+ c2uu) dx

= lim
R→∞

(
−
∫

Γ

∂+
n u γ

+uds+

∫
∂BR

∂nuuds︸ ︷︷ ︸
R→∞−−−−→0

+

∫
Ω+∩BR

(−∆u+ c2u︸ ︷︷ ︸
=0

)udx
)

= −
∫

Γ

∂+
n u γ

+uds.

(Note that the H1(Ω+) norm would not be bounded if u = Sψ, with the Helmholtz single-layer potential,
because in this case u would have a slower decay at infinity.)

Taking the normal trace of vector fields, v 7→ v|Γ ·n, is continuous as an operator from H(div; Ω±) to
H−

1
2 (Γ) ([SBH19, Thm. 6.1]):

‖v|Γ · n‖2
H−

1
2 (Γ)
≤ Ctr

(
‖v‖2L2(Ω±)2 + ‖div v‖2L2(Ω±)

)
(65)
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∀v ∈ H(div; Ω±) :=
{
v ∈ L2(Ω±)2; div v ∈ L2(Ω±)

}
.

Here Ctr > 0 only depends on Γ. Applying this to ∇u, whose divergence is in L2 because ∆u = c2u, allows
to control the Neumann traces with the L2 norms of the gradient and the Laplacian of u. Combining all
these results we have that, for all ψ ∈ H− 1

2 (Γ),

‖ψ‖2
H−

1
2 (Γ)

= ‖[[∂nu]]‖2
H−

1
2 (Γ)

ψ = −[[∂nu]]

≤ 2
( ∥∥∂−n u∥∥2

H−
1
2 (Γ)

+
∥∥∂+

n u
∥∥2

H−
1
2 (Γ)

)
triangle inequality

≤ 2Ctr

(
‖∇u‖2L2(Ω−)2 + ‖∆u‖2L2(Ω−) + ‖∇u‖2L2(Ω+)2 + ‖∆u‖2L2(Ω+)

) normal trace continuity
in H(div; Ω±) (65)

≤ 2Ctr max{1, c2}
∫

Ω−∪Ω+

(∇u · ∇u+ c2uu) dx ∆u = c2u

= 2Ctr max{1, c2}
∫

Γ

(∂−n uγ
−u− ∂+

n uγ
+u) ds Green’s 1st identity (64)

= 2Ctr max{1, c2}
∫

Γ

−[[∂nu]]γuds γ+u = γ−u

= 2Ctr max{1, c2}
∫

Γ

ψScψ ds [[∂nu]] = −ψ, γu = γScψ = Scψ

= 2Ctr max{1, c2}
∫

Γ

(Scψ)ψ ds Scψ = Scψ,

∫
Γ

ψScφds =

∫
Γ

(Scψ)φds.

This is precisely the coercivity of Sc in H−
1
2 (Γ).

Remark 6.8: (Coercivity of S0 in 3D and 2D). The proof of the coercivity of the Laplace single-layer
operator S0 in R3 works exactly in the same way setting c = 0, noting that the algebraic decay of u for
|x| → ∞ is enough to ensure ∇u ∈ H1(Ω+) (see [SBH19, §14.6–7])

In R2 the proof of the coercivity of S0 is more complicated; here we follow [Steinbach 2008, Thm. 6.22–23]
and [McLean 2000, Thm. 8.12–16]. The key difference is that the relation ‖∇u‖2L2(Ω+) = −

∫
Γ
∂+
n u γ

+uds

for u = S0ψ only holds if ψ satisfies the 0-average condition 〈ψ, 1〉Γ = 0. This is due to the absence of decay
to zero of the fundamental solution Φ0 at infinity. Thus the reasoning above gives the coercivity of S0 in
H
− 1

2
∗ (Γ) := {ψ ∈ H− 1

2 (Γ) : 〈ψ, 1〉Γ = 0}.
To deal with the general case (ψ ∈ H−

1
2 (Γ) instead of ψ ∈ H

− 1
2

∗ (Γ)) we have to work a bit more.
Lax–Milgram and the coercivity for 0-average densities ensure that there exists a unique (non zero)

β∗ ∈ H
− 1

2
∗ (Γ) 〈S0β∗, ξ∗〉Γ = 〈S01, ξ∗〉Γ ∀ξ∗ ∈ H

− 1
2

∗ (Γ).

Define βeq := 1
|Γ| (1 − β∗) ∈ H

− 1
2 (Γ). The two densities β∗, βeq only depend on Γ. Then βeq is real-valued,

〈βeq, 1〉Γ = 1, and 〈S0βeq, ξ∗〉Γ = 0 for all ξ∗ ∈ H
− 1

2
∗ (Γ), so S0βeq is constant on Γ. Recalling the definition

(61) of S0,

(S0βeq)(x) =
1

2π

∫
Γ

βeq(y)
(

log d− log |x− y|
)

ds(y)

=
1

2π
log d

∫
Γ

βeq(y) ds(y)− 1

2π

∫
Γ

βeq(y) log |x− y|ds(y)

=
1

2π
log d− 1

2π

∫
Γ

βeq(y) log |x− y|ds(y) ∀x ∈ Γ.

This is where we need the (so far unused) parameter d > 0: if d is sufficiently large then S0βeq > 0. It is
possible to show that d > diam Γ is enough to guarantee that S0βeq > 0.26 Then also

〈S0βeq, βeq〉Γ = S0βeq〈1, βeq〉Γ = S0βeq > 0.

We want to decompose a general ψ ∈ H− 1
2 (Γ) in a H−

1
2

∗ (Γ) component and a remainder: instead of taking a
constant remainder as one might expect, we take a remainder whose image under S0 is constant, i.e. a multiple

26The value e
∫
Γ βeq(y) log |x−y| ds(y), which is independent of x ∈ Γ, is called “logarithmic capacity of Γ”, while βeq is the

“equilibrium density”. In 2D electrostatic, the electric charge on an insulated conductor Ω− distributes on the boundary Γ
proportionally to βeq, in such a way that the electrostatic potential S0βeq is constant on Γ and takes value S0βeq in Ω+.
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of βeq. For all ψ ∈ H−
1
2 (Γ) define

ψ∗ := ψ − 〈ψ, 1〉Γβeq ⇒ 〈ψ∗, 1〉Γ = 〈ψ, 1〉Γ
(

1− 〈βeq, 1〉Γ
)

= 0.

Now we use the decomposition ψ = ψ∗ + 〈ψ, 1〉Γβeq to show the positivity of the single-layer potential:

〈S0ψ,ψ〉Γ = 〈S0(ψ∗ + 〈ψ, 1〉Γβeq), ψ∗ + 〈ψ, 1〉Γβeq〉Γ

= 〈S0ψ∗, ψ∗〉Γ + 2〈ψ, 1〉Γ 〈S0βeq, ψ∗〉Γ︸ ︷︷ ︸
=0

+|〈ψ, 1〉Γ|2 〈S0βeq, βeq〉Γ︸ ︷︷ ︸
>0

≥ C
(
‖ψ∗‖2

H−
1
2 (Γ)

+ |〈ψ, 1〉Γ|2
)
,

which gives coercivity when combined with the triangle inequality

‖ψ‖
H−

1
2 (Γ)
≤ ‖ψ∗‖

H−
1
2 (Γ)

+ |〈ψ, 1〉Γ| ‖βeq‖
H−

1
2 (Γ)
≤ C

(
‖ψ∗‖

H−
1
2 (Γ)

+ |〈ψ, 1〉Γ|
)
.

Exercise 6.9: (Laplace single-layer parameter d). Using the BIO expansion in §6.1.3 show that for a circle
Γ = ∂BR, we have β∗ = 0, βeq = 1

2πR , S0βeq = 1
2πRS01 = 1

2π log d
R . Thus d > R is enough to prove the

coercivity of S0 on H−
1
2 (∂BR).

Hint: use that
∫ 2π

0
log
√

2− 2 cosα dα = 0 and the properties of the logarithm.

6.2 The BIE zoo
We have seen that the single-layer BIE fails for some values of k. We want to derive some other BIEs that
allow to compute the solution of the EDP/SSSP also for these values of k. We write a total of six BIEs;
their properties are summarised in Table 1.

First of all, it is instructive to recall how we found the BIE (41). We wrote the solution u of the EDP
(31) as a single-layer u = Sψ, then we took the Dirichlet trace γ+ of this representation, and from one of
the trace formulas (59) obtained the BIE Sψ = gD (recall that we need to impose the boundary condition
γ+u = gD). Also for the other BIEs the key steps are the same:

(i) choose a potential representation,

(ii) take a trace using (59).

6.2.1 Indirect double-layer BIE

If instead of a single-layer we assume that the EDP solution is a double-layer potential

u = Dψ, ψ ∈ H 1
2 (Γ),

taking the Dirichlet trace γ+ (59) we obtain(1

2
+D

)
ψ = gD in H

1
2 (Γ), ψ ∈ H 1

2 (Γ). (66)

This is another BIE for the same BVP. Here and in the following, 1
2 stands for the identity operator

multiplied by the number 1
2 , i.e. the equation is to be read 1

2ψ +Dψ = gD.
This can be discretised with collocation-BEM or Galerkin-BEM in the same way as §5.2. We encounter

a couple of difficulties. A first difference is that the singularity of D is stronger than that of S, so the
quadrature requires more care.

A second difference is that this BIE is posed in H
1
2 (Γ) instead of H−

1
2 (Γ). The functions of H

1
2 (Γ)

are in general not necessarily continuous, but if they are piecewise-polynomial then they must also be
continuous. This implies that the BEM discrete space VN cannot be made of piecewise-constant functions
(recall Exercise 3.4). The simplest choice is to take VN as the space of continuous piecewise-linear
functions on a mesh.

Is the BIE (66) well-posed? I.e. is the operator ( 1
2 + D) : H

1
2 (Γ) → H

1
2 (Γ) invertible? As proved in

[CGLS12, Thm. 2.25], this operator is Fredholm. To study the injectivity, once again we have to look at
some interior problem.

Exercise 6.10: (Injectivity of 1
2 +D). Show the following.

• If w is a Neumann eigenfunction in Ω− for Λ = k2, then its trace ψ = γ−w satisfies 1
2ψ +Dψ = 0.

Hint: use Green’s representation.
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• If Λ = k2 is not a Neumann eigenvalue in Ω−, then 1
2 +D is injective.

Hint: take u = Dψ for ψ ∈ ker( 1
2 +D). Use the well-posedness of the EDP and both jump relations.

• Deduce that the BIE (66) is injective if and only if k2 is not a Neumann eigenfunction.

From this exercise it follows that the BIE (66) is well-posed except for a discrete set of frequencies.

Remark 6.11: (What is ψ?). If ψ is solution of (66), then u− = (Dψ)|Ω− is Helmholtz solution in Ω− with
Neumann trace ∂−n u− = ∂+

n u. Differently from §5.5.1, this is not immediately related to the incoming field
uInc. However, if k2 is not a Neumann eigenvalue, u− is well-defined as a solution of an interior Neumann
problem. From the jump relation (60), ψ = [[γDψ]] = γ+u − γ−u− = gD − γ−u−. The solution of the
BIE (66) is the difference between the datum gD and the Dirichlet trace of the solution of an auxiliary interior
Neumann problem, whose boundary datum is the Neumann trace of u itself.

6.2.2 Direct BIE

We have constructed two BIEs (41) and (66) by searching for EDP solutions in the form u = Sψ and
u = Dψ, respectively. Green’s representation formula (53) allows to represent any radiating solution u in
Ω+ as linear combination of both potentials applied to the traces of u itself:

u = −S∂+
n u+Dγ+u.

When u is solution of the EDP, one of the traces is given: γ+u = gD. So we can choose as unknown the
other one: ψ = ∂+

n u. How to obtain a BIE from this?
Taking the Dirichlet and the Neumann traces γ+ and ∂+

n of Green’s representation and using the trace
formulas (59), we obtain

Sψ =
(
D − 1

2

)
gD in H

1
2 (Γ), (67)

(1

2
+D′

)
ψ = HgD in H−

1
2 (Γ). (68)

We reiterate that here the unknown stands for the Neumann datum and the underlying representation
formula is that coming from Green’s formula:

ψ = ∂+
n u ∈ H− 1

2 (Γ), u = −Sψ +DgD in Ω+.

Some terminology. BIEs such as (67)–(68) whose unknown is the missing Cauchy datum are called
direct BIEs; BIEs such as (41) and (66) where the unknown is not directly linked to the EDP are called
indirect. In general, a linear BIE with BIO T and data f can be written as αψ + Tψ = f : if α = 0
then the BIE is called “of the first kind”, if α is a non-zero coefficient then it is called “of the second kind”.
Thus BIEs (41) and (67) are called BIEs of the first kind, as the unknown ψ only appears as argument
of a BIO, while (66) and (68) are called of the second kind as the unknown ψ also appears outside the
integral operator (α = 1

2 in both cases).
The first-kind direct BIE (67) has at the left-hand side the same operator S as the indirect BIE (41)

we know well. The right-hand side instead is slightly more complicated, as it involves the double-layer
operator. So (67) is well-posed exactly when (41) is, i.e. away from Dirichlet eigenvalues. The matrix
AC/G of a BEM implementation for this formulation is identical to the matrix for the same method
applied to (41). The right-hand side vector FC/G is slightly more complicated to code and more expensive
to compute as it requires the implementation of the double-layer operator.

The second-kind direct BIE (68) has at the left-hand side the adjoint of the operator present in the
indirect BIE (66). Theorem 1.28 of [CK1] implies that ( 1

2 + D′) is injective if and only if ( 1
2 + D)

is injective (this requires the Fredholm property of the operators). So (68) is well-posed away from
Neumann eigenvalues, exactly as (66). The implementation of a BEM discretisation of (68) also requires
an approximation of the hypersingular operator H (58) for the right-hand side.

Finally, the evaluation of uN in the volume through the Green’s representation formula is slightly more
complicated for the direct BIEs (67)–(68) than for the indirect ones ((41) and (66)), because it involves
both the single- and the double-layer potential (applied to the unknown and the datum, respectively).
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6.2.3 Indirect combined-field integral equation: Brakhage–Werner equation

We have seen four different BIEs for the same EDP, and none of them is invertible for all positive values
of k, which is quite disappointing. However all is not lost: the formulations considered were deduced
from some special representations of u in terms of layer potentials, we need to choose some other such
representation.

We now choose, arbitrarily, to search for some u in the form

u = (D − iηS)ψ, ψ ∈ H 1
2 (Γ) (69)

where η > 0 is a parameter. Taking the Dirichlet trace, this is solution of the EDP if ψ is solution of(1

2
+D − iηS

)
ψ = gD in H

1
2 (Γ). (70)

The operator A := ( 1
2 +D − iηS) : H

1
2 (Γ)→ H

1
2 (Γ) is Fredholm.27 Is it injective?

Let Aψ = 0 for some ψ ∈ H 1
2 (Γ). Define u as in (69). Then u|Ω+

is solution of the EDP with gD = 0,
so u = 0 in Ω+ and γ+u = ∂+

n u = 0. The jump relations (60) give

−γ−u = [[γu]] = [[γ(Dψ − iηSψ)]] = [[γDψ]] = ψ

−∂−n u = [[∂nu]] = [[∂n(Dψ − iηSψ)]] = [[−iη∂nSψ]] = iηψ
⇒ ∂−n u− iηu = 0.

So u|Ω− is solution of a homogeneous impedance BVP (27) in Ω− with ϑ = η
k . From the well-posedness

of the impedance BVP (§4.2 and Corollary 5.12) u = 0 and from the jump relation again ψ = −γ−u = 0.
We conclude that the operator A is injective.

The BIE (70) is well-posed for all Γ, k > 0, η > 0 and gD ∈ H
1
2 (Γ).

We have finally found a BIE that is invertible for all wavenumbers! The BIE (70) is often called
Brakhage–Werner equation (even if it was introduce independently in three papers by Brakhage and
Werner, by Leis and by Panič, all in 1965).

Exercise 6.12: (Brakhage–Werner density). Let ψ be the solution of the Brakhage–Werner BIE (70) and
u = (D− iηS)ψ in Ω+ ∪Ω−. Use the trace formulas (59) to show that ∂−n u− iηγ−u = ∂+

n u− iηγ+u (careful
with the signs!).

Deduce, using the jump relations, that the solution ψ of the BIE is the jump between the Dirichlet traces
of the EDP solution u|Ω+

and the solution u|Ω− of an impedance BVP in Ω− with data ∂+
n u − iηγ+u and

impedance parameter ϑ = η
k . (The relation with an impedance BVP further confirms the well-posedness of the

BIE.)

6.2.4 Direct combined-field integral equation: Burton–Miller equation

Can we find a direct method that is well-posed for all values of k? We know that ψ = ∂+
n u solves both

direct equations (67)–(68). We take a linear combination of the two equations:(1

2
+D′ − iηS

)
ψ =

[
H − iη

(
D − 1

2

)]
gD in H−

1
2 (Γ). (71)

Again, here η > 0 is a parameter. This is called Burton–Miller or (direct) combined-field integral
equation (CFIE). This is a second-kind direct equation, so, as in §6.2.2, the density and the representation
formula are

ψ = ∂+
n u ∈ H− 1

2 (Γ) and u = −S∂+
n u+Dγ+u = −Sψ +DgD in Ω+.

The operator A′ := ( 1
2 +D′ − iηS) : H−

1
2 (Γ)→ H−

1
2 (Γ) at the left-hand side differs from the operator A

of the Brakhage–Werner equation only in that D is substituted by D′.
To study the injectivity of A′, let A′ψ = 0 and u = −Sψ. Then ∂−n u− iηγ−u = −A′ψ = 0, so u = 0 in

Ω− by the well-posedness of the homogeneous interior impedance BVP. By the jump formula γ+u = γ−u,
u|Ω+

is solution of the homogeneous EDP, so it also vanish, and ψ = −[[∂nSψ]] = [[u]] = 0.
Similarly to the previous section, A′ is also Fredholm, thus the BIE (71) is well-posed .

27We have mentioned in §6.2.1, without proof, that 1
2

+D is Fredholm. The single-layer operator is continuous as a map

S : H
1
2 (Γ) → H1(Γ) ([CGLS12, Thm. 2.25], recall Remark 5.1 for the circle), thus, by composition with the embedding of

Sobolev spaces, it is compact as a map S : H
1
2 (Γ)→ H

1
2 (Γ). Finally, A is a compact perturbation of a Fredholm operator,

so it is Fredholm as well.
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Remark 6.13: (Combined-field integral equation for scattering problems [CGLS12, §2.10]). Imagine
that we want to solve a scattering problem (32) with an incoming wave uInc defined over a neighbourhood of
Ω− (for example a plane wave).

Green’s representation (46)–(49) applied to uScat in Ω+ and to uInc in Ω− gives

Dγ+uScat − S∂+
n u

Scat = uScat, Dγ+uInc − S∂+
n u

Inc = Dγ−uInc − S∂−n uInc = 0 in Ω+.

Summing these two equalities and using that γ+uTot = 0, we have

S(−∂+
n u

Tot) = Dγ+uTot − S∂+
n u

Tot = uScat = uTot − uInc in Ω+.

(We already knew this from §5.5.1 in the case where k2 is not a Dirichlet eigenvalue, now it is clear that this
assumption is not needed.) The exterior Dirichlet and Neumann traces of this identity give

−S∂+
n u

Tot (59)
= γ+S(−∂+

n u
Tot) = γ+uTot − γ+uInc (32)

= −γ+uInc,(1

2
−D′

)
∂+
n u

Tot (59)
= ∂+

n S(−∂+
n u

Tot) = ∂+
n u

Tot − ∂+
n u

Inc ⇒
(1

2
+D′

)
∂+
n u

Tot = ∂+
n u

Inc.

As before, we linearly combine these two identities using a coupling parameter η > 0:(1

2
+D′ − iηS

)
ψ = ∂+

n u
Inc − iη γ+uInc, ψ = ∂+

n u
Tot. (72)

This is a variant of the Burton–Miller formulation (71): since the integral operator to be inverted is the same
(A′), the BIE is well-posed for all k > 0.

Equation (72) is simpler to implement than (71) because the right-hand side does not need any integral
operator. On the other hand, the right-hand side involves both traces γ+uInc and ∂+

n u
Inc of the incoming

field, so this BIE cannot be used if only the Dirichlet trace gD = −γ+uInc is known.
Another important difference is that the unknown in (72) is ψ = ∂+

n u
Tot, as opposed to ∂+

n u
Scat in (71).

Thus the corresponding representation formula is simply uScat = −Sψ .
A modification of this BIE that is continuous and coercive in L2(Γ) for any bounded star-shaped Lipschitz

domain has been recently discovered, see [CGLS12, §2.9].

Remark 6.14: (Choice of the parameter η). How to choose the coupling parameter η > 0 in (70) and (71)?
From the expression of A and A′, we can guess that η has the dimension of the inverse of a length: η multiplies
the operator S which acts as the inverse of a derivation (S : H−

1
2 (Γ)→ H

1
2 (Γ)) and is added to the identity.

So plausible choices are η ∼ k or η ∼ 1
diam (Γ) . It turns out that η = k is also a good choice to reduce the

condition number of a BEM discretisation of either (70) or (71) for large values of k.

6.2.5 Further remarks on the BIEs and extensions

Remark 6.15: (Variational formulations of II kind BIEs). In the first-kind equations (41) and (67) the
operator to be inverted is S, which mapsH−

1
2 (Γ) (the space where we look for the unknown) to its dualH

1
2 (Γ).

So testing the BIEs against elements of the same space is simple: the sesquilinear form AS(ψ, ξ) = 〈Sψ, ξ〉Γ
is well-defined for ψ, ξ ∈ H− 1

2 (Γ) and involves the extension 〈·, ·〉Γ of the L2(Γ) scalar product. This is why
in the implementation of the Galerkin-BEM matrix AGal we are allowed to use integrals over Γ (recall that we
chose piecewise-polynomial basis functions, which are in L2(Γ)).

For the second-kind integral equations we have to be more careful. E.g., in (71), the operator A′ maps
H−

1
2 (Γ) to itself. So, we cannot write 〈A′ψ, ξ〉Γ for ψ, ξ ∈ H− 1

2 (Γ) because it is not defined, but should use
the sesquilinear form (A′ψ, ξ)

H−
1
2 (Γ)

, where (·, ·)
H−

1
2 (Γ)

is the scalar product in H−
1
2 (Γ). Implementing a

BEM discretisation of this variational problem is hard, as it requires to evaluate the non-local H−
1
2 (Γ) scalar

product.28

On the other hand, if the EDP datum gD is at least in H1(Γ), which is the case for smooth incoming
waves, then the right-hand side [H − iη(D − 1

2 )]gD ∈ L2(Γ) so we can use the variational formulation

(A′ψ, ξ)L2(Γ) =

∫
Γ

(1

2
+D′ − iηS

)
ψ ξ ds =

∫
Γ

[
H − iη

(
D − 1

2

)]
gDξ ds ∀ξ ∈ L2(Γ),

28On a circular boundary Γ = S1, this would be easier as the scalar product is computed from the circular harmonics
expansion: (

∑
`∈Z v̂`e

i`θ,
∑
`∈Z ŵ`e

i`θ)
H
− 1

2 (S1)
= 2π

∑
`∈Z v̂`ŵ`(1 + `2)−

1
2 (recall definition (19)). Still, unless the Fourier

coefficients of all the functions involved are already known, this is more complicated than the simple integral appearing in
the 〈·, ·〉Γ duality.
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and look for ψ ∈ L2(Γ). This is well-posed because A′ is Fredholm also as a mapping A′ : L2(Γ) → L2(Γ),
[CGLS12, Thm. 2.27]. The Galerkin-BEM is then implemented with the same techniques of §5.2.

An alternative would be to use a Petrov–Galerkin approach: take test functions in a space different from
the trial space. For example one can seek ψ ∈ H− 1

2 (Γ) such that 〈A′ψ, ξ〉Γ = 〈[H − iη(D − 1
2 )]gD, ξ〉Γ for

all ξ ∈ H
1
2 (Γ). The Galerkin-BEM discretisation of this problem can use piecewise-constant trial functions

ψN and continuous piecewise-linear test functions ξN . The two discrete spaces have to be defined on different
compatible “dual” meshes.

Remark 6.16: (Advantages of direct formulations). The BEM approximation of Burton–Miller equation
(71) is slightly more complicated and expensive than Brakhage–Werner (70), as the right-hand side involves two
BIOs. Similarly, the direct equations (67)&(68) require a more complicated right-hand side and representation
formula than (41)&(66). What is the advantage of a direct formulation against an indirect one?

In a direct formulation, if we have some information on the properties of the EDP solution u we can include
it in the design of the approximating space VN to improve its accuracy and efficiency. For instance, in some
situations, PDE theory and high-frequency asymptotics permit to estimate the location and the strength of the
singularities of ψ = ∂+

n u
Scat, its oscillations, the different behaviour in the shadow and the illuminated parts of

Γ; see, e.g., Figure 1729. This knowledge allows to construct discrete spaces VN that ensure high accuracy with
small numbers of DOFs. This is the basic idea underlying the “hybrid numerical-asymptotic” (HNA) methods
that are the main concern of [CGLS12].

In an indirect method, the BIE solution ψ depends also on the trace of some interior problem (see Rem 6.11
and Ex. 6.12), so its efficient approximation would require also the knowledge of the corresponding eigenfunction,
which is not directly related to the physical scattering problem and might contain expensive-to-approximate
“unphysical” singularities.

Moreover, often the quantity of interest is not uScat or uTot in Ω+, but something dependent on ∂+
n u

Scat,
such as the far-field pattern u∞ (33). This is easily and accurately computed with a direct method or with
(41), but not with (66) and (70).

BIE representation density unknown direct/ kind fails for
formula ψ = ψ in indirect

(41) Sψ = gD u = Sψ −∂+
n u

Tot H−
1
2 (Γ) indirect I Dir. eig.

(66) ( 1
2 +D)ψ = gD u = Dψ Rem.6.11 H

1
2 (Γ) indirect II Neum. eig.

(67) Sψ = (D − 1
2 )gD u = DgD − Sψ ∂+

n u H−
1
2 (Γ) direct I Dir. eig.

(68) ( 1
2 +D′)ψ = HgD u = DgD − Sψ ∂+

n u H−
1
2 (Γ) direct II Neum. eig.

(70) ( 1
2 +D − iηS)ψ = gD u = (D − iηS)ψ Ex. 6.12 H

1
2 (Γ) indirect II never!

(71) ( 1
2 +D′−iηS)ψ

=[H−iη(D− 1
2 )]gD

u = DgD − Sψ ∂+
n u H−

1
2 (Γ) direct II never!

(72) ( 1
2 +D′−iηS)ψ

=∂+
n u

Inc−iηγpuInc uScat = −Sψ ∂+
n u

Tot H−
1
2 (Γ) direct II never!

Table 1: Six (+1) BIEs for the EDP (31).
They are described in [CK1]: (41) (3.44), (66) (3.26), (67) (3.83), (68) (3.81), (70) (3.51), (71) (3.84).
The BIE (72) can be used only for the SSSP (32) as it requires both traces of uInc.

Remark 6.17: (BIO diagonalisation on the circle and BIE stability). Let Γ = S1, the unit circle. Then,
all the integral operators we have encountered diagonalise in the circular harmonic basis. This means that ei`θ

is eigenfunction of S,K,K ′ and H for all ` ∈ Z. In particular the operators take the values

Sei`θ =
iπ

2
J`(k)H

(1)
` (k)ei`θ,

Dei`θ = D′ei`θ =
( iπk

2
J`(k)H

(1)
`
′(k) +

1

2

)
ei`θ =

( iπk

2
J`(k)′H

(1)
` (k)− 1

2

)
ei`θ, ` ∈ Z, k > 0

Hei`θ =
iπk2

2
J ′`(k)H

(1)
`
′(k)ei`θ.

This implies that the (spectral) Galerkin-BEM matrix with basis {ei`θ}`=−L,...,L, for any BIE on the unit circle,
gives a diagonal matrix.

29Figure 17 shows the density ψ for the indirect BIE (41). However we have seen in §5.5.1 that the solution of this BIE has
the physical interpretation ψ = −∂+

n u
Tot, while this is not true for the solutions of the other indirect BIEs (66) and (70).
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This offers a very simple way to study the spurious resonances of the BIEs. We denote λT,` the eigenvalue
of an operator T associated to ei`θ, i.e. T ei`θ = λT,`e

i`θ. In Figure 19 we plot the values ‖(AGal)−1‖ =

inf`∈{−L,...,L} |λT,`|−1 for L = 30 as a function of the wavenumber k. Large values of this norm signal that
the linear system is close to singular, and that the corresponding BIE is not invertible for nearby values of
k. We observe these instabilities near the (square roots of the) Dirichlet eigenvalues for the operator T = S
(corresponding to the BIEs (41) and (67)) and near the Neumann eigenvalues for the operator T = 1

2 + D
(corresponding to the BIEs (66) and (68), since ‘taking the adjoint’ does not change the operator norm). On
the other hand, the operator T = A = 1

2 +D− ikS of the BIEs (70) and (71) is bounded uniformly. (Here we
have chosen η = k in accordance to Remark 6.14, while choosing η = max{k, 1} would stabilise the operator
also for k → 0, which is a Neumann eigenvalue.)

Figure 19: The norm of the inverses of the operators of the BIEs of Table 1 for Γ = S1. The operator
norm is approximated by the norm of the inverse of the Galerkin-BEM matrix with basis (ei`θ)`=−30,...,30,
which is a diagonal matrix as described in Remark 6.17. The strong peaks in correspondence of the
square roots of the Dirichlet (©) and Neumann (∗) eigenvalues of the disc are the spurious resonances.
Only the combined-field operator A = 1

2 +D − ikS (yellow line) is stable for all wavenumbers.

Remark 6.18: (Exterior Neumann problem). So far we have only considered exterior Dirichlet problems.
All techniques and results can be extended to the exterior Neumann problem: find u ∈ H1

loc(Ω+) such that

∆u+ k2u = 0 in Ω+, ∂+
n u = gN on Γ, u radiating, (73)

where gN ∈ H−
1
2 (Γ) is a boundary datum. The corresponding sound-hard scattering problem is

∆uScat + k2uScat = 0 in Ω+, ∂+
n (uScat + uInc) = 0 on Γ, uScat radiating,

which is a special case of (73) for gN = −∂+
n u

Inc. The tools needed to construct BIEs for this problem are
the same already introduced: the four BIOs (S,D,D′, H), the two layer potentials (S,D) and their relations.
We can construct six BIEs, proceeding precisely as we have done for the Dirichlet case in the previous sections:
see the summary in Table 2. Coding a BEM for the exterior Neumann problem is slightly harder than for the
EDP (31) because there is no BIE involving only the single-layer operator S and many of the BIEs listed require
the hypersingular operator H. See also [Sayas06, §11].

Exercise 6.19: (BIEs for the exterior Neumann problem). Derive the six BIEs in Table 2 for the exterior
Neumann problem (73). Start from the representation formulas and use the trace relations (59).

Exercise 6.20: (BIO diagonalisation on the circle). (i) Read carefully Remark 6.17 and reproduce Figure 19.
(ii) Repeat the same for the exterior Neumann problem described in Remark 6.18.
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[CK1] BIE representation density direct/ kind fails for
eq.# formula ψ = indirect
(3.29) (− 1

2 +D′)ψ = gN u = Sψ indirect II Dir. eig.
(3.47) Hψ = gN u = Dψ γ+uTot indirect I Neum. eig.
(3.82) (− 1

2 +D)ψ = SgN u = Dψ − SgN γ+u direct II Dir. eig.
(3.85) Hψ = ( 1

2 +D′)gN u = Dψ − SgN γ+u direct I Neum. eig.
(3.53) (− 1

2 +D′ + iηH)ψ = gN u = (S + iηD)ψ indirect II never

(3.86) (− 1
2 +D+iηH)ψ

=(S+iη( 1
2 +D′))gN

u = Dψ − SgN γ+u direct II never

Table 2: Six BIEs for the exterior Neumann problem (73). The first column indicates the equation number
in [CK1]. Note the symmetry with the Dirichlet case in Table 1.

Exercise 6.21: (Exterior impedance problem). Consider the exterior impedance problem

∆u+ k2u = 0 in Ω+, ∂+
n u+ ikϑ γ+u = gI on Γ, u radiating, (74)

for gI ∈ H−
1
2 (Γ) and ϑ ∈ L∞(Γ), ess inf ϑ > 0. (For the interior impedance BVP (27) on Ω− we used the

condition with opposite sign ∂−n u − ikϑγ−u = gI : the two choices are consistent because n, entering the
definition of ∂±n , points in Ω+ and out of Ω−.)
• Using Lemma 5.16, prove that (74) admits at most one solution.

• Show that u = Sψ, for ψ ∈ H− 1
2 (Γ) solution of the BIE ( 1

2 − D
′ − ikϑS)ψ = −gI , is solution of (74).

Show that the operator of this BIE is injective if and only if k2 is not a Dirichlet eigenvalue in Ω−.

• Show that u = (S + iηD)ψ solves (74) if ψ is solution of the combined-field BIE(1 + kϑη

2
− iϑkS + ηϑkD −D′ − iηH

)
ψ = −gI .

Finally, show that the operator of this BIE is injective for all k > 0 and η > 0.
For help and more details, see [CK1, §3.7].

6.2.6 There is much more than this!

In these notes we have considered exterior Dirichlet BVPs for the 2D Helmholtz equation. However
BIEs and BEMs have a much broader range of applicability. They may be used to model, analyse
and approximate Helmholtz BVPs posed on bounded domains, on domains with unbounded or non-
Lipschitz boundaries, transmission problems (i.e. multiple Helmholtz equations with different wavenumbers
on different domains, coupled by Dirichlet and Neumann conditions),. . . .

BIEs can be used for much more general linear PDEs (of all kinds: elliptic, parabolic and hyperbolic)
in any dimension, including systems of PDEs such as those of elasticity and electromagnetism (recall §1.3–
1.4). The main requirement for implementing a BEM is that the fundamental solution of the problem is
known, either in exact or approximate form.

A BEM can be coupled with a FEM (or another volume-based method) for approximating problems
with different physical models in different subdomains. Typically, FEMs are used in small regions of high
geometric complexity, variable coefficients or non-linearities, and BEMs are used to deal with unbounded
regions where coefficients are constant.

The use of BEM in applications requires the solution of large dense linear systems. Often their solution
with direct methods (such as Gauss elimination) is too expensive and they are often solved with iterative
(Krylov) methods such as GMRES, usually with preconditioning. For large systems, even assembling
the matrix may be unfeasible. Thus several techniques to compute matrix–vector multiplications, which
are the key steps in Krylov methods, without explicitly assembling the matrix have been developed.
These techniques exploit the structure of the BEM matrix and the properties of the fundamental solution.
Important realisations of this idea are the fast multipole method (FMM), the panel clustering and the
hierarchical matrices (H-matrices).

An open-source, high-performance Galerkin-BEM code with a Python interface is Bempp. On its web-
site (http://bempp.com/) you can find examples of the use of BEM for high-intensity focused ultrasound
medicine (where the underlying PDE is the Helmholtz equation) and electromagnetic wave scattering.

http://bempp.com/
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Another important numerical method for the discretisation of BIEs is Nyström method, which can
converge extremely fast for smooth scatterers; see [CK2, §3.5] for the application to 2D Brakhage–Werner
equation or [Sayas15, pp. 33 and 36] for the Laplace case.

Plenty of information can be found in the references in the bibliography and in the books mentioned
in Remark 5.23.

6.3 Error analysis of the Galerkin method applied to Gårding-
type problems

6.3.1 Abstract variational framework

We recall the general variational problem (22) and its Galerkin approximation (23):

find u ∈ H such that A(u,w) = F(w) ∀w ∈ H, (75)

find uN ∈ VN such that A(uN , wN ) = F(wN ) ∀wN ∈ VN , (76)

where H is a Hilbert space, VN ⊂ H is a finite-dimensional subspace, A(·, ·) and F(·) are a sesquilinear
and a continuous antilinear functional on H.

If A(·, ·) is continuous and coercive in H, the stability and error analysis of the Galerkin method is
simple, thanks to Lax–Milgram theorem and Céa lemma. Unfortunately, the variational problems studied
in this course fall outside of this framework. The key result to extend Céa lemma to problems satisfying a
Gårding inequality is the following theorem. This is a modification of the classical “Aubin–Nitsche duality
trick” used also in finite element analysis; in the context of Helmholtz problems it is often called “Schatz
argument”. Here we closely follow [Spence14, Thm. 5.21].

Theorem 6.22: (Galerkin method for Gårding inequality). LetH ⊂ V be Hilbert spaces and the inclusion
be compact. Let A(·, ·) be a continuous sesquilinear form on H that satisfies the Gårding inequality (24):

|A(v, w)| ≤ CA ‖v‖H ‖w‖H , <
{
A(v, v)

}
≥ α ‖v‖2H − CV ‖v‖

2
V , ∀v, w ∈ H (α,CV , CA > 0).

Assume that the only u0 ∈ H such that A(u0, v) = 0 for all v ∈ H is u0 = 0 (so that the variational problem
(75) is well-posed for any right-hand side). Let F(·) be a continuous linear functional on H and u be the
solution of the variational problem (75).
Given f ∈ V , let zf ∈ H be the solution of the adjoint problem

A(v, zf ) = (v, f)V ∀v ∈ H, (77)

where (·, ·)V is the scalar product in V . Let VN be a finite-dimensional subspace of H and define

η(VN ) := sup
f∈V,f 6=0

min
vN∈VN

‖zf − vN‖H
‖f‖V

. (78)

If η(VN ) satisfies the threshold condition

η(VN ) ≤ 1

CA

√
α

2CV
, (79)

then the Galerkin method (76) is well-posed and its solution uN satisfies the quasi-optimality bound

‖u− uN‖H ≤
2CA
α

min
vN∈VN

‖u− vN‖H . (80)

The statement of this theorem is not simple and requires some explanation. Our goal is to prove
that the Galerkin method is well posed and the quasi-optimality bound (80) holds. This ensures that the
Galerkin error ‖u− uN‖H is controlled by the best-approximation error, i.e. by the best error achievable
if we knew the exact solution u and we tried to approximate it with the discrete space VN . Quasi-
optimality holds for all finite-dimensional subspaces VN ⊂ H when we are in a Lax–Milgram setting,
i.e. when A(·, ·) is coercive. The bad news is that this is not true for all VN if A(·, ·) only satisfies a
Gårding inequality. The good news is that well-posedness and quasi-optimality hold if VN “has sufficiently
good approximation properties”. How do we measure the approximation properties of a discrete space?
The “adjoint approximability parameter” η(VN ) in (78) precisely quantifies how well VN approximates
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the solution of the “adjoint problem” (77), whose datum f is an arbitrary element of the larger space V .
The smaller η(VN ), the better the approximation offered by VN . If the “threshold condition” (79) holds,
i.e. η(VN ) is smaller than a certain quantity that depends on A(·, ·), then we have what we want: the
well-posedness of the Galerkin method and its quasi-optimality.30

In brief, Theorem 6.22 states, in a precise quantitative way, the following:

if the discrete space is sufficiently fine, then the Galerkin method (applied to a well-posed
Gårding-type problem) is well-posed and quasi-optimal.

If we have a dense sequence of discrete spaces (VN )N∈N (i.e. such that infvN∈VN ‖v − vN‖H → 0 for
N → ∞ and for all v ∈ H) then the theorem states that we eventually achieve convergence. Typically,
for constant-degree piecewise-polynomial FEM or BEM, this means that the method is guaranteed to be
well-posed and quasi-optimal if the mesh employed is sufficiently fine. In the next sections we analyse a
couple of examples coming from discretisations of the Helmholtz equation.

The phenomenon described by Theorem 6.22 is often observed numerically. When we approximate a
Laplace-type problem with a sequence of meshes we observe a reduction of the error starting from the
first mesh refinements. For a Helmholtz-type problem, mesh refinement doesn’t give any improvement in
the solution until some threshold h0 on the mesh size h is reached; for h < h0 we observe convergence of
the error to zero.

Proof of Theorem 6.22. We follow [Spence14, Thm. 5.21].31
We first assume that the Galerkin method (76) admits a solution uN . We recall the Galerkin or-

thogonality A(u − uN , vN ) = 0 which holds for all vN ∈ VN . In the following bound we use the adjoint
problem (77) with source term f = u− uN and denote by wN ∈ VN the element minimising the ratio in
the definition (78) of the approximability parameter η(VN ). We first control the (weaker) V norm of the
Galerkin error, exploiting the adjoint problem:

‖u− uN‖2V = A(u− uN , zu−uN ) adjoint problem (77)
= A(u− uN , zu−uN − wN ) Galerkin orthogonality
≤ CA ‖u− uN‖H ‖zu−uN − wN‖H continuity of A(·, ·)
≤ CAη(VN ) ‖u− uN‖H ‖u− uN‖V definition of η(VN ) (78)

≤
√

α

2CV
‖u− uN‖H ‖u− uN‖V threshold condition (79).

Then also the (stronger) H norm of the error can be controlled:

α ‖u− uN‖2H ≤ <{A(u− uN , u− uN )}+ CV ‖u− uN‖2V Gårding inequality (24)

= <{A(u− uN , u− vN )}+ CV ‖u− uN‖2V Galerkin orthogonality, ∀vN ∈ VN
≤ CA ‖u− uN‖H ‖u− vN‖H + CV ‖u− uN‖2V continuity of A(·, ·)

≤ CA ‖u− uN‖H ‖u− vN‖H +
α

2
‖u− uN‖2H

where in the last step we used the previous bound (after simplifying a term and squaring). Moving
the last term to the left-hand side of the equation, and simplifying ‖u− uN‖H , we obtain the desired
quasi-optimality bound (80).

Taking vN = 0 in (80) and using the triangle inequality, we have the stability estimate ‖uN‖H ≤
(1+ 2CA

α ) ‖u‖H . By the injectivity assumption stipulated in the theorem, if F = 0 then u = 0 and, by this
stability bound, also uN = 0. This means that the solution of the Galerkin method (76) is at most unique.
Since the method is equivalent to a square N ×N linear system, uniqueness implies well-posedness. We
conclude that uN exists, so the assumption made at the beginning of the proof is justified.

Remark 6.23: (Galerkin method for compactly perturbed problem). A related error analysis of the
Galerkin approximation of variational problems whose sesquilinear form is sum of a coercive and a compact one

30A (surprising) theorem by Gohberg and Fel’dman (1971) states that, given a continuous linear operator A : H → H,
this is sum of a coercive and a compact operator if and only if the Galerkin method for (Au, v)H = (f, v)H converges for
all sequences (HN )N∈N of nested finite-dimensional subspaces such that limN→∞ infuN∈HN ‖u− uN‖H = 0 for all u ∈ H.
In words: the Galerkin method converges for all dense subspace sequences iff the problem is a compact perturbation of a
coercive problem. In this section we are studying the implication “compactly-perturbed problem⇒Galerkin convergence”,
the converse means that we cannot expect this to hold in a much more general setting.

31This proof should remind you the derivation of error estimates on the L2 norm of the error of classical finite elements
for elliptic problems.
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is presented in [SBH19, §8.9]. This theory is simpler, does not use the adjoint problem, and it is slightly more
general: it does not require the Gårding inequality but only the Fredholm property. On the other hand, the
threshold condition (79) and the quasi-optimality bound (80) obtained this way are not explicit.

Exercise 6.24: (Parameter tuning). Show that if we assume η(VN ) ≤ 1
CA

√
α
bCV

for some b > 1 instead of

(79), then the quasi-optimality constant 2CA
α in (80) can be substituted by b

b−1
CA
α .

This means that, with this proof, we can win at most a factor
√

2 in the threshold on η(VN ) (i.e. allow a
slightly coarser discrete space), paying with a poorer quasi-optimality constant. Conversely (choosing b > 2)
one can reduce by a factor at most 2 the quasi-optimality constant, paying with a more restrictive threshold
condition. In brief: in Theorem 6.22 we arbitrarily chose the factor 2 that appears in (79) and (80), but other
choices don’t give substantial improvements.

In the next two sections we sketch how to apply Theorem 6.22 to two exemplary problems: the FEM
for the interior Helmholtz problem, and the BEM for the exterior Dirichlet problem. We use several results
from the theory of PDEs, BIOs and FEMs, without justifying their use in full details.

6.3.2 FEM error analysis for interior problems

To better understand Theorem 6.22 we apply it to the simplest problem we know in this setting: the
variational formulation (26) of the interior Helmholtz Dirichlet problem (25). Here Ω ⊂ R2 is a bounded
Lipschitz domain,

H = H1
0 (Ω), V = L2(Ω), A(u,w) =

∫
Ω

(∇u∇w − k2uw) dx.

It is convenient to use a dimensionally-homogeneous version of the H1(Ω) norm, weighted with the
wavenumber k:

‖v‖2H1
k(Ω) := |v|2H1(Ω) + k2 ‖v‖2L2(Ω) .

With this norm, the constants in the Gårding inequality and in the continuity of A(·, ·) are

α = 1, CV = 2k2, CA = 1.

For each f ∈ L2(Ω), the adjoint problem (77) consists in finding zf ∈ H1
0 (Ω) such that∫

Ω

(∇v∇zf − k2vzf ) dx =

∫
Ω

vf dx ∀v ∈ H1
0 (Ω),

where at the right-hand side we simply have the V = L2(Ω) scalar product. Taking the complex conjugate,
this is again (26), the variational formulation of the interior Helmholtz Dirichlet problem:

∆zf + k2zf = −f in Ω, γu = 0 on ∂Ω.

This is because the Helmholtz Dirichlet problem is self-adjoint: it coincides with its adjoint. We assume
that k2 is not a Dirichlet eigenvalue in Ω: this corresponds to the assumption made in the theorem that the
homogeneous problems admits only the trivial solution. Well-posedness comes with stability, also for the
adjoint problem: ‖zf‖H1

k(Ω) ≤ Cstab ‖f‖L2(Ω), for some Cstab > 0 depending on k and Ω but independent
of f (and which may be difficult to estimate).

Since zf ∈ H1
0 (Ω) and ∆zf = −f − k2zf ∈ L2(Ω), by elliptic regularity [Ihl98, Prop. 2.24], if Ω

is a smooth or convex domain then zf ∈ H2(Ω) and ‖zf‖H2(Ω) ≤ CH2

∥∥f + k2zf
∥∥
L2(Ω)

≤ CH2(1 +

kCstab) ‖f‖L2(Ω) for some CH2 > 0 depending on Ω. Assume VN is the space of piecewise-linear fi-
nite elements on a quasi-uniform, shape-regular triangulation of Ω with mesh size h. Classical finite-
element approximation estimates (Bramble–Hilbert lemma, e.g. as in [Ihl98, eq. (4.1.10)]) state that
infvN∈VN ‖v − vN‖H1

k(Ω) ≤ CBHh ‖v‖H2(Ω) for all v ∈ H2(Ω) and for some CBH that depends on Ω,
k and the “chunkiness” of the mesh elements32. Collecting all these bounds:

inf
vN∈VN

‖zf − vN‖H1
k(Ω) ≤ CBHh ‖zf‖H2(Ω) ≤ hCBHCH2(1 + kCstab) ‖f‖L2(Ω) ∀f ∈ L2(Ω).

We have obtained a bound on the adjoint approximability parameter defined in (78):

η(VN ) ≤ hCBHCH2(1 + kCstab).

32More precisely, infvN∈VN ‖v − vN‖H1
k

(Ω) ≤ C′BH(h+ h2k) |v|H2(Ω) for C′BH independent of k.



Galerkin error analysis for Gårding-type problems |69| A. Moiola — February 28, 2022

Then the threshold condition (79) is satisfied if h ≤ h?, where

h? :=
1

CACBHCH2(1 + kCstab)

√
α

2CV
≤ 1

2k CBHCH2(1 + kCstab)
.

If the finite element mesh size h is smaller than this value, then the method is well-posed and the quasi-
optimality bound (80)

‖u− uN‖H1
k(Ω) ≤ 2 min

vN∈VN
‖u− vN‖H1

k(Ω)

holds. This gives a recipe to choose a suitable mesh and predict what is the computational effort required
for the FEM to approximate the solution u of the Dirichlet problem (25) to a desired accuracy.

Exercise 6.25: (Galerkin method for the impedance problem). Repeat the argument of this section for
the FEM applied to the interior impedance problem (28). Which of the assumptions in Theorem 6.22 comes
for free?

Remark 6.26: (k-dependence in the FEM). We observe that the mesh size threshold h? decreases with
k →∞: this means that higher frequencies require finer meshes (and larger linear systems: in 2D the number
of DOFs involved in a standard FEM discretisation is proportional to h−2). In Remark 5.6 we explained why
h . k−1 is needed to maintain a given level of approximation for large k. Here instead we are not looking at
the approximability of the solution, but at the stability of the Galerkin scheme: the bound on h? is needed to
ensure well-posedness and quasi-optimality.

Moreover, we observe that h? grows more than linearly in k−1.33 So, while h = O(k−1) (N ≈ k2 DOFs)
is enough to ensure good approximation properties, we need finer meshes with h = O(k−a) (N ≈ k2a DOFs)
for some a > 1 to ensure stability.

This is not an artefact of the proof but can be observed numerically and is a major problem in the numerical
analysis of high-frequency time-harmonic problems. This notorious phenomenon is called pollution effect; it
is described e.g. in [Ihl98, §4.6]. High-order methods (i.e. FEM with high-degree piecewise-polynomial discrete
spaces) perform better under this respect. A great deal of research is devoted to the design of Galerkin schemes
for time-harmonic problems that are robust and accurate for large wavenumbers.

Exercise 6.27: (FEM numerical experiments). Use piecewise-linear finite elements on a quasi-uniform mesh
to approximate an interior Helmholtz BVP. Choose either a (well-posed) Dirichlet or an impedance problem, in
1D or in 2D.

Plot the norm of (i) the Galerkin error and (ii) the best-approximation error (e.g. computed with the L2(Ω)
projection) for decreasing mesh sizes h. Repeat the same plot for different values of k. Observe how the
best-approximation error starts to converge only for h ≈ k−1, while the Galerkin method needs even smaller h
to start converging. Study numerically the quasi-optimality constant in dependence of k.

You can try to reproduce the example in Figure 20.

6.3.3 BEM error analysis for the single-layer BIE

We want to apply Theorem 6.22 to the Galerkin-BEM discretisation (§5.2) of the single-layer BIE Sψ = gD,
(41). Our goal is to show that the piecewise-constant Galerkin-BEM is well-posed and quasi-optimal if
the mesh size h is sufficiently small. We recall the variational formulation (43):

find ψ ∈ H− 1
2 (Γ) such that A(ψ, ξ) := 〈Sψ, ξ〉Γ = 〈gD, ξ〉Γ =: F(ξ) ∀ξ ∈ H− 1

2 (Γ).

The space in which the variational problem is posed is H = H−
1
2 (Γ). The continuity constant of the

sesquilinear form A(·, ·) is CA = ‖S‖
H−

1
2 (Γ)→H

1
2 (Γ)

(with the Hs(Γ) norms defined as in Exercise 3.6).

We have seen in §6.1 that the operator S : H−
1
2 (Γ) → H

1
2 (Γ) is Fredholm but we haven’t proved a

Gårding inequality yet. The Fredholm property of S was proved from the decomposition S = Sc+(S−Sc)
for c ≥ 0, where the first term is coercive and the second compact. Recall from §6.1.2 that Sc is the single-
layer operator for the reaction–diffusion or the Laplace equation, for c > 0 or c = 0, respectively. In the
following we choose c > 0 for simplicity. To write a Gårding inequality for A(·, ·) we need a space V larger
than H−

1
2 (Γ) (recall that H−

1
2 (Γ) is larger than L2(Γ)). To identify this space V we need to study the

mapping properties of S − Sc and write a Gårding inequality.
33The bound suggests a quadratic growth h? ≈ k−2, but h? ≈ k−3/2 is typically enough [Ihl98, eq. (4.7.41)]. Here we

are not taking into accounts that Cstab depends on k; this dependence is more easily studied for impedance problems and
simple geometries (Ω convex or star-shaped).
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Figure 20: Error analysis of the finite element approximation of an interior impedance Helmholtz BVP.
We consider the simple 1D problem u′′+k2u = 0, u′(0)+iku(0) = 2ik, u′(1)− iku(1) = 0 on the interval
Ω = (0, 1) for k = 10, 100, 1000. We approximate u(x) = eikx with piecewise-linear finite elements on
uniform meshes with element size h and N = 1 + 1/h DOFs.
In blue we see the Galerkin relative error ‖u−uN‖•‖u‖•

in L2(0, 1) (© markers) and H1
k(0, 1) (� markers)

norms plotted against h ∈ {2−1, 2−2, . . . , 2−18}. We compare against the L2(0, 1) (∗ markers) and
H1
k(0, 1) (+ markers) best approximation errors (computed by the orthogonal projection with the rele-

vant matrices). We observe three regimes:
(i) for 2π

k . h (right) u is not approximated at all, the wave is not resolved by the discrete space;
(ii) for 2π

k3/2 . h . 2π
k (centre) the best approximation error decays with optimal order, while the Ga-

lerkin error remains roughly constant;
(iii) for h . 2π

k3/2 (left part of each plot) the Galerkin error decays with optimal rate.
The lower plots show the quasi-optimality ratio.
The presence of the regime (ii) (in which the Galerkin solution performs much worse than the best
approximation) and the growth of the quasi-optimality ratio for increasing values of k are signals of the
pollution effect. See Remark 6.26 and Exercise 6.27.

We have seen numerically in §6.1.3 (in particular in Figure 18) that, on the circular boundary Γ = ∂BR,
S−Sc : Hs(Γ)→ Hs+3(Γ) for all s ∈ R. We assume that Γ is sufficiently regular so that S−Sc : H−1(Γ)→
H1(Γ) is a continuous operator. We denote its operator norm by C1 := ‖S − Sc‖H−1(Γ)→H1(Γ), depending
only on k, c, Γ. Then the bound

|〈(S − Sc)ψ, ξ〉Γ| ≤ ‖(S − Sc)ψ‖H1(Γ) ‖ξ‖H−1(Γ) ≤ C1 ‖ψ‖H−1(Γ) ‖ξ‖H−1(Γ) ∀ψ, ξ ∈ H−1(Γ)

and the coercivity of Sc shown in §6.1.5 give the Gårding inequality: ∀ψ ∈ H− 1
2 (Γ),

<
{
A(ψ,ψ)

}
= <

{
〈Sψ, ψ〉Γ

}
= <

{
〈Scψ,ψ〉Γ

}
+ <

{
〈(S − Sc)ψ,ψ〉Γ

}
≥ αc ‖ψ‖2

H−
1
2 (Γ)
− C1 ‖ψ‖2H−1(Γ)

where αc := 1
2Ctr max{1,c2} and Ctr is the continuity constant of the normal trace operator in (65). This

Gårding inequality suggests to choose V = H−1(Γ).
The adjoint problem (77) is:

given f ∈ H−1(Γ), find zf ∈ H−
1
2 (Γ) such that A(ξ, zf ) = 〈Sξ, zf 〉Γ = (ξ, f)H−1(Γ) ∀ξ ∈ H− 1

2 (Γ).

From A(v, w) = A(w, v) (which can be verified by the definitions of A(·, ·) and S) and (v, w)H−1(Γ) =

(w, v)H−1(Γ), we can rewrite the equation as A(zf , ξ) = (f, ξ)H−1(Γ). Dropping the complex conjugates,
we obtain A(zf , ξ) = (f, ξ)H−1(Γ). Since H−1(Γ) 3 ξ 7→ (f, ξ)H−1(Γ) defines a continuous antilinear
functional on H−1(Γ), it can be represented by an element F ∈ H1(Γ) with ‖F‖H1(Γ) ≤ C∗ ‖f‖H−1(Γ)

(i.e. (f, ξ)H−1(Γ) = 〈F, ξ〉Γ, recall §3.3.3). Thus the adjoint problem is again the single-layer BIE Szf = F
for a “smooth” datum F ∈ H1(Γ).

Assume that k2 is not a Dirichlet eigenvalue for Ω− (which we need to assume for the BIE to be
well-posed, as required by the theorem). Then S : H−

1
2 (Γ)→ H

1
2 (Γ) is invertible, as explained in §6.1.1.
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It is possible to show that the single-layer operator is invertible34 also as S : L2(Γ)→ H1(Γ). This implies
a regularity result for the adjoint problem: zf ∈ L2(Γ).

The adjoint problem solution zf is an element of L2(Γ) which can be approximated by the piecewise-
constant space VN defined in §5.2. Indeed, approximation (and operator interpolation) theory gives that
there exists a discrete function vN ∈ VN and a CApp > 0 independent of h and zf such that35

‖zf − vN‖
H−

1
2 (Γ)
≤ CApph

1
2 ‖zf‖L2(Γ) ≤ CApph

1
2

∥∥S−1
∥∥
H1(Γ)→L2(Γ)

‖F‖H1(Γ)

≤ C∗CApph
1
2

∥∥S−1
∥∥
H1(Γ)→L2(Γ)

‖f‖H−1(Γ) .

Recall that h is the length of the longest mesh element. This corresponds to an estimate on η(VN ):

η(VN ) = sup
f∈H−1(Γ)

min
vN∈Vn

‖zf − vN‖
H−

1
2 (Γ)

‖f‖H−1(Γ)

≤ C∗CApph
1
2

∥∥S−1
∥∥
H1(Γ)→L2(Γ)

.

Similarly to the FEM case in §6.3.2, we have proved that if h is sufficiently small then the threshold
condition (79) is satisfied and the Galerkin-BEM is well-posed and quasi-optimal.36

34We know S : L2(Γ) → H1(Γ) is injective for this choice of k. We have seen in §6.1.4 that S − S0 : L2(Γ) → H1(Γ) is
compact, as it corresponds to an integral operator with bounded kernel. It also holds that S0 : L2(Γ)→ H1(Γ) is invertible.
Then Fredholm alternative Theorem 3.12 yields the invertibility of S in the desired spaces.

35In order to bound η(VN ), both in the FEM and in the BEM cases, we used three main ingredients: (i) the stability of
the adjoint problem, (ii) a regularity result for its solution, and (iii) an approximation result. In the FEM case, (i)–(ii)–
(iii) correspond to the terms Cstab, CH2 and CBH , respectively. In the BEM case, stability and regularity together give
C∗
∥∥S−1

∥∥
H1(Γ)→L2(Γ)

and the approximation term gives CApp.
36More precisely, if h ≤ h? for

h? :=
(

4 max{1, c2}C2
∗C

2
AppCtr ‖S‖2

H
− 1

2 (Γ)→H
1
2 (Γ)

‖S − Sc‖H−1(Γ)→H1(Γ)

∥∥S−1
∥∥2

H1(Γ)→L2(Γ)

)−1
,

we have the quasi-optimality estimate (80)

‖ψ − ψN‖
H
− 1

2 (Γ)
≤ Cqo inf

vN∈VN
‖ψ − vN‖

H
− 1

2 (Γ)
, Cqo := 4Ctr max{1, c2} ‖S‖

H
− 1

2 (Γ)→H
1
2 (Γ)

.

Both h? and Cqo depends only on Γ, k and c (which can be chosen arbitrarily).
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A Useful calculus formulas and notation

BR(x) := {y ∈ Rn : |y − x| < R}, BR := BR(0),

polar coordinates: (x1, x2) = (r cos θ, r sin θ), r ≥ 0, 0 ≤ θ < 2π, dx1 dx2 = r dr dθ,

eiz = cos z + i sin z, cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
, < = real part, = = imaginary part,

v ×w := (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1), u× (v ×w) = v(u ·w)−w(u · v),

∇u :=
( ∂u
∂x1

, . . . ,
∂u

∂xn

)
, div v := ∇ · v :=

∂v1

∂x1
+ · · ·+ ∂vn

∂xn
,

∆u := ∇2u := div(∇u) =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

if n=2
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
,

curl v := ∇× v :=
( ∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
,

curl∇u = 0, div curl v = 0,

curl curl v = ∇(∇ · v)−∆v

=
(

∂2v2

∂x1∂x2
+ ∂2v3

∂x1∂x3
− ∂2v1

∂x2
2
− ∂2v1

∂x2
3
, ∂2v1

∂x1∂x2
+ ∂2v3

∂x2∂x3
− ∂2v2

∂x2
1
− ∂2v2

∂x2
3
, ∂2v1

∂x1∂x3
+ ∂2v2

∂x2∂x3
− ∂2v3

∂x2
1
− ∂2v3

∂x2
2

)
.

B Bessel function formulas

All these formulas can be found in [DLMF, §10] and [CK2, §3.4]. Here r > 0 and ` ∈ Z.

r2f ′′(r) + rf ′(r) + (r2 − `2)f(r) = 0, Bessel differential equation, f ∈ {J`, Y`, H(1)
` , H

(2)
` },

J`(r) =
(r

2

)` ∞∑
j=0

(−1)j
( 1

4r
2)j

j!(`+ j)!
` ∈ N0,

J−` = (−1)`J`, Y−` = (−1)`Y`, J ′` =
J`−1 − J`+1

2
, Y ′` =

Y`−1 − Y`+1

2
,

H
(1)
` := J` + iY`, H

(2)
` := J` − iY` = H

(1)
` ,

∂

∂r
|H(1)

` (r)| < 0,

eir cosα =
∑
`∈Z

i`J`(r)e
i`α Jacobi–Anger formula, α ∈ R,

J`(r) =

√
2

πr
cos
(
r − `π

2
− π

4

)(
1 +Or→∞

(1

r

))
, Y`(r) =

√
2

πr
sin
(
r − `π

2
− π

4

)(
1 +Or→∞

(1

r

))
,

H
(1)
` (r) ∼ −i

√
2

π

( 2

er

)`
``−

1
2 for `→∞,

J`(r) ∼
r`

`! 2`
` ∈ N0, H

(1)
0 (r) ∼ 2i

π
log r, H

(1)
` (r) ∼ − i

π
(`− 1)!

2`

r`
` ∈ N, for r ↘ 0.

Here a(x) ∼ b(x) for x→ X means that limx→X
a(x)
b(x) = 1.

C List of acronyms

• BCs: boundary conditions.

• BEM: boundary element method.

• BIE: boundary integral equation.

• BIO: boundary integral operator.

• BVP: boundary value problem.

• DOFs: degrees of freedom.

• DtN: Dirichlet-to-Neumann map.

• EDP: exterior Dirichlet problem.

• FEM: finite element method.

• PDE: partial differential equation.

• PEC: perfect electric conductor.

• SSSP: sound-soft scattering problem.

• TE: transverse-electric.

• TEM: transverse-electric and magnetic.

• TM: transverse-magnetic.

https://dlmf.nist.gov/10
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D Summary

In this course we studied the boundary element method (BEM) for the numerical approximation of sound-
soft scattering problems for the homogeneous Helmholtz equation in two dimensions.

The Helmholtz equation ∆u + k2u = 0 is relevant because it characterizes the space dependence
u(x) of time-harmonic solutions U(x, t) = <{u(x)e−iωt} of the wave equation 1

c2
∂2U
∂t2 − ∆U = 0, where

k = ω/c > 0 is the wavenumber, ω the time frequency and c the wave speed (§1.2). The wave equation
models the propagation and the scattering of acoustic waves (§1.1). The Helmholtz equation arises also
in the modelling of electromagnetic (§1.3) and elastic (§1.4) waves.

The solutions of the Helmholtz equation that are separable in Cartesian coordinates are the plane
waves (§2.2), which are either propagative or evanescent (§2.2.1). The solutions that are separable in
polar coordinates are the circular waves, which are products of Bessel (J`, Y`) and Hankel (H(1)

` , H(2)
` )

functions (§2.3) in the radial variable r (times k) and circular harmonics ei`θ in the angular variable.
We can easily compute by hand the reflection of a plane wave hitting an infinite straight line equipped

with Dirichlet, Neumann, or impedance conditions (§4.1). In order to study the wave scattering by
bounded obstacles we need to deal with Lipschitz domains (§3.1), function spaces defined on them (§3.2)
and on their boundaries (§3.3) and Green’s identities (§3.4). With these tools we can formulate the
exterior Dirichlet problems, and in particular the sound-soft scattering problems (§4.3.2). The simplest
example is given by a circular scatterer (§4.3.1), for which we can write the solution explicitly. The
key condition “at infinity”, used to select the correct solution, is the Sommerfeld radiation condition
|∂ru− iku| = or→∞(r−1/2).

Using the fundamental solution Φk of the Helmholtz equation, we define the single-layer potential S
and the single-layer operator S. These allow to write the boundary integral equation (BIE) Sψ = gD and
the representation formula u = Sψ. Solving the BIE and applying the representation formula we obtain
the solution of the exterior Dirichlet problem (§5.1). The BIE can be discretised with a collocation-BEM
or a Galerkin-BEM (§5.2). The implementation of the BEM requires a careful use of quadrature formulas
(§5.2.1). Several variations and extensions of the BEM are possible (§5.2.2).

The analysis of the Helmholtz equation (in the form of boundary value problem or BIE) involves
non-coercive variational problems that admit Gårding inequalities, and relies on Fredholm theory (§3.5).
This allows to study BVPs posed both in bounded domains (§4.2), which are closely related to Laplace
eigenvalue problems, and in exterior domains (§4.3). An important formula is Green’s representation,
which allows to write Helmholtz solutions in terms of their traces (§5.3). One can also define the double-
layer potential D and operator D (§5.4), the adjoint double-layer operator D′ and the hypersingular
operator H (§5.5). The two potentials and the four operators are related to one another by the Dirichlet
and Neumann trace operators (59), which determine the jump relations (60).

The well-posedness of the single-layer BIE (§6.1) follows from the injectivity and the Fredholm property
of S, The injectivity holds only when k2 is not a Laplace eigenvalue (§6.1.1). The Fredholm property
(§6.1.2) is obtained by decomposing S in the sum of a coercive part related to the reaction-diffusion
equation (§6.1.5) and a compact part corresponding to a bounded kernel function (§6.1.4).

Many other integral equations are possible for the same exterior Dirichlet problem (§6.2), some of
which are well-posed for all values of k (§6.2.3, §6.2.4).

Galerkin discretisations of non-coercive problems that satisfy a Gårding inequality are well-posed and
quasi-optimal if the discrete space is “sufficiently fine” (§6.3.1). This applies to both the finite element
method (§6.3.2) and the BEM (§6.3.3) approximations of Helmholtz problems.
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