Advanced Mathematical Methods for Engineers

June 27, 2023

1. Let $\left(x_{0}, y_{0}\right) \in \mathbf{R} \times \mathbf{R}$, consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=(y(x)-1) \cos (x) \\
y\left(x_{0}\right)=y_{0} .
\end{array}\right.
$$

a) Discuss local and global existence and uniqueness of solutions, depending on $\left(x_{0}, y_{0}\right)$.
b) Find explicitly the solution in case $\left(x_{0}, y_{0}\right)=(0,-1)$ and draw its graph.
c) Prove the boundedness of the solution at point b).
2. Given the ODE equation

$$
y^{\prime \prime}+y=\sin (2 x)
$$

find the solutions \bar{y} such that $\bar{y}(0)=0$. Does the equation admit unbounded solutions? (Justify the answer).
3. Let, for $x>0$ and $n \in \mathbf{N}$,

$$
f_{n}(x):=\frac{e^{-x}}{1+n x} .
$$

Then
a) Find the pointwise limit f of f_{n} as n tends to $+\infty$.
b) Prove that $f_{n} \in L^{1}(0,+\infty)$ for every n.
c) Compute, justifying the passages, the $\lim _{n \rightarrow+\infty} \int_{0}^{+\infty} f_{n}(x) d x$.
4. Let $h>0$, and $\delta_{h}(x):=\frac{1}{h} \chi_{[-h / 2, h / 2]}(x)$, where

$$
\chi_{[-h / 2, h / 2]}(x):= \begin{cases}1 & \text { if } x \in[-h / 2, h / 2] \\ 0 & \text { otherwise }\end{cases}
$$

Prove that
a) $\delta_{h} \rightarrow \delta_{0}$ as $h \rightarrow 0$;
b) if $f(x)=a x+b, a, b \in \mathbf{R}$, then $\delta_{h} * f=f$ for every $h>0$;
c) if $f(x)=a x^{2}+b x+c, a, b, c \in \mathbf{R}$, then $\delta_{h} * f=f+a \frac{h^{2}}{12}$ for every $h>0$.

