Advanced Mathematical Methods for Engineers

February 23, 2023

1. Consider, for $a \in \mathbf{R}$, the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)-\frac{x+2}{x^{2}+1} y+\frac{y^{2}}{\left(x^{2}+1\right)^{3 / 2}}=0 \\
y(0)=a^{2}
\end{array}\right.
$$

a) Discuss local and global existence and uniqueness of solutions, depending on a.
b) Find explicitly the solutions y_{a} (depending on a).
c) Find the values of the parameter a such that $\operatorname{dom}\left(y_{a}\right) \equiv \mathbf{R}$.
2. Given, for $x, y \geq 0$, the nonlinear ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=x-y x-x^{2} \\
y^{\prime}=x y-2 y
\end{array}\right.
$$

find the stationary points and discuss their stability.
3. Find

$$
\lim _{n \rightarrow+\infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} \mathrm{e}^{-\pi x} d x
$$

justifying all steps.
4. Find the solutions u in $\mathcal{D}^{\prime}(\mathbf{R})$ of the equation:

$$
\left(x^{2}-1\right) u=\delta_{0}
$$

justifying the computations.

