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Outline

@ Phase field models for tumor growth

© The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]
© Content of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019
© Well-posedness

© Long-term dynamics

@ The optimal control problem

@ Open problems and Perspectives
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Setting

Tumors grown in vitro often exhibit “layered” structures:

Normal region
___ W [Hypoxic region
|

Necrotic region

Nutrient source

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072-1080. Scale bar 100pum = 0:1mm
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A continuum model is introduced with the ansatz:

@ sharp interfaces are replaced by narrow transition layers arising due to adhesive forces
among the cell species: a diffuse interface separates tumor and healthy cell regions

@ proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose).
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A continuum model is introduced with the ansatz:

@ sharp interfaces are replaced by narrow transition layers arising due to adhesive forces
among the cell species: a diffuse interface separates tumor and healthy cell regions

@ proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose).
We investigate the two-phase case: growth of a tumor in presence of a nutrient and

surrounded by host tissues.
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Advantages of diffuse interfaces in tumor growth models
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Advantages of diffuse interfaces in tumor growth models

@ It eliminates the need to enforce complicated boundary conditions across the
tumor/host tissue and other species/species interfaces

@ It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

@ The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)
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@ It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

@ The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

o Ciarletta, Cristini, Frieboes, Garcke, Hawkins-Daarud, Hilhorst, Lam, Lowengrub,
Oden, van der Zee, Wise, also for their numerical simulations — complex changes in
tumor morphologies due to the interactions with nutrients or toxic agents and also

due to mechanical stresses
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@ It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

@ The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

o Ciarletta, Cristini, Frieboes, Garcke, Hawkins-Daarud, Hilhorst, Lam, Lowengrub,
Oden, van der Zee, Wise, also for their numerical simulations — complex changes in
tumor morphologies due to the interactions with nutrients or toxic agents and also
due to mechanical stresses

o Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini, Garcke, Lam, Niirnberg, Sitka, for

the interaction of multiple tumor cell species described by multiphase mixture models
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HZO: the free energy

u = tumor cell volume fraction u € [0, 1]

n = nutrient-rich extracellular water volume fraction n € [0, 1]

f(u) = Tu?(1 — u)*: a double well

x(u, n) = —xoun: chemotaxis driving the tumor cells toward the oxygen supply

2
E=/D(f(u)+%IVMI2+x(u.n)+%n2)dx. @

Figure 1. Four-species model: illustration of the four-species mixture. The tumor and healthy cell popula-
tions are assumed to have a thin diffuse interface, whereas the nutrient-rich and nutrient-poor extracellular
water are segregated by a wide smooth interface.
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The plot of the summand f(u) + x(u, n)

The lowest energy state is when u =1 and n =1, when there is a full interaction

between the tumor species and the nutrient-rich extracellular water.

0
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xo =0.25).

Figure 2. Graph of homogeneous free energy: f (u) + y (u.n). (I"
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The mass balance equations
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The mass balance equations

ur =V - (MyVi) +vu,  pw = OuE = (1) + dux(u, n) — eAu

1
ne =V (MyVun) +vn, tin = OnE = Onx(u,n) + 5"
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The mass balance equations

ur =V - (MyVp) +vu, o= 0uE = f'(u) + dux(u,n) — eAu
1
ne =V (MyVun) +vn, tin = OnE = Onx(u,n) + 5"

Question: how to define 7, and v,?

In HZO they use the condition Y, uiiv; < 0 needed for Thermodynamical consistency.
More in particular, they choose:

Yo = P(u)(ptn — ftu);, Yo = —7u, Where

6Pou ifu>0
P(u) =

0 elsewhere

being § a small positive constant and Py > 0.
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1
ne =V (MyVun) +vn, tin = OnE = Onx(u,n) + 5"

Question: how to define 7, and v,?

In HZO they use the condition Y, uiiv; < 0 needed for Thermodynamical consistency.
More in particular, they choose:

Yo = P(u)(ptn — ftu);, Yo = —7u, Where

6Pou ifu>0
P(u) =
0 elsewhere

being § a small positive constant and Py > 0.
Then we get

Yu = Poun+ §Pou(Onx(u, n) — pu)

and so the dominant term is Pyun. Other coiches are possible (see Giulio's talk).
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Simulations by HZO: the tumor starts growing increasingly more ellipsoidal at first and
eventually begins forming buds growing toward the higher levels of nutrient

Figure 7. Example simulation: snapshots are shown at ¢+ = 20,40,60, and 80 of a simulation with
I' = 0.045, € = 0.005, yo = 0.05,8 = 0.01, Pp=0.1, M =200,and D = 1.
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Simulations by HZO:
the influence of xg and ¢

@ When the ratio xo/I is
small, the tumor remains
circular u ~ 0,1

@ When xo ~ I the tumor
goes into an ellipse

@ When xo/T and xo/€ are
big, u no longer takes on
values close to 0 and 1:
it begins moving quickly
toward the regions with
higher nutrients

@ Only when xq is large
the value of § makes a

difference in simulations

Figure 10. Effects of parameter yo: illustrated here are the effects of different values of yo when I" = 0.045
and € = 0.005 are held constant. In the first row, yo = 0.005; in the second row, yo = 0.05; and in the third
row, xo = 0.5. In the first column, § = 0.1; and in the second column, § = 0.01.
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© Content of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019
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Our notation for the tumor phase parameter (u =)¢ € [—1,1]
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Theoretical analysis: two-phase models

@ In terms of the theoretical analysis most of the recent literature is restricted to the
two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.
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o In this setting, there is no differentiation among the tumor cells that exhibit
heterogeneous growth behavior. Hence this kind of two-phase models are just able to
describe the growth of a young tumor before the onset of quiescence and necrosis.
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papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri,
Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala,
Sprekels, Wu, etc...

> for tumor growth models based on the coupling of Cahn—Hilliard (for the tumor
density) and reaction—diffusion (for the nutrient) equations, and

> for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.

In this talk we concentrate on two recent results on optimal control and long-time

behavior of solution.
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Long-time dynamics and optimal control
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Long-time dynamics and optimal control

@ The state system consists of a Cahn-Hilliard type equation for the tumor cell
fraction ¢ € [—1,1] and a reaction-diffusion equation for the nutrient (n =)o € [0, 1]
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1 First, we consider the problem of “long-time treatment” under a suitable given
source and prove the convergence of any global solution to a single equilibrium as
t — +o00.
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optimal control problem. Here we also allow the objective cost functional to depend
on a free time variable, which represents the unknown treatment time to be

optimized.
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Long-time dynamics and optimal control

@ The state system consists of a Cahn-Hilliard type equation for the tumor cell

fraction ¢ € [—1,1] and a reaction-diffusion equation for the nutrient (n =)o € [0, 1]

@ The possible medication that serves to eliminate tumor cells is in terms of drugs and
is introduced into the system through the nutrient

o In this setting, the control variable acts as an external source in the nutrient equation

1 First, we consider the problem of “long-time treatment” under a suitable given
source and prove the convergence of any global solution to a single equilibrium as
t — +o00.

2 Then we consider the “finite-time treatment” of tumor, which corresponds to an
optimal control problem. Here we also allow the objective cost functional to depend
on a free time variable, which represents the unknown treatment time to be
optimized. We prove the existence of an optimal control and obtain first order
necessary optimality conditions for both the drug concentration and the treatment
time.
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Our main idea

One of the main aim of the control problem is to realize in the best possible way a
desired final distribution of the tumor cell, which is expressed by the target
function ¢q
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Our main idea

One of the main aim of the control problem is to realize in the best possible way a
desired final distribution of the tumor cell, which is expressed by the target
function ¢q

By establishing the Lyapunov stability of certain equilibria of the state system

(without external source), we see that ¢g can be taken as a stable configuration,
so that the tumor will not grow again once the finite-time treatment is completed
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The state system: Cahn—Hilliard + nutrient model with source terms

The PDE system is a particular case (xo =0, [ = ¢ = § = 1) of the model proposed in

[HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)] in Q := Q x (0, T):
¢ —Dp=PO)(o ),  p=-D¢+F(9)
or—Do=—-P(o)o—p)+u

subject to initial and boundary conditions

¢|t:0 = ¢0, 0'|t:0 = 0o, in Q, 8,,¢ = al,/j, = 81,0' = 0, on 02 x (07 T)
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subject to initial and boundary conditions

¢|t:0 = (150, U|t:0 = oo, in Q7 8,,(1) = 81,/1, = 81,0' = 0, on 02 x (07 T)

The state variables are:

> the tumor cell fraction ¢: ¢ ~ 1 (tumorous phase), ¢ ~ —1 (healthy tissue phase)
> the nutrient concentration o: ¢ ~ 1 and o =~ 0 indicate a nutrient-rich or
nutrient-poor extracellular water phase

@ F is typically a double-well potential with equal minima at ¢ = £1

P > 0 denotes a suitable regular proliferation function

The choice of reactive terms is motivated by the linear phenomenological constitutive laws

for chemical reactions

The control variable u serves as an external source in the equation for o and can be

interpreted as a medication
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Energy identity

The system turns out to be thermodynamically consistent. In particular, when u = 0 the
unknown pair (¢, o) is a dissipative gradient flow for the total free energy:

£(6,0) :/Q B|V¢\2+F(¢)] dx+%/ﬂo2dx.

Moreover generally, under the presence of the external source u, we observe that any

smooth solution (¢, o) to the problem satisfies the following energy identity:

%g(¢,a)+/ﬂ (V4P +[of + P(&)( — o] dx:/Quadx,

which motives the twofold aim of the present contribution.
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Our results

1. We prove that any global weak solution will converge to a single equilibrium as
t — 400 and provide an estimate on the convergence rate.
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Our results

1. We prove that any global weak solution will converge to a single equilibrium as
t — 400 and provide an estimate on the convergence rate. Our result indicates that
after certain medication (or even without medication, i.e., u = 0), the tumor will
eventually grow to a steady state as time evolves. However, since the potential
function F is nonconvex (double-well), the problem may admit infinite many steady
states so that for the moment one cannot identify which exactly the unique
asymptotic limit as t — +oo will be.

2. Denoting by T € (0, +00) a fixed maximal time in which the patient is allowed to
undergo a medical treatment, we derive necessary optimality conditions for

(CP) Minimize the cost functional

J@.our) = Z [ [ 16— oof dede + @/W(r)—wdx

aQ//|J*UQ| dxdt + = /(1+¢(T ))dx + — //\u| dxdt + pr7

subject to the state system and the the control constraint
UEUa ={uel™(Q): tUmin <uU< Umax a.e.in Q}, 7€(0,T)
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Comments on the cost functional

J@.our)= F [ [ 16— aof axde + 5 [ 1or) — onl” ax

T T
+%//\a—ao|2dxdt+&/(1+¢(T))dx+ &/ /|u|2dxdt+ﬁTT
2 0 JQ 2 Q 2 0 JQ
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g@.oun)= 2 [ [ 1=l axde+ 5 [ 1or) ol dx

T T
+@//\a—ao|2dxdt+&/(1+¢(7))dx+ &/ /|u|2dxdt+ﬁTT
2 0 JQ 2 Q 2 0 JQ

o 7 € (0, T] represents the treatment time of one cycle, i.e., the amount of time the
drug is applied to the patient before the period of rest, or the treatment time before
surgery, ¢q and oq represent a desired evolution for the tumor cells and for the
nutrient, ¢q stands for desired final distribution of tumor cells
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surgery, ¢g and oq represent a desired evolution for the tumor cells and for the
nutrient, ¢q stands for desired final distribution of tumor cells

@ The first three terms of J are of standard tracking type and the fourth term of J
measures the size of the tumor at the end of the treatment
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Comments on the cost functional

J@.our)= F [ [ 16— aof axde + 5 [ 1or) — onl” ax
i/OT/Q\JfGQ|2dxdt+ /(1+¢>(T) )dx + — //|u| dxdt + 77

o 7 € (0, T] represents the treatment time of one cycle, i.e., the amount of time the
drug is applied to the patient before the period of rest, or the treatment time before
surgery, ¢g and oq represent a desired evolution for the tumor cells and for the
nutrient, ¢q stands for desired final distribution of tumor cells

@ The first three terms of J are of standard tracking type and the fourth term of J
measures the size of the tumor at the end of the treatment

@ The fifth term penalizes large concentrations of the cytotoxic drugs, and the sixth
term of J penalizes long treatment times
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The choice of ¢q

After the treatment, the ideal situation will be either the tumor is ready for surgery or the
tumor will be stable for all time without further medication (i.e., u = 0) . This goal can

be realized by making different choices of the target function ¢q in the above optimal
control problem (CP).

@ For the former case, one can simply take ¢q to be a configuration that is suitable for
surgery.

@ While for the later case, which is of more interest to us, we want to choose ¢q as a

“stable” configuration of the system, so that the tumor does not grow again once
the treatment is complete.

For this purpose, we prove that any local minimizer of the total free energy £ is Lyapunov
stable provided that u = 0.
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The choice of ¢q

After the treatment, the ideal situation will be either the tumor is ready for surgery or the
tumor will be stable for all time without further medication (i.e., u = 0) . This goal can
be realized by making different choices of the target function ¢q in the above optimal
control problem (CP).

@ For the former case, one can simply take ¢q to be a configuration that is suitable for
surgery.
@ While for the later case, which is of more interest to us, we want to choose ¢q as a

“stable” configuration of the system, so that the tumor does not grow again once
the treatment is complete.

For this purpose, we prove that any local minimizer of the total free energy £ is Lyapunov
stable provided that u = 0. As a consequence, these local energy minimizers serve as
possible candidates for the target function ¢q. Then after completing a successful
medication, the tumor will remain close to the chosen stable configuration for all time.
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The mathematical difficulties

The study of long-time behavior is nontrivial, since the nonconvexity of the free energy £
indicates that the set of steady states may have a rather complicated structure.
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The mathematical difficulties

The study of long-time behavior is nontrivial, since the nonconvexity of the free energy £
indicates that the set of steady states may have a rather complicated structure.

o For the single Cahn-Hilliard equation this difficulty can be overcome by employing
the Ltojasiewicz-Simon approach: a key property that plays an important role in the
analysis of the Cahn-Hilliard equation is the conservation of mass, i.e.,

/¢(t)dX:/¢>odX fort >0.
Q Q
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/¢>(t)dx:/¢odx for t>0.
Q Q

However, for our coupled system this property no longer holds, which brings us new

difficulties in analysis.
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The mathematical difficulties
The study of long-time behavior is nontrivial, since the nonconvexity of the free energy £
indicates that the set of steady states may have a rather complicated structure.
o For the single Cahn-Hilliard equation this difficulty can be overcome by employing
the Ltojasiewicz-Simon approach: a key property that plays an important role in the

analysis of the Cahn-Hilliard equation is the conservation of mass, i.e.,

/¢(t)dx:/¢odx for t>0.
Q Q

However, for our coupled system this property no longer holds, which brings us new
difficulties in analysis.

@ Besides, quite different from the Cahn-Hilliard-Oono system considered in which the
mass [, ¢(t) dx is not preserved due to possible reactions, here in our case it is not
obvious how to control the mass changing rate:

i [oax= [ PO - max.

Similar problem happens to the nutrient as well, that is

d
— [ cdx=— [ P(¢)(c —pu)dx+ [ udx.
dt Jo Q Q
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The problem of mass conservation
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The problem of mass conservation

@ The observation that the total mass can be determined by the initial data and the

external source:

@)+ o) dx = [ (o +on) dx+/ot/ﬂudxd7-, T

allows us to derive a suitable version of the tojasiewicz-Simon type inequality.
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external source:

@)+ o) dx = [ (o +on) dx+/ot/ﬂudxd7-, T

allows us to derive a suitable version of the tojasiewicz-Simon type inequality.

@ On the other hand, we can control the mass changing rates of ¢ and o by using the
extra dissipation related to reactive terms in the basic energy law, i.e.,

Jo P(9)(1— o) dx.
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The problem of mass conservation

@ The observation that the total mass can be determined by the initial data and the

external source:

A}Mﬂ+UU»dX:[k%+a@dx+Ai£udx&: T

allows us to derive a suitable version of the tojasiewicz-Simon type inequality.

@ On the other hand, we can control the mass changing rates of ¢ and o by using the
extra dissipation related to reactive terms in the basic energy law, i.e.,

Jo PO) (st — o) dx.

@ Based on the above mentioned special structure of the system, by introducing a new
version of Lojasiewicz-Simon inequality we are able to prove that every global weak
solution (¢, o) of the problem will converge to a certain single equilibrium (oo, 0oo)
as t — 4-oco and, moreover, we obtain a polynomial decay of the solution.
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The problem of mass conservation

@ The observation that the total mass can be determined by the initial data and the

external source:

@)+ o) dx = [ (o +on) dx+/ot/9udxd7, T

allows us to derive a suitable version of the tojasiewicz-Simon type inequality.

@ On the other hand, we can control the mass changing rates of ¢ and o by using the
extra dissipation related to reactive terms in the basic energy law, i.e.,
Jo P(&)(1 — 0)? dx.

@ Based on the above mentioned special structure of the system, by introducing a new
version of Lojasiewicz-Simon inequality we are able to prove that every global weak
solution (¢, o) of the problem will converge to a certain single equilibrium (oo, 0oo)

as t — 4-oco and, moreover, we obtain a polynomial decay of the solution.

o Besides, a nontrivial application of the tojasiewicz-Simon approach further leads to
the Lyapunov stability of local minimizers of the free energy £ (we only consider the
case u = 0 for the sake of simplicity).
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Comparison with other results in the literature

@ To the best of our knowledge, the only contribution in the study of long-time
behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u =0,
where, however, the main focus is the existence of a global attractor .

@ Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existenceof a
global attractor for a different model (see Giulio's talk).
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@ To the best of our knowledge, the only contribution in the study of long-time
behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u =0,
where, however, the main focus is the existence of a global attractor .

@ Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existenceof a
global attractor for a different model (see Giulio's talk).

@ In the context of PDE constraint optimal control for diffuse interface tumor models,
in the literature we have basically two recent works:

1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the

special (simpler) choices 8s = BT = ag = 0, and the state system is exactly the same
but no dependence on 7 is studied.
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@ To the best of our knowledge, the only contribution in the study of long-time
behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u =0,
where, however, the main focus is the existence of a global attractor .

@ Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existenceof a
global attractor for a different model (see Giulio's talk).

@ In the context of PDE constraint optimal control for diffuse interface tumor models,
in the literature we have basically two recent works:

1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the
special (simpler) choices 8s = BT = ag = 0, and the state system is exactly the same
but no dependence on 7 is studied.

2 [GLR: Garcke, Lam, R. (2017)] where a different model is studied. There the
distributed control appears in the ¢ equation, which is a Cahn-Hilliard type equation
with a source of mass on the right hand side, but not depending on . Due to the
presence of the control in the Cahn-Hilliard equation, in [GLR] only the case of a
regularized objective cost functional can be analyzed for bounded controls.
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Comparison with other results in the literature

@ To the best of our knowledge, the only contribution in the study of long-time
behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u =0,
where, however, the main focus is the existence of a global attractor .

@ Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existenceof a
global attractor for a different model (see Giulio's talk).

@ In the context of PDE constraint optimal control for diffuse interface tumor models,
in the literature we have basically two recent works:

1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the
special (simpler) choices 8s = BT = ag = 0, and the state system is exactly the same
but no dependence on 7 is studied.

2 [GLR: Garcke, Lam, R. (2017)] where a different model is studied. There the
distributed control appears in the ¢ equation, which is a Cahn-Hilliard type equation
with a source of mass on the right hand side, but not depending on . Due to the
presence of the control in the Cahn-Hilliard equation, in [GLR] only the case of a
regularized objective cost functional can be analyzed for bounded controls.

Here we aim to provide a contribution to the theory of free terminal time optimal control
where the control is applied in the nutrient equation.
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Well-posedness (cf, [CGRS, Theorem 2.1])
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Well-posedness (cf, [CGRS, Theorem 2.1])

Let ¢po € HX(Q) N H*(Q) and o € H*(Q) and assume that

(P1) P € C*(R) is nonnegative. There exist a; > 0 and some g € [1,4] such that, for all
SER, |P(s)] <au(l+]s]77h)

(F1) F = Fo + F1, with Fy, F; € C?(R). There exist o; > 0 and r € [2,6) such that

|F{'(s)] < az, as(1+]s|"™%) < F(s) < au(1+]s|"?), F(s)> as|s|—as Vs e R
(Ul) Forany T >0, u € L*(0, T; L*(Q)).
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Well-posedness (cf, [CGRS, Theorem 2.1])

Let ¢o € Hy () N H3(Q) and 0o € H(Q) and assume that

(P1) P € C*(R) is nonnegative. There exist a; > 0 and some g € [1,4] such that, for all
sER, |P'(s)] < ai(l+ s

(F1) F = Fo + F1, with Fy, F; € C?(R). There exist o; > 0 and r € [2,6) such that

IF{'(s)] < ao,  a3(14]s|"7%) < F(s) < au(1+]|s|?), F(s) > as|s|—as Vs € R
(Ul) Forany T >0, u€ L%(0, T; L*(Q)). Then

Theorem (Strong solutions)

(1) For every T > 0, the state system admits a unique strong solution:

|81l Lo (0, 313 @) 200, T:HA (@) 1L (0, T:H1 () T I8l oo (0, T (@))ML2(0, TiH2(2)

+ ”‘7”C([O,T];Hl(Q))mL2(0,T;H%,(Q))ﬁHl(O,T;LZ(Q)) < K.
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Well-posedness (cf, [CGRS, Theorem 2.1])

Let ¢o € Hy () N H3(Q) and 0o € H(Q) and assume that

(P1) P € C*(R) is nonnegative. There exist a; > 0 and some g € [1,4] such that, for all
sER, |P'(s)] < ai(l+ s

(F1) F = Fo + F1, with Fy, F; € C?(R). There exist o; > 0 and r € [2,6) such that

IF{'(s)] < ao,  a3(14]s|"7%) < F(s) < au(1+]|s|?), F(s) > as|s|—as Vs € R
or an >0, u€ ; . Then
(U1) Forany T >0 L2(0, T; L3(Q)). Th
Theorem (Strong solutions)
(1) For every T > 0, the state system admits a unique strong solution:
91l oo (0, 7:H3 @) N L2(0, T:HA @)A1 0, TiH1 (@) T |l Lo (0, T3 (@) L2(0, T H2 ()
+ ”UHC([O,T];Hl(Q))mL2(0,T;H%,(Q))ﬁHl(O,T;LQ(Q)) < K.

(2) Let (¢i,0i) be two strong solutions. Then there exists a constant K; > 0, depending

on ||u,-HLz(077—;L2), Q, T, ||¢o]|y3 and ||oo||y1, such that

|61 — @2l oo 0, ;1) 1200, T513) 1 0, T (1Y) + 121 — B2l 20, 751y

+ llor = o2|lc(o, 711y, TiH2) M (0, Ti2) < Kallin — w2l 200, 7:12)-

v
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Long-term dynamics
We make the following additional assumptions:
(P2) P(s) >0, forall s e R

(F2) F(s) is real analytic on R
(U2) u € LY(0,400; L2(Q)) N L?(0, +o0; L?(R)) and satisfies the decay condition

fgg(l + t)3+”||u(t)||L2(Q) < 400, for some p > 0.
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Long-term dynamics

We make the following additional assumptions:

(P2) P(s) >0, forallseR

(F2) F(s) is real analytic on R

(U2) u € LY0,+o0; L2(Q)) N L%(0, +00; L2(£2)) and satisfies the decay condition

sgg(l + t)3+”||u(t)||L2(Q) < 400, for some p > 0.
t=>

Theorem (1. The stationary problem)

For any ¢o € H*(Q), o € L?(), the state system admits a unique global weak solution
(6, 11,0): limes oo (16(8) = dos @) + [10(t) = Toolliz@) + I1(E) = poslli2@)) =0,
where (¢oo, lioo, 0o ) Satisfies the stationary problem

—Apos + F/(d’OO) = Moo, in Q
Oy oo =0, on 00

/Q(¢oo+Uoo)dXZ/Q(¢o+00)dx+/o+°o/nudxdt

with 0o and oo being two constants given by 0o = oo = |Q " [, F'($oc)dx.

E. Rocca (Universita degli Studi di Pavia) February 27, 2019 28 / 46



The convergence rate

Theorem (2. Convergence rate)

Moreover, under the same assumptions, the following estimates on convergence rate hold

1

— min 6 £
6(£) — boolliniay + lo(t) — ooolliz < CL+ )" ™= 8} ve>o,
1(8) = poollizg@y < €A + t) 2=z £,

Vt>0,

where C > 0 is a constant depending on ||¢o||1(q), llooll2(): |oollki(q)

llull 10,4 00:2(0)) 16l 2(0,4-00502()) @nd ;6 € (O, 1) is a constant depending on ¢ .
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An idea of the proof

The proof consists of several steps:

@ We first derive some uniform-in-time a priori estimates on the solution (¢, i, o)

E. Rocca (Universita degli Studi di Pavia) February 27, 2019 30/ 46



An idea of the proof

The proof consists of several steps:
@ We first derive some uniform-in-time a priori estimates on the solution (¢, i, o)

@ Then we give a characterization on the w-limit
W(¢0,00) ={(doo, 0o) € (HN(Q) N H*(Q)) x HY(Q) : I{t,} / +oo such that
(6(tn), o(tn)) = (90, 00) in H*(Q) x LX(Q)}.
And we have the following result

Theorem (3. The w-limit)

Assume (P1), (F1), (U2). For any initial datum (¢o,00) € H*(Q) x L(Q), the associated
w-limit set w(¢o, o0) is non-empty. For any element (¢poo,0oo) € w(eho, 00), Ooo is a
constant and (¢oo, 0o ) Satisfies the stationary problem. Besides, ji is a constant given
by Q| ™" [, F'(¢c)dx and the following relation holds

P(¢00) (000 — f1oo) =0, a.e. in Q.

And the positivity of P entails immediately also 0o = fioo.
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o Finally, we prove the convergence of the trajectories and polynomial decay by means

of a proper tojasiewicz—Simon inequality:
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o Finally, we prove the convergence of the trajectories and polynomial decay by means
of a proper Lojasiewicz-Simon inequality: Given any initial datum
(¢o,00) € H(R) x L*(Q) and source term u satisfying (U2), we denote by

M = Q! (/Q(¢o+ao)dx+/o+w/ﬂudxdt)

the total mass at infinity time. Then we are able to derive the following

Theorem (Lojasiewicz—Simon Inequality)

Let (F1), (F2), (P1), (P2) and (U2) be satisfied. Suppose that (¢oo, ftoc, 0o ) Is a solution to
the elliptic stationary problem. Then there exist constants 6 € (0, %) and 3 > 0, depending on
$oo, Moo and §, such that for any (¢,0) € H3(Q) x H(Q) satisfying

¢ — boollmr(e) < B,
[ @+ 0)ax+ muig] = [ (@20 + 020 dx = mooll],
Q Q
where my, is a certain constant fulfiling |m,| < |Q|_% H“||L1(0,+oo;L2(Q))r then we have

1
e = Bl yy + ClIValliz@) + ClIVP@) (1 — o)l 2(q) + Clmul?
Z |€(¢)7 0') - £(¢007Uoo)‘1_9, where

p=—A¢+ F'(¢) and C > 0 depends on Q, $oo, Moo, [|Blln2(0, 1ollm1(0), 1Ull1(0,+00:2(0))-
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Energy minimizers with u =0
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Energy minimizers with u =0

Let us now assume u = 0. Then it follows that the total mass of the system is now

conserved:

/(¢(t)+a(t))dx: /(¢o+ao)dx, Vit >0.
Q Q
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Energy minimizers with u =0

Let us now assume u = 0. Then it follows that the total mass of the system is now
conserved:

/(¢(t)+a(t))dx: /(¢>o+ao)dx, Vit >0.
Q Q

Let m € R be an arbitrary given constant. Set

20 ={(6.0) € H(Q) x 13(@) /Q(¢+ o) dx = [Q]m).
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Energy minimizers with u =0

Let us now assume u = 0. Then it follows that the total mass of the system is now
conserved:

[ @0 +at)ax= [ @+ o)dx, Vo
Q Q
Let m € R be an arbitrary given constant. Set
Zm =1 (s, HY(Q) x L*(Q) : dx = |Q|m}.
{G.o) e @) %@ [ (0+0)ax = |2Im)

Any (¢*,0") € Zn is called

o a local energy minimizer of the total energy
1 2 1 2
Eb.0)= | |5IVeP+ F(9)| dx+ 5 [ o®dx
al2 2 Ja

if there exists a constant x > 0 such that £(¢*,0") < (¢, o), for all (¢,0) € Zm
satisfying [|[(¢ — ¢", 0 — 0™)lm(@)x2@) < X
o If x = +o0, then (¢*,0™) is called a global energy minimizer of E(¢,c) in Zp,.
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, u, o)

AGHF(Q)=p,  inQ
Ovp =0, on 01,

[@+a)dx=Iaim,
Q

where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, u, o)

D¢+ F(¢) = p, in €,
0,9 =0, on 092,
[@+a)dx=Iaim,
Q
where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.

Theorem (4. Critical points)

Let assumption (F1) be satisfied. Then we have:

v
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, i, o)

~Ap+F()=p,  inQ,

0,9 =0, on 092,

/Q(¢ +o)dx = |Q|m,

where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.

Theorem (4. Critical points)
Let assumption (F1) be satisfied. Then we have:

(1) If (¢*,0%) € HY(R) x R is a strong solution to the stationary problem above, then
(¢*,0") is a critical point of E(¢,0) in Zm. Conversely, if (¢*,0") is a critical point
of E(¢, ) in Zm, then ¢* € HY(Q), o™ € R satisfy the stationary problem above

4
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, i, o)

—A¢+ F'(¢) =, in Q,

0,9 =0, on 09,

[@+a)dx=Iaim,
Q
where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.

Theorem (4. Critical points)
Let assumption (F1) be satisfied. Then we have:

(1) If (¢*,0%) € HY(R) x R is a strong solution to the stationary problem above, then
(¢*,0") is a critical point of E(¢,0) in Zm. Conversely, if (¢*,0") is a critical point
of E(¢, ) in Zm, then ¢* € HY(Q), o™ € R satisfy the stationary problem above

(2) If (¢%,07") is a local energy minimizer of E(¢,0) in Zm, then (¢™,0") is a critical
point of £(¢, o).

v
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, i, o)
—A¢+ F'(¢) =, in Q,
0,9 =0, on 09,
[@+a)dx=Iaim,
Q

where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.

Theorem (4. Critical points)
Let assumption (F1) be satisfied. Then we have:

(1) If (¢*,0%) € HY(R) x R is a strong solution to the stationary problem above, then
(¢*,0") is a critical point of E(¢,0) in Zm. Conversely, if (¢*,0") is a critical point
of E(¢, ) in Zm, then ¢* € HY(Q), o™ € R satisfy the stationary problem above

(2) If (¢%,07") is a local energy minimizer of E(¢,0) in Zm, then (¢™,0") is a critical
point of £(¢, o).

(3) The functional E(¢, ) has at least one minimizer (¢*,0™) € Zm such that

E(¢*, 0" = inf  E(s,
(¢.07) =, inf £(6.0)
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Lyapunov Stability with u =0

Then, we can get our main result on long-term dynamics:
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Lyapunov Stability with u =0

Then, we can get our main result on long-term dynamics:

Theorem (5. Lyapunov stability)
Assume that (F1), (F2), (P1), (P2) are satisfied and u = 0. Given m € R, let (¢*,0™)

be a local energy minimizer in Z,, of

£(4,0) :/Q B|V¢>|2+F(¢)] dx+%/ﬂa2dx.

E. Rocca (Universita degli Studi di Pavia) February 27, 2019 34 / 46



Lyapunov Stability with u =0

Then, we can get our main result on long-term dynamics:

Theorem (5. Lyapunov stability)
Assume that (F1), (F2), (P1), (P2) are satisfied and u = 0. Given m € R, let (¢*,0™)

be a local energy minimizer in Z,, of

£(4,0) :/Q B|V¢\2+F(¢)] dx+%/ﬂa2dx.

Then, for any € > 0, there exists a constant n € (0,1) such that for arbitrary initial
datum (¢o, 00) € (Hy(Q) N H*(Q)) x H(Q) satisfying [, (¢o + 00) dx = [Qm and
lpo — " lr() + oo — o™ [l12(q) < 1, the state system admits a unique global strong
solution (¢, o) such that

lo(t) = ¢*llmr(q) + llo(t) — " lli2@) <€, VYt >0.

Namely, any local energy minimizer of £(¢, o) in Z,, is locally Lyapunov stable.
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Conclusions on long-term dynamics

@ The result on long-time behavior derived in Theorem 1 and 2 can be applied to the
global strong solution obtained in Theorem 5

o Although it is still not obvious to identify the asymptotic limit (oo, 00), We are
able to conclude that (¢oc, 0oo) also satisfies

[poo — @ [Imri) + [l0oe — 0" ll12() < €

o In particular, if (¢*,0™) is an isolated local energy minimizer then it is locally
asymptotic stable
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Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional
.o = 52 [ 1= ool axar + 2 [ jotr) — ol ax
o Ja

+%/OT/Q|U—JQ|2dxdt+%/(1+¢T))dx+ //|u| dxdt + Brr

subject to the state system and the the control constraint

UEUa ={uel™(Q): tUmin <u< umax a.e.in Q}, 7€(0,T),
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Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional
.o = 52 [ 1= ool axar + 2 [ jotr) — ol ax
o Ja

+%/Of/fz|a—aq|2dxdt+%/(l+¢T))dx—|— //|u| dxdt + Brr

subject to the state system and the the control constraint
UEUa ={uel™(Q): tUmin <u< umax a.e.in Q}, 7€(0,T),

where T € (0,400) is a fixed maximal time. We assume:
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Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional
.o = 52 [ 1= ool axar + 2 [ jotr) — ol ax
o Ja

+?/OT/Q|PJQ|2dxdr+%/(1+¢T))dx+ //|u| dxdt + Brr

subject to the state system and the the control constraint
UEUa ={uel™(Q): tUmin <u< umax a.e.in Q}, 7€(0,T),
where T € (0, +00) is a fixed maximal time. We assume:
(C1) Ba, Ba, Bs, Bu, BT, aq are nonnegative constants but not all zero.
(C2) ¢, 0@ € L2(Q), da, ga € L*(Q), tmin, tmax € L(Q), and tmin < Umax, a.e. in Q.

(C3) Let Ur be an open set in L*(Q): Uag C Ur and [lull 2(qy < R, for all u € Ur.

E. Rocca (Universita degli Studi di Pavia) February 27, 2019 37 / 46



Existence of an optimal control
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Existence of an optimal control

From the well-posedness results it follows that the control-to-state operator S

ur— S(u):=(p,u,0)

is well-defined and Lipschitz continuous as a mapping from Ug C L?(Q) into the
following space

(L0, T (H'(2)))NL3(0, T: H'(2))) x L*(0, T (H'(2))) % (L(0, T+ (H'(2)))NL*(Q)).
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Existence of an optimal control
From the well-posedness results it follows that the control-to-state operator S

ur— S(u):=(p,u,0)
is well-defined and Lipschitz continuous as a mapping from Ug C L?(Q) into the
following space
(L0, T3 (H'(9)))NL2(0, T; HY(Q)))x L*(0, T; (H(Q)))x (L (0, T; (H'()))NL*(Q)).
The triplet (¢, i, o) is the unique weak solution to the state system with data (¢o, oo, u)

over the time interval [0, T]. For convenience, we use the notations ¢ = S1(u) and
o = S3(u) for the first and third component of S(u).
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Existence of an optimal control

From the well-posedness results it follows that the control-to-state operator S

u— S(u) == (¢, p,0)
is well-defined and Lipschitz continuous as a mapping from Ug C L?(Q) into the

following space
(L0, T3 (H'(9)))NL2(0, T; HY(Q)))x L*(0, T; (H(Q)))x (L (0, T; (H'()))NL*(Q)).

The triplet (¢, i, o) is the unique weak solution to the state system with data (¢o, oo, u)
over the time interval [0, T]. For convenience, we use the notations ¢ = S1(u) and

o = S3(u) for the first and third component of S(u). Then we prove the following result
that implies the existence of a solution to problem (CP).

Theorem (Existence of the optimal control)

Assume that (P1), (F1), (U1) and (C1)—~(C3) are satisfied. Let ¢o € Hy(Q) N H*(Q) and
o0 € H'(Q). Then there exists at least one minimizer (¢, 0+, U, T+) to problem (CP).
Namely, ¢ = S1(us), o« = S3(u.) satisfy

T (P, O, U, T) = JI(¢,0,w,s).

inf
(w,s) € Uyq %[0, T]
s.t. ¢ = S1(w), o = S3(w)

v
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u.
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u. For u. € Ug, let (¢« s, o) = S(us). We consider for any h € [?(Q) the
linearized system

& — An = P (¢ ) (o — ) § + P(¢)(p—n), 1= —DE+F(4.)€,
Op—Dp = —P'(¢:)(0n — pu) € = P(¢)(p =) + h
On€ = 0an = Ohp = 0, £(0) = p(0) = 0.
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u. For u. € Ug, let (¢, fix, 0x) = S(us). We consider for any h € [*(Q) the

linearized system
0 — D = P(¢)(0x — ) € + P(ds)(p—m),  n = —AE+F" ()€,

Op—Dp = —P'(¢:)(0n — pu) € = P(¢)(p =) + h
O0n€ = Onn = Onp = 0, f(O) = p(O) =0.

We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system
and the Fréchet differentiability of the control-to-state operator S with respect to u.
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u. For u. € Ug, let (¢, fix, 0x) = S(us). We consider for any h € [*(Q) the

linearized system

& — An = P(¢u)(0n — pe) €+ P(d)(p—m),  n = —DE+F(6:)€,

Op—Dp = —P'(¢:)(0n — pu) € = P(¢)(p =) + h

On& = 0hm = Ohp = 0, £(0) = p(0) = 0.
We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system
and the Fréchet differentiability of the control-to-state operator S with respect to u.
Assume (P1), (F1), (U1), (C1)~(C3), let ¢o € Hx(Q) N H3(Q) and oo € H*(Q). Then the
control-to-state operator S is Fréchet differentiable in Ug as a mapping from L?(Q) into

V= (Hl(o, T; (H3(Q))) N L(0, T; L2(Q)) N L2(0, T; H,i(Q))) x 12(Q)

x (Hl(o, T; 12(Q)) N L2(0, T H2(Q))) .
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u. For u. € Ug, let (¢, fix, 0x) = S(us). We consider for any h € [*(Q) the

linearized system

& — An = P(¢u)(0n — pe) €+ P(d)(p—m),  n = —DE+F(6:)€,

Op—Dp = —P'(¢:)(0n — pu) € = P(¢)(p =) + h

On& = 0hm = Ohp = 0, £(0) = p(0) = 0.
We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system
and the Fréchet differentiability of the control-to-state operator S with respect to u.
Assume (P1), (F1), (U1), (C1)~(C3), let ¢o € Hx(Q) N H3(Q) and oo € H*(Q). Then the
control-to-state operator S is Fréchet differentiable in Ug as a mapping from L?(Q) into

V= (Hl(o, T: (Hu(Q))) N L>=(0, T; L*(Q)) N L*(0, T; H,i(Q))) x 1*(Q)
x (Hl(o, T; 12(Q)) N L2(0, T; H2(Q))) .
For any u. € Ug, the Fréchet derivative DS(u.) € L(L*(Q),)) is defined as follows: for
any h € L3(Q), DS(u)h = (¢",1", p"), where (¢",n", p") is the unique solution to the

linearized system associated with h.
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First order optimality conditions
Define a reduced functional
T(u,7) = T(S1(u), Ss(u), u, 7).
Since the control-to-state mapping S is also Fréchet differentiable into C°([0, T]; L*(2))
with respect to u, then the reduced cost functional 7 is Fréchet differentiable in Ug.
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First order optimality conditions

Define a reduced functional
j(U,T) = J(51(u), 53(11), u, T)'

Since the control-to-state mapping S is also Fréchet differentiable into C°([0, T]; L*(2))
with respect to u, then the reduced cost functional J is Fréchet differentiable in Ug.

Theorem (Existence of solutions to the adjoint system)

Assume (P1), (F1), (U1), (C1)~(C3), ¢o € Hx(Q) N H3(Q), and a0 € H*(Q). Then the
adjoint system

— 0p+ Aq— F'(6.)q+ P(6:)(0- — 1)(r — p) = o (6- — b)
q—Ap+P(g:)(p—r)=0,  —0r — Ar+ P(¢:)(r — p) = ag(ox — 0q)
op =g =0ur =0,  r(r)=0, p(r.) = fa(9u(r) ~ ba) + 2

has a unique weak solution (p, g, r) on [0, 7]:

p € H'(0,7; (HN(Q))) N C°([0, 7]; L2(R2)) N L2(0, 7u; HA(R)),
qge ’(Qx(0,7)), reH(0,7;L2(R)N C0,7.]; H(Q)) N L*(0, 7.; H(R)).

4
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Necessary optimality conditions
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Necessary optimality conditions

Theorem (Necessary optimality conditions)

Let (us,T+) € Uaq X [0, T] denote a minimizer to the optimal control problem (CP) with
corresponding state variables (s, pi«, 0+) = S(ux) and associated adjoint variables
(p, g, r), then it holds:

T Tx
ﬁu/ /u*(u—u*)dxdt—i—/ /r(u—u*)dxdtZO, YV u € Upg.
o Ja o Ja

Besides, setting
L(pe,00,7) = D2 / |6u(7) — d(m)P dx + B / (6-(72) — ¢a) Begha (72) dx
Q
/ jou(72) = sa(ra)Pdx + B2 / Bedu(ra) dx + B

we have
>0, ifr.=0,
£(¢*,U*7T*) :0, I'fT* € (0, T)7
<0, ifr=T.
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Interpretation of the first condition

Besides, if we extend r by zero to (7, T], then we can express the variational inequality

T T
,5’,,/ /u*(u—u*)dxdt—l—/ /r(u—u*)dxdtzo, YV u € Uyg.
o Ja o Ja

as
-
//(ﬁuu*—i—r)(u—u*)dxdtZO7 YV u € Uad,
o Ja

which allows the interpretation that the optimal control u, is the L2(Q)—projection of
—B7tr onto the set Uyg (provided that 8, > 0).
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@ Open problems and Perspectives
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Open problems and Perspectives

O1. In practice it would be safer for the patient (and thus more desirable) to
approximate the target functions in the L>°-sense rather than in the L2-sense or to
include a pointwise state constraint on ¢: |¢(x,T) — ¢pa| < € for a.e. x € Q. This
leads to a more involved adjoint system.
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O1. In practice it would be safer for the patient (and thus more desirable) to
approximate the target functions in the L>°-sense rather than in the L2-sense or to
include a pointwise state constraint on ¢: |¢(x,T) — ¢pa| < € for a.e. x € Q. This
leads to a more involved adjoint system.

02. Include chemotaxis xo and the evolution of average velocities in the model.
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Open problems and Perspectives

O1. In practice it would be safer for the patient (and thus more desirable) to
approximate the target functions in the L>°-sense rather than in the L2-sense or to
include a pointwise state constraint on ¢: |¢(x,T) — ¢pa| < € for a.e. x € Q. This
leads to a more involved adjoint system.

02. Include chemotaxis xo and the evolution of average velocities in the model.
P1. To study the existence of attractors for different models:

> with A. Miranville and G. Schimperna for a model proposed by Garcke at al. (cf.
Giulio’s talk),

> with A. Giorgini, K.-F. Lam, and G. Schimperna for a model proposed by Lowengrub
et al. including velocities.
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O1. In practice it would be safer for the patient (and thus more desirable) to
approximate the target functions in the L>°-sense rather than in the L2-sense or to
include a pointwise state constraint on ¢: |¢(x,T) — ¢a| < € for a.e. x € Q. This
leads to a more involved adjoint system.

02. Include chemotaxis xo and the evolution of average velocities in the model.
P1. To study the existence of attractors for different models:

> with A. Miranville and G. Schimperna for a model proposed by Garcke at al. (cf.
Giulio’s talk),

> with A. Giorgini, K.-F. Lam, and G. Schimperna for a model proposed by Lowengrub
et al. including velocities.

P2. The study of optimal control: for a prostate model introduced by H. Gomez et al.
and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).
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et al. including velocities.

P2. The study of optimal control: for a prostate model introduced by H. Gomez et al.
and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).

P3. To add the mechanics in Lagrangean coordinates in a multiphase model: for example

considering the tumor sample as a porous media (with P. Krej&i and J. Sprekels).
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Open problems and Perspectives

O1. In practice it would be safer for the patient (and thus more desirable) to
approximate the target functions in the L>°-sense rather than in the L2-sense or to
include a pointwise state constraint on ¢: |¢(x,7) — pa| < € for a.e. x € Q. This
leads to a more involved adjoint system.

02. Include chemotaxis xo and the evolution of average velocities in the model.

P1. To study the existence of attractors for different models:

> with A. Miranville and G. Schimperna for a model proposed by Garcke at al. (cf.
Giulio’s talk),

> with A. Giorgini, K.-F. Lam, and G. Schimperna for a model proposed by Lowengrub
et al. including velocities.

P2. The study of optimal control: for a prostate model introduced by H. Gomez et al.
and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).

P3. To add the mechanics in Lagrangean coordinates in a multiphase model: for example

considering the tumor sample as a porous media (with P. Krej&i and J. Sprekels).

P4. Include a stochastic term in phase-field models for tumor growth representing for
example uncertainty of a therapy or random oscillations of the tumor phase (with C.

Orrieri and L. Scarpa).
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Many thanks to all of you for the attention!
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Preliminaries

o Def. By is an absorbing set for a semigroup S(t) on a metric space (X, dx) iff

> By is bdd
» VB C X bdd 3Tg >0st. S(t)BC By Vt> Tg.

o Theorem. Let S(t) be a strongly continuous semigroup on a c.m.s. (X, dx).
Moreover, if

> S(t) admits an absorbing set Bp;
» VB C X bdd 3tg > 0s.t. U, S(t)B is compact in X,

then S(t) admits a universal attractor A that is

A= ﬂ U S(t)Bo

T>0t>T
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