Master Program in Electronic Engineering

Advanced Mathematical Methods for Engineers

July 25, 2023

1. Let $k \in \mathbf{R}$, consider the following Cauchy Problem

$$\begin{cases} y'(x) + xy(x) + x\sqrt{y(x)} = 0\\ y(0) = k. \end{cases}$$

- a) Discuss local and global existence and uniqueness of solutions, depending on k.
- b) Find explicitly the solution in case k > 0 and draw its graph.
- 2. Find the solutions of the following linear ODE system

$$\begin{cases} x' = x + 3y + 2z \\ y' = y \\ z' = 2y + z . \end{cases}$$

3. Let, for $x \ge 0$ and $n \in \mathbf{N}$,

$$g_n(x) := \frac{x^3}{n+x^4}$$
 and $f_n(x) := g_n(x) \arctan\left(\frac{1}{nx^2+2}\right)$.

Then

- a) Find the pointwise limit f of f_n as n tends to $+\infty$.
- b) Compute $\sup_{x \in [0,+\infty)} |g_n(x)|$.
- c) Prove that $f_n \to f$ in $C^0([0, +\infty))$ (with the sup-norm) as $n \to +\infty$.

4. Let $f \in \mathcal{D}(\mathbf{R}), \psi \in C^{\infty}(\mathbf{R})$ and check that

- a) $(\psi f)' = \psi' f + \psi f'$ in $\mathcal{D}'(\mathbf{R});$
- b) $x\delta' = -\delta$ in $\mathcal{D}'(\mathbf{R})$.