Advanced Mathematical Methods for Engineers

July 25, 2023

1. Let $k \in \mathbf{R}$, consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)+x y(x)+x \sqrt{y(x)}=0 \\
y(0)=k
\end{array}\right.
$$

a) Discuss local and global existence and uniqueness of solutions, depending on k.
b) Find explicitly the solution in case $k>0$ and draw its graph.
2. Find the solutions of the following linear ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=x+3 y+2 z \\
y^{\prime}=y \\
z^{\prime}=2 y+z
\end{array}\right.
$$

3. Let, for $x \geq 0$ and $n \in \mathbf{N}$,

$$
g_{n}(x):=\frac{x^{3}}{n+x^{4}} \quad \text { and } \quad f_{n}(x):=g_{n}(x) \arctan \left(\frac{1}{n x^{2}+2}\right) .
$$

Then
a) Find the pointwise limit f of f_{n} as n tends to $+\infty$.
b) Compute $\sup _{x \in[0,+\infty)}\left|g_{n}(x)\right|$.
c) Prove that $f_{n} \rightarrow f$ in $C^{0}([0,+\infty)$) (with the sup-norm) as $n \rightarrow+\infty$.
4. Let $f \in \mathcal{D}(\mathbf{R}), \psi \in C^{\infty}(\mathbf{R})$ and check that
a) $(\psi f)^{\prime}=\psi^{\prime} f+\psi f^{\prime}$ in $\mathcal{D}^{\prime}(\mathbf{R})$;
b) $x \delta^{\prime}=-\delta$ in $\mathcal{D}^{\prime}(\mathbf{R})$.

