Master Program in Electronic Engineering

Advanced Mathematical Methods for Engineers

January 24, 2023

1. Let $\alpha \in \mathbf{R} \setminus \{0\}$, consider the following Cauchy Problem

$$\begin{cases} y'(x) = \frac{y}{x+1}(1 - 3xy) \\ y(2) = 2/\alpha. \end{cases}$$

- a) Discuss local and global existence and uniqueness of solutions, depending on α .
- b) Find explicitly the solutions y_{α} (depending on α).
- c) Find the values of the parameter α such that $[0,3] \subset \operatorname{dom}(y_{\alpha})$.
- 2. Given the ODE system

$$\begin{cases} x' = x(1 - y^3) \\ y' = y(4 - x^2), \end{cases}$$

find the stationary points and discuss their stability.

3. Let, for x > 0 and $n \in \mathbf{N} \setminus \{0\}$,

$$f_n(x) := \frac{n}{3x} \arctan\left(\frac{4x}{n}\right) \frac{1}{16 + x^2}.$$

Then

- a) Find the pointwise limit f of f_n as n tends to $+\infty$.
- b) Prove that $f_n \in L^1(0, +\infty)$ for every n.
- c) Compute, justifying the passages, the $\lim_{n\to+\infty} \int_0^{+\infty} f_n(x) dx$.

4. Let $u(x) = x - \arctan(x) \in \mathcal{S}'(\mathbf{R})$. Then compute $\mathcal{F}(u)$ in \mathcal{S}' . *Hint:* Compute first $\mathcal{F}(u')$ and $\mathcal{F}(e^{-|x|})$.