Master Program in Electronic Engineering
 Advanced Mathematical Methods for Engineers

February 20, 2017

1. Consider the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=-\frac{y(x)}{1+e^{y(x)}} \\
y(0)=1
\end{array}\right.
$$

Study the problem of local and global existence of solutions (hint: compute $f_{y}(x, y)$, where $\left.f(x, y)=-\frac{y(x)}{1+e^{y(x)}}\right)$, and draw the qualitative graph, establishing in particular if there are asymptots for the graph.
2. Given the ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=3 x-2 y \\
y^{\prime}=2 x-2 y
\end{array}\right.
$$

find:
a) all solutions on $[0,+\infty)$;
b) the bounded solutions on $[0,+\infty)$.
3. Given the sequence of functions for $n \geq 1$ and $x \in E=[4,6]$:

$$
f_{n}(x)=\frac{x^{3}+3(\sqrt{n}-2) x^{2}-24 \sqrt{n} x-2}{n^{2}}
$$

a) verify that $f_{n} \in L^{1}(E)$ for every $n \geq 1$;
b) find f such that $f_{n} \rightarrow f$ pointwise in E;
c) verify that $f_{n} \rightarrow f$ in $L^{1}(4,6)$;
d) compute the $\lim _{n \rightarrow+\infty} \int_{4}^{6} f_{n}(x) d x$
4. Given the sequences of functions $g_{n}(x)=1-|x-n-1|$ and $f_{n}(x)=g_{n}^{+}(x):=\max \left\{0, g_{n}(x)\right\}$. Find
a) the pointwise limit of f_{n} on \mathbb{R};
b) the limit in $\left(C^{0}([a, b] ; \mathbb{R})\right.$ with the sup-norm $)$ of f_{n}.
making explicit the computations.

