Master Program in Electronic Engineering

Advanced Mathematical Methods for Engineers

January 31, 2019

1. Let $\left(x_{0}, y_{0}\right) \in \mathbf{R} \times \mathbf{R}$ and consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=|y(x)|(1-y(x)) \\
y\left(x_{0}\right)=y_{0} .
\end{array}\right.
$$

1.1) Discuss local and global existence and uniqueness of solutions.
1.2) Draw a qualitative graph of solutions for $y_{0} \in[0,1]$.
1.3) Find the explicit solutions (with the respective domains) in the three cases:
a) $\left(x_{0}, y_{0}\right)=(0,1 / 2)$,
b) $\left(x_{0}, y_{0}\right)=(0,-1)$,
c) $\left(x_{0}, y_{0}\right)=(0,2)$.
2. Given $\alpha \in \mathbf{R} \backslash\{3 / 2\}$ and the following ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=-x+2 y \\
y^{\prime}=(1+\alpha) x-5 y,
\end{array}\right.
$$

find the values of α such that the null solution $(0,0)$ is asymptotically stable for the system. Moreover in case $\alpha=-1$ compute explicitely the solutions $(x(t), y(t))$.
3. Consider in $[0,1]$ the sequence of functions (for $\alpha, \beta>0$)

$$
f_{n}(x)=n^{\alpha} x^{\beta} \mathrm{e}^{-n^{2} x^{2}}
$$

a) Compute the pointwise limit of f_{n} as $n \rightarrow \infty$.
b) Compute the $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$ in case $\alpha<1+\beta$.
c) Establish if it is true or not that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$ in case $\alpha \geq 1+\beta$.
4. Using the method of separation of variables, determine the solution of the following InitialBoundary Value Problem

$$
\begin{cases}u_{t}(x, t)-u_{x x}(x, t)-\frac{\pi^{2}}{2 \ell^{2}} u(x, t)=0 & \text { for }(x, t) \in(0, \ell) \times \mathbb{R}^{+} \\ u(x, 0)=3 \sin \left(\frac{5 \pi x}{\ell}\right) & \text { for } x \in(0, \ell) \\ u(0, t)=u(\ell, t)=0 & \text { for } t \in \mathbb{R}^{+}\end{cases}
$$

where $\ell \in \mathbb{R}^{+}$.

