Advanced Mathematical Methods for Engineers

January 24, 2023

1. Let $\alpha \in \mathbf{R} \backslash\{0\}$, consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=\frac{y}{x+1}(1-3 x y) \\
y(2)=2 / \alpha .
\end{array}\right.
$$

a) Discuss local and global existence and uniqueness of solutions, depending on α.
b) Find explicitly the solutions y_{α} (depending on α).
c) Find the values of the parameter α such that $[0,3] \subset \operatorname{dom}\left(y_{\alpha}\right)$.
2. Given the ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=x\left(1-y^{3}\right) \\
y^{\prime}=y\left(4-x^{2}\right),
\end{array}\right.
$$

find the stationary points and discuss their stability.
3. Let, for $x>0$ and $n \in \mathbf{N} \backslash\{0\}$,

$$
f_{n}(x):=\frac{n}{3 x} \arctan \left(\frac{4 x}{n}\right) \frac{1}{16+x^{2}} .
$$

Then
a) Find the pointwise limit f of f_{n} as n tends to $+\infty$.
b) Prove that $f_{n} \in L^{1}(0,+\infty)$ for every n.
c) Compute, justifying the passages, the $\lim _{n \rightarrow+\infty} \int_{0}^{+\infty} f_{n}(x) d x$.
4. Let $u(x)=x-\arctan (x) \in \mathcal{S}^{\prime}(\mathbf{R})$. Then compute $\mathcal{F}(u)$ in \mathcal{S}^{\prime}.

Hint: Compute first $\mathcal{F}\left(u^{\prime}\right)$ and $\mathcal{F}\left(\mathrm{e}^{-|x|}\right)$.

