Advanced Mathematical Methods for Engineers

June 26, 2018

1. Given the ODE

$$
\begin{equation*}
y^{\prime \prime}(t)-4 y^{\prime}(t)+5 y(t)=e^{2 t}(1+\cos t)+5 t^{2} \tag{1}
\end{equation*}
$$

1.1) Find all solutions of the corresponding homogeneous equation $y^{\prime \prime}(t)-4 y^{\prime}(t)+5 y(t)=0$.
1.2) Find one particular solution of the ODE (1).
2. Given, for $\alpha \in \mathbf{R}$, the ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=x-\left(\alpha^{2}+2\right) y \\
y^{\prime}=x+\alpha y
\end{array}\right.
$$

2.1) Find the values of α such that all solutions are bounded on $[0,+\infty)$.
2.2) Find the values of α such that such there are solutions (not identially equal to 0) bounded on the whole \mathbf{R}.
3. Consider in $(0,+\infty)$ the sequence of functions

$$
f_{n}(x)=\frac{1}{2+x^{n}}
$$

and prove that
3.1) $f_{n} \in L^{1}(0,+\infty)$ for every $n \geq 2$,
3.2) Find f such that $f_{n} \rightarrow f$ as $n \rightarrow \infty$ pointwise in ($0,+\infty$),
3.3) Compute (justifying the computations) the $\lim _{n \rightarrow+\infty} \int_{0}^{\infty} f_{n}(x) d x$.
4. Let f be a distribution in $\mathbf{R}: f \in \mathcal{D}^{\prime}(\mathbf{R})$. Prove the two following propositions.
4.1) f is an even distribution if and only if f^{\prime} is odd.
4.2) If f is an even distribution, then it is null in correspondence of any test funtion $v \in \mathcal{D}(\mathbf{R})$ odd.

