Master Program in Electronic Engineering

Advanced Mathematical Methods for Engineers

February 23, 2021

1. Let $(x_0, y_0) \in \mathbf{R} \times \mathbf{R}$, consider the following Cauchy Problem

$$\begin{cases} y'(x) = \frac{x^2 y^3}{1+y^2} \\ y(x_0) = y_0. \end{cases}$$

- a) Discuss local and global existence of solutions.
- b) Draw the graph of the solutions, studying the monotonicity, the existence of maxima and minima, flex, asymptots and limits at the extrema of the domain.
- **2.** Given the following ODE system

$$\begin{cases} x' = 2x + y\\ y' = -x + 2y \end{cases}$$

- 2.1) Solve the system.
- 2.2) Find the bounded solutions on $(-\infty, 0]$.
- **3.** Consider, for $x \in (0, +\infty)$ the sequence of functions f_n :

$$f_n(x) = \left(\frac{\pi}{2} - \arctan(nx)\right)^2$$

- a) Prove that $f_n \in L^1(0, +\infty)$ for every $n \in \mathbf{N}$.
- b) Compute the pointwise limit f of f_n as $n \to \infty$.
- c) Compute the $\lim_{n\to\infty} \int_0^{+\infty} f_n(x) dx$, justifying the computations. **Hint:** it is usefull to use the fact that $(\arctan(x) + \arctan(1/x))' = 0$ on $(-\infty, 0) \cup (0, +\infty)$.
- 4. In the Hilbert space $H = L^2(0,1)$ consider the closed subspace V of quadratic polynomials

$$V = \{at^2 + bt + c : a, b, c \in \mathbf{R}\}\$$

compute the projection of f on V: $P_V f$, where $f(t) = t^3$.