Master Program in Electronic Engineering

Advanced Mathematical Methods for Engineers

February 13, 2019

1. Let $y_0 \in \mathbf{R}$ and consider the following Cauchy Problem

$$\begin{cases} y'(x) = \frac{2x}{x^2 - 1}(y - 1) \\ y(2) = y_0. \end{cases}$$

- 1.1) Discuss local and global existence and uniqueness of solutions.
- 1.2) Draw a qualitative graph of solutions.
- 1.3) Find the explicit solutions (with the respective domains) depending from y_0 .
- 1.4) Find the explicit solutions (with the respective domain) in case $y_0 = 3$.
- **2.** Let y(x) be the solution of the following Cauchy problem

$$\begin{cases} y''(x) + 2y'(x) + y(x) = 8e^x - 5\\ y(1) = 1\\ y'(1) = 2. \end{cases}$$

Compute the limit $\ell := \lim_{x \to +\infty} e^{-x} y(x)$.

3. Consider in $[0, +\infty)$ the sequence of functions

$$f_n(x) = \sin\left(\frac{\pi}{2+(3x)^n}\right).$$

- a) Compute the pointwise limit f of f_n on $[0, +\infty)$ as $n \to +\infty$.
- b) Is it true that $f_n \to f$ in $C^0([0, +\infty))$ (with the sup-norm) as $n \to +\infty$?
- c) Find the values of a such that $f_n \to f$ in $C^0([a, +\infty))$ (with the sup-norm) as $n \to +\infty$.

4. Let, for $x \in \mathbf{R}$, $f_{\lambda}(x) := \frac{\lambda}{(x^2 + \lambda^2)\pi}$. Then

- a) Prove that $f_{\lambda} \in L^1(\mathbf{R})$ and compute $\int_{\mathbf{R}} f_{\lambda}(x) dx$.
- b) Compute the limit in $\mathcal{D}'(\mathbf{R})$ of f_{λ} as $\lambda \to 0^+$ (Hint: use the Lebesgue Theorem).