Advanced Mathematical Methods for Engineers

June 28, 2022

1. Consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=-y(x) x^{2}+4 x^{2} \\
y(0)=5 .
\end{array}\right.
$$

a) Discuss local and global existence and uniqueness of solutions.
b) Draw the graph of the solution.
c) Compute the value $S=4\left(y^{\prime}(1)+y(1)\right)$.
2. Given the nonlinear ODE system

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t)(y(t)-1) \\
y^{\prime}(t)=y(t)(2 x(t)+y(t)-5)
\end{array}\right.
$$

find the stationary points and discuss their stability.
3. Let $f_{n}:[0,+\infty) \rightarrow \mathbf{R}$ defined as

$$
f_{n}(x)=n^{2} x^{1 / 2} e^{-n x}
$$

a) Compute the norm $\left\|f_{n}\right\|_{\infty}:=\sup \left\{\left|f_{n}(x)\right|: x \in[0,+\infty)\right\}$.
b) Compute the pointwise limit f of f_{n} on $[0,+\infty)$ as $n \rightarrow \infty$.
c) Is it true that $f_{n} \rightarrow f$ uniformly on $[0,+\infty)$? (justify the answer)
d) Is it true that $f_{n} \rightarrow f$ uniformly on $[1,+\infty)$? (justify the answer)
4. Compute the Fourier transforms of
a) $e^{i x}$,
b) $\sin (x)$ (use step a)),
c) $\cos (x)$ (use step a)),
d) $\operatorname{sign}(x)$
justifying the answers with computations.

