Advanced Mathematical Methods for Engineers

February 20, 2018

1. Let $b \in \mathbf{R}^{+}$and consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=\frac{2 y(x)}{x}+3 x^{b} \\
y(1)=2 .
\end{array}\right.
$$

1.1) Discuss existence and uniqueness of solutions.
1.2) Find explicitly the solution y_{b}, depending on b.
1.3) Find the values of b such that $\lim _{x \rightarrow+\infty} y_{b}(x)=+\infty$.
2. Find all solutions X the ODE system $X^{\prime}=A X$, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 0 \\
-2 & 1 & -1
\end{array}\right]
$$

3. Consider in $(0,+\infty)$ the sequence of functions

$$
f_{n}(x)=\frac{\sin (n x)}{n x^{3 / 2}}
$$

and prove that
a) $f_{n} \in L^{1}(0,+\infty)$ for every $n \in \mathbf{N}$,
b) $f_{n} \rightarrow 0$ as $n \rightarrow \infty$ pointwise in ($0,+\infty$),
c) $\int_{0}^{\infty} f_{n}(x) d x \rightarrow 0$ as $n \rightarrow \infty$.
4. Suppose to have the following orthonormal system of polynomials (the so-called Laguerre polynomials):

$$
L_{n}(x):=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n}\right),
$$

and suppose to know that this is a basis in $L^{2}(0,+\infty)$ endowed with the scalar product $(u, v):=$ $\int_{0}^{\infty} u(x) v(x) e^{-x} d x$.

Compute the polynomial of degree ≤ 2 which approximate better the function $f(x)=e^{x / 4}$ in $L^{2}(0,+\infty)$ endowed with the scalar product $(u, v):=\int_{0}^{\infty} u(x) v(x) e^{-x} d x$.
(Suggestion: compute first the three Laguerre polynomials: L_{0}, L_{1}, L_{2}).

