Advanced Mathematical Methods for Engineers

March 18, 2019 (Appello Straordinario)

1. Consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=|y(x)|(1-y(x)) \frac{x^{3}}{1+x^{4}} \\
y(0)=2
\end{array}\right.
$$

1.1) Discuss local and global existence and uniqueness of solutions.
1.2) Find the explicit solution (with the respective domain) and draw a qualitative graph.
2. Discuss for $\lambda \neq 0$ the existence and uniqueness of solutions for the boundary value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+2 \lambda y^{\prime}+2 \lambda^{2} y=2\left(x+\frac{1}{\lambda}\right) \\
y(0)=0 \\
y(\pi)=\frac{\pi}{4}
\end{array}\right.
$$

and find explicitely the solutions when they exist.
3. Compute (rigorously justifying the passages) the limit:

$$
\lim _{n \rightarrow+\infty} \int_{n}^{n+2} \frac{2}{(n+2)^{3}}[(x-n)(x-n-2)] d x .
$$

4. Determine all solutions u in $\mathcal{D}^{\prime}(\mathbf{R})$ of the equation

$$
\left(x^{3}-8\right) u^{\prime}=\delta_{0}^{\prime}
$$

where δ_{0}^{\prime} denotes the derivative in $\mathcal{D}^{\prime}(\mathbf{R})$ of the Dirac delta δ_{0}.

