Advanced Mathematical Methods for Engineers

February 6, 2018

1. Let $a \in \mathbf{R}$ and consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=\frac{y(x)}{x-1}+x(y(x))^{2} \\
y(0)=a .
\end{array}\right.
$$

1.1) Discuss local existence and uniqueness of solutions.
1.2) Find explicitly the solution, depending on a.
1.3) Find the values of a such that the solution is well defined on $(-\infty, 1)$.
2. Given $\alpha \in \mathbf{R}$ and the following ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=-3 x+\alpha^{2} y \\
y^{\prime}=x-3 y
\end{array}\right.
$$

find the values of α such that the null solution $(0,0)$ is asymptotically stable for the system.
3. Compute the first and second derivatives in sense of distributions of the signals

$$
\begin{aligned}
u(t) & :=\operatorname{sign}(\cos (\pi t)), \\
v(t) & := \begin{cases}-\operatorname{sign}(t) & \text { if }|t| \geq 1 \\
t & \text { if }|t|<1\end{cases}
\end{aligned}
$$

where

$$
\operatorname{sign}(t):= \begin{cases}1 & \text { if } t \geq 0 \\ -1 & \text { if } t<0\end{cases}
$$

4. Using the method of separation of variables, determine the solution of the following InitialBoundary Value Problem

$$
\begin{cases}u_{t}(x, t)-u_{x x}(x, t)-2 u_{x}(x, t)=0 & \text { for }(x, t) \in(0, \ell) \times \mathbb{R}^{+} \\ u(x, 0)=2 e^{-x} \sin \left(\frac{3 \pi x}{\ell}\right) & \text { for } x \in(0, \ell) \\ u(0, t)=u(\ell, t)=0 & \text { for } t \in \mathbb{R}^{+}\end{cases}
$$

where $\ell \in \mathbb{R}^{+}$.

