Advanced Mathematical Methods for Engineers

June 21, 2017

1. Consider the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}=(y-2)^{2} \sin x \\
y(0)=a
\end{array}\right.
$$

Find the explicit expression of the solutions as a ranges in \mathbf{R}. Moreover, determine for which values of $a \in \mathbf{R}$ the solution has domain the whole \mathbf{R}.
2. Given the ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-x-y-\left(x^{2}+y^{2}\right)
\end{array}\right.
$$

a) find the critical points;
b) study their stability writing down the corresponding linearized system.
3. Given the sequence of functions for $n \geq 1$ and $x \in[0,+\infty)$:

$$
f_{n}(x)=\frac{2 x^{3}}{\pi\left(n+x^{4}\right)} \arctan \left(\frac{1}{n x^{2}+2}\right)
$$

a) find f such that $f_{n} \rightarrow f$ pointwise in $[0,+\infty)$ as $n \rightarrow+\infty$;
b verify that $f_{n} \rightarrow f$ in $C^{0}([0,+\infty))$ with the sup-norm $\|g\|=\sup _{x \in[0,+\infty)}|g(x)|$.
4. Using the method of separation of variables, determine the solution of the following InitialBoundary Value Problem

$$
\begin{cases}u_{t}(x, t)-u_{x x}(x, t)=0 & \text { for }(x, t) \in(0, \pi) \times \mathbb{R}^{+} \\ u(x, 0)=f(x) & \text { for } x \in(0, \pi) \\ -u_{x}(0, t)=0, \quad u_{x}(\pi, t)=0 & \text { for } t \in \mathbb{R}^{+}\end{cases}
$$

where $f \in C^{1}([0, \pi]), f^{\prime}(0)=f^{\prime}(\pi)=0$. Discuss then the uniqueness of solutions by using the energy inequality.

