Master Program in Electronic Engineering

Advanced Mathematical Methods for Engineers

January 31, 2017

1. Consider the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}=2 y-y^{2} \\
y(0)=y_{0}
\end{array}\right.
$$

Find the main properties of the solutions and draw their qualitative graph, as y_{0} ranges in $[0,+\infty)$. Moreover, determine explicitely the solutions in case $y_{0} \in[0,2]$.
2. Given the ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=x+\alpha^{2} y \\
y^{\prime}=\frac{1}{\alpha} x+\alpha y
\end{array}\right.
$$

find the values of $\alpha \in \mathbb{R}$ such that:
a) all solutions are bounded in $[0,+\infty)$;
b) there exist solutions (different from the solution identically equal to 0) bounded in $[0,+\infty$) making explicit the form of the solutions in all the cases.
3. Given the sequence of functions for $n \geq 2$ and $x \in(0,+\infty)$:

$$
f_{n}(x)=\frac{\log x}{\arctan \left(x^{1 / n}\right)+x^{n}}
$$

a) verify that $f_{n} \in L^{1}(0,+\infty)$ for every $n \geq 2$;
b) find f such that $f_{n} \rightarrow f$ pointwise in $(0,+\infty)$;
c) verify that $f_{n} \rightarrow f$ in $L^{1}(0,+\infty)$ (use the Lebesgue dominated convergence theorem);
d) compute the $\lim _{n \rightarrow+\infty} \int_{0}^{+\infty} f_{n}(x) d x$
4. Using the method of separation of variables, determine the solution of the following InitialBoundary Value Problem

$$
\begin{cases}u_{t}(x, t)-u_{x x}(x, t)=0 & \text { for }(x, t) \in(0, \ell) \times \mathbb{R}^{+} \\ u(x, 0)=f(x) & \text { for } x \in(0, \ell) \\ u(0, t)=u(\ell, t)=0 & \text { for } t \in \mathbb{R}^{+}\end{cases}
$$

where $\ell \in \mathbb{R}^{+}, f \in C^{\infty}([0, \ell] \times \mathbb{R})$. Make explicit the compatibility conditions needed on f in order to solve the problem. Prove then the uniqueness of solutions.

