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Plan of the talk

[Part 1] [DFRSS: M. Dai, E. Feireisl, E.R., G. Schimperna, M. Schonbek, WIAS preprint 2150 (2015)]: a

model of multispecies tumor growth proposed by [CWSL: Y. Chen, S.M. Wise, V.B Shenoy, J.S.

Lowengrub, Int. J. Numer. Methods Biomed. Eng., 2014] including the evolution of the velocity:

DFRSS Existence of weak solutions for the PDE system coupled with suitable initial and

boundary conditions

DFRSS Partial results on the singular limit for that model as the diffuse interface coefficient

tends to zero

[Part 2] [FGR: S. Frigeri, M. Grasselli, E.R., European J. Appl. Math. (2015)], [CGRS1: P. Colli, G. Gilardi,

E.R., J. Sprekels, Nonlinear Anal. Real World Appl., (2015)], [CGRS2: P. Colli, G. Gilardi, E.R., J.

Sprekels, WIAS preprint 2093 (2015), to appear in DCDS-S]: a simpler model proposed by [HZO:

A. Hawkins-Daarud, K.G. van der Zee, J.T. Oden, Int. J. Numer. Methods Biomed. Eng., 2012]

where the velocities are set to zero:

FGR Existence of weak solution, regularity results, existence of the global attractor

CGRS1-2 Viscous approximation of the model, asymptotics, and error estimates

CGRS3 Future work: optimal control problems, rigorously from diffuse to sharp interfaces, ...
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Part 1: The CWSL model - multispecies including velocities
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DFRSS: The model

Typical structure of tumours grown in vitro:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

� sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumour and healthy cell regions

� proliferating and tumour and healthy cells are present, along with a nutrient (e.g. glucose

or oxigene)
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DFRSS: The state variables

� φi, i = 1, 2, 3: the volume fractions of the cells:

� φ1 = P : proliferating tumor cell fraction

� φ2 = φD : dead tumor cell fraction

� φ3 = φH : host cell fraction

The variables above are naturally constrained by the relation
∑3
i=1 φi = φH + Φ = 1

� Φ = φD + P : the volume fraction of the tumor cells split into the sum of the dead

tumor cells and of the proliferating cells

� Π: the cell-to-cell pressure

� u:=ui, i = 1, 2, 3: the tissue velocity field. We assume that the cells are tightly packed

and they march together

� n: the nutrient concentration

Moreover, we denote by

� Ji: the fluxes that account for mechanical interactions among the species

� Si, i = 1, 2, 3: the terms accounting for inter-component mass exchange as well as

gains due to proliferation of cells and loss due to cell death
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DFRSS: Mass conservation and choice of the energy

The volume fractions obey the mass conservation (advection-reaction-diffusion) equations:

∂tφi + divx(uφi) = −divxJi + ΦSi

We have assumed that the densities of the components are matched

The total energy adhesion has the form

E =

∫
Ω

(
F(Φ) +

1

2
|∇xΦ|2

)
dx

where F is a logarithmic type mixing potential

We define the fluxes JΦ and JH as follows:

JΦ = J1 + J2 := −∇x
(
δE

δΦ

)
= −∇x

(
F ′(Φ)−∆Φ

)
:= −∇xµ

JH = J3 := −∇x
(
δE

δφH

)
= ∇x

(
δE

δΦ

)
where we have used in the last equality the fact that φH = 1−Φ and where µ is the chemical

potential of the system
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DFRSS: The convective Cahn-Hilliard equation for the tumor cells fraction

For the source of mass in the host tissue we have the following relations:

� ST = SD + SP := S2 + S1

� ΦSH := ΦS3 := φHST = (1− Φ)ST

Assuming the mobility of the system to be constant, then the tumor volume fraction Φ and the

host tissue volume fraction φH obey the following mass conservation equations

∂tΦ + divx(uΦ) = −divxJΦ + Φ(S2 + S1)

∂tφH + divx(uφH) = −divxJH + ΦS3

Using now the fact that ST = S1 + S2 and recalling that φH + Φ = 1, JΦ = −∇xµ, we

can forget of the equation for φH and we recover the equation for Φ in the form

∂tΦ + divx(uΦ)− divx(∇xµ) = ΦST , µ = F ′(Φ)−∆Φ

Suppose the net source of tumor cells ST to be given by

ST = ST (n, P,Φ) = λMnP − λL(Φ− P )

where λM ≥ 0 is the mitotic rate and λL ≥ 0 is the lysing rate of dead cells
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DFRSS: The transport equation for the proliferating cells fraction

The volume fraction of dead tumor cells φD would satisfy an equation similar to the one of Φ.

However, we prefer to couple the equation for Φ with the one for P = Φ− φD which then

reads

∂tP + divx(uP ) = Φ(ST − SD)

where the source of dead cells is taken as

SD = SD(n, P,Φ) = (λA + λNH(nN − n))P − λL(Φ− P )

Here

� λAP describes the death of cells due to apoptosis with rate λA ≥ 0 and the term

λNH(nN − n)P models the death of cells due to necrosis with rate λN ≥ 0

� for mathematical reasons, we choose H to be a regular and nonnegative function of n

� the term nN represents the necrotic limit, at which the tumor tissue dies due to lack of

nutrients
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DFRSS: The Darcy law for the velocity field

The tumor velocity field u (given by the mass-averaged velocity of all the components) is

assumed to fulfill Darcy’s law:

u = −∇xΠ + µ∇xΦ

where, for simplicity, the motility has been taken constant and equal to 1

Summing up the mass balance equations

∂tΦ + divx(uΦ) = −divxJΦ + ΦST

∂tφH + divx(uφH) = −divxJH + (1− Φ)ST

and using Φ + φH = 1 and JH = −JΦ, we end up with the following constraint for the

velocity field:

divxu = ST = λMnP − λL(Φ− P )
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DFRSS: The quasistatic reaction diffusion equation for the nutrient

Since the time scale for nutrient diffusion is much faster than the rate of cell proliferation, the

nutrient is assumed to evolve quasi-statically:

−∆n+ νUnP = Tc(n,Φ)

where the nutrient capillarity term Tc is

Tc(n,Φ) = [ν1(1−Q(Φ)) + ν2Q(Φ)] (nc − n)

Here

� νU represents the nutrient uptake rate by the viable tumor cells

� ν1, ν2 denote the nutrient transfer rates for preexisting vascularization in the tumor and

host domains

� nc is the nutrient level of capillaries

� the function Q(Φ) is regular and satisfies ν1(1−Q(Φ)) + ν2Q(Φ) ≥ 0
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DFRSS: The boundary conditions

� We chose the boundary conditions proposed in [CWSL: Y. Chen, S.M. Wise, V.B Shenoy, J.S.

Lowengrub, Int. J. Numer. Methods Biomed. Eng., 2014] for Φ, µ, Π and n (with ν denoting the

outer normal unit vector to ∂Ω):

µ = Π = 0, n = 1, ∇xΦ · ν = 0

� On the other hand, under the homogeneous Neumann boundary conditions suggested in

CWSL for P , we could not show that the system is well-posed. For this reason, we chose

the boundary conditions:

Pu · ν ≥ 0

which are natural in connection with the transport equation for P

∂tP + divx(uP ) = Φ(ST − SD)

In particular, the proliferation function at the boundary has to be nonnegative on the set

where the velocity u satisfies u · ν > 0. By maximum principle, then P ≥ 0 in Ω, which

is an information we need for proving well-posedness of the system
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In particular, the proliferation function at the boundary has to be nonnegative on the set

where the velocity u satisfies u · ν > 0. By maximum principle, then P ≥ 0 in Ω, which

is an information we need for proving well-posedness of the system
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DFRSS: The PDEs

In summary, let Ω ⊂ R3 be a bounded domain and T > 0 the final time of the process. For

simplicity, choose λM = νU = 1, λA = λ1, λN = λ2, λL = λ3.

Then, in Ω× (0, T ), we have the following system of equations:

(Cahn−Hilliard) ∂tΦ + divx(uΦ)− divx(∇xµ) = ΦST , µ = −∆Φ + F ′(Φ)

(Darcy) u = −∇xΠ + µ∇xΦ, divxu = ST

(Transport) ∂tP + divx(uP ) = Φ(ST − SD)

(Reac−Diff) −∆n+ nP = Tc(n,Φ)

where

(Source−Tumor) ST (n, P,Φ) = nP − λ3(Φ− P )

(Source−Dead) SD(n, P,Φ) = (λ1 + λ2H(nN − n))P − λ3(Φ− P )

(Nutrient−Capill) Tc(n,Φ) = [ν1(1−Q(Φ)) + ν2Q(Φ)] (nc − n)

coupled with the boundary conditions on ∂Ω× (0, T ): µ = Π = 0, n = 1,∇xΦ · ν = 0,

Pu · ν ≥ 0 and with the initial conditions Φ(0) = Φ0, P (0) = P0 in Ω
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DFRSS: Assumptions on the potential F

We suppose that the potential F supports the natural bounds

0 ≤ Φ(t, x) ≤ 1

To this end, we take F = C + B, where B ∈ C2(R) and

C : R 7→ [0,∞] convex, lower-semi continuous, C(Φ) =∞ for Φ < 0 or Φ > 1

Moreover, we ask that

C ∈ C1(0, 1), lim
Φ→0+

C′(Φ) = lim
Φ→1−

C′(Φ) =∞

A typical example of such C is the logarithmic potential

C(Φ) =


Φ log(Φ) + (1− Φ) log(1− Φ) for Φ ∈ [0, 1],

∞ otherwise

E. Rocca · Langenbach-Seminar, Berlin, October 27, 2015 · Page 13 (1)



DFRSS: Remarks

R1. Note that, as P ≥ 0, the boundary condition Pu · ν ≥ 0 should be interpreted as

P = 0 whenever u · ν < 0, meaning on the part of the inflow part of the boundary.

In

the weak formulation, that condition will be incorporated into the equation for P turning it

into a variational inequality

R2. Condition

C ∈ C1(0, 1), lim
Φ→0+

C′(Φ) = lim
Φ→1−

C′(Φ) =∞

has mainly a technical character and is assumed just for the purpose of constructing a not

too complicated approximation scheme. At the price of some additional technical work it

could be avoided. One may, for instance, consider the case where C(Φ) = I[0,1](Φ) (the

indicator function of [0, 1]), which does not satisfy this condition
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DFRSS: Assumptions on the other data

Regarding the functions the constants in the definitions of ST and SD , we assume

Q,H ∈ C1(R) and

λi ≥ 0 for i = 1, 2, 3, H ≥ 0

[ν1(1−Q(Φ)) + ν2Q(Φ)] ≥ 0, 0 < nc < 1

Finally, we suppose Ω be a bounded domain with smooth boundary in R3 and impose the

following conditions on the initial data:

Φ0 ∈ H1(Ω), 0 ≤ Φ0 ≤ 1, C(Φ0) ∈ L1(Ω)

P0 ∈ L2(Ω), 0 ≤ P0 ≤ 1 a.e. in Ω
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DFRSS: Weak formulation

(Φ,u, P, n) is a weak solution to the problem in (0, T )× Ω if

(i) these functions belong to the regularity class:

Φ ∈ C0([0, T ];H1(Ω)) ∩ L2(0, T ;W 2,6(Ω))

C(Φ) ∈ L∞(0, T ;L1(Ω)), hence, in particular, 0 ≤ Φ ≤ 1 a.a. in (0, T )× Ω

u ∈ L2((0, T )× Ω;R3), div u ∈ L∞((0, T )× Ω)

Π ∈ L2(0, T ;W 1,2
0 (Ω)), µ ∈ L2(0, T ;W 1,2

0 (Ω))

P ∈ L∞((0, T )× Ω), 0 ≤ P ≤ 1 a.a. in (0, T )× Ω

n ∈ L2(0, T ;W 2,2(Ω)), 0 ≤ n ≤ 1 a.a. in (0, T )× Ω

(ii) the following integral relations hold:∫ T

0

∫
Ω

[Φ∂tϕ+ Φu · ∇xϕ+ µ∆ϕ+ ΦSTϕ] dx dt = −
∫

Ω
Φ0ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω), where

µ = −∆Φ + F ′(Φ), u = −∇xΠ + µ∇xΦ

divxu = ST a.a. in (0, T )× Ω; ∇xΦ · ν|∂Ω = 0∫ T

0

∫
Ω

[P∂tϕ+ Pu · ∇xϕ+ Φ(ST − SD)ϕ] dx dt ≥ −
∫

Ω
P0ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω), ϕ|∂Ω ≥ 0

−∆n+ nP = Tc(n,Φ) a.a. in (0, T )× Ω; n|∂Ω = 1
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DFRSS: Main result

Now, we are able to state the main result of [M. Dai, E. Feireisl, E.R., G. Schimperna, M.

Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, preprint

arXiv:1507.07683 (2015)]

Theorem

Let T > 0 be given. Under the previous assumptions the variational formulation of our

initial-boundary value problem admits at least one solution on the time interval [0, T ]
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DFRSS: Idea of the proof

� Approximation: regularize the equations

� Perform uniform a priori estimates

� Use compactness arguments in order to pass to the limit
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DFRSS: The maximum principle

� The transport equation for the density function P is

∂tP+u·∇xP = −PST+Φ(ST−SD) = P [−ST + Φ (n− (λ1 + λ2H(nN − n)))]

Thus, provided

P (0, ·) = P0 ≥ 0, and P (t, x) ≥ 0 for x ∈ ∂Ω, u · ν > 0

we can deduce by maximum principle arguments that

P ≥ 0

� In order to obtain positivity of n we need

−nP + Tc(n, ϕ) = −nP + [ν1(1−Q(Φ)) + ν2Q(Φ)] (nc − n)

to be positive (non-negative) whenever n < 0. Then we assume

[ν1(1−Q(Φ)) + ν2Q(Φ)] ≥ 0, 0 < nc < 1

This assumption also implies that n ≤ 1, so we may conclude that

0 ≤ n(t, x) ≤ 1
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DFRSS: The upper bound for P

Since 0 ≤ Φ ≤ 1 and 0 ≤ n ≤ 1, we have

−Φ (λ1 + λ2H(nN − n)) ≤ 0

Hence evaluating the expression on the right-hand side of

∂tP +u ·∇xP = −PST +Φ(ST −SD) = P [−ST + Φ (n− (λ1 + λ2H(nN − n)))]

for P = 1 yields

P [−ST + Φ (n− (λ1 + λ2H(nN − n)))] ≤ λ3(Φ− 1) + n(Φ− 1)

Consequently, provided

0 ≤ P (0, ·) = P0 ≤ 1, and 0 ≤ P (t, x) ≤ 1 for x ∈ ∂Ω, u · ν > 0

it follows that

0 ≤ P (t, x) ≤ 1
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DFRSS: Main estimates on Φ

Testing by µ the Cahn-Hilliard equation

(Cahn−Hilliard) ∂tΦ + divx(uΦ)− divx(∇xµ) = ΦST , µ = −∆Φ +F ′(Φ)

and by u the (Darcy − law) : u = −∇xΠ + µ∇xΦ, gives

d

dt

∫
Ω

[
1

2
|∇xΦ|2 + F(Φ)

]
dx+

∫
Ω

[
|∇xµ|2 + |u|2

]
dx =

∫
Ω

ΠST dx ≤ ‖ST ‖L∞(Ω)‖Π‖L1(Ω)

Seeing that Π solves the Dirichlet problem

−∆Π = ST − divx(µ∇xΦ), Π|∂Ω = 0

we deduce that

‖Π(t, ·)‖H1(Ω) ≤ ‖ST (t, ·)‖L2(Ω) + ‖µ∇xΦ‖L2(Ω;R3),

where, by means of Gagliardo-Nirenberg interpolation inequality,

‖µ∇xΦ‖L2(Ω;R3) ≤ c‖µ(t, ·)‖L4(Ω)

(
‖Φ(t, ·)‖1/2L∞(Ω)

(
‖µ‖1/2

L2(Ω)
+ ‖∇Φ‖1/2

L2(Ω)

)
+ c
)

Thus, and applying a standard Grönwall’s lemma and by comparison arguments, we deduce

sup
t∈(0,T )

‖Φ‖H1(Ω) +

∫ T

0

[
‖∇xµ‖2L2(Ω;R3) + |u|2 + ‖Φ‖2W2,6(Ω)

]
dt ≤ c
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DFRSS: Main estimates on u

Note that we already know

divxu = ST bounded in L∞((0, T )× Ω) and u bounded in L2((0, T )× Ω;R3)

Next, we compute from the (Darcy − law) : u = −∇xΠ + µ∇xΦ the

curlxu = ∇xµ ∧∇xΦ ∈ L2(0, T ;L1(Ω)) ∩ L1(0, T ;L2(Ω))

Hence, in view of the fact that divx(ϕu) and curl(ϕu) for any test function ϕ ∈ C∞(R3)

are bounded in L1(0, T ;L2(R3)), we then obtain that ϕu is bounded in L1(0, T ;H1(R3))

and so u satisfies ∫ T

0

‖u‖H1
loc

(Ω;R3) dt ≤ c

These estimates are sufficient in order to pass to the limit in the regularized system and to

obtain our weak solutions
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DFRSS: Singular limit

We consider the simplified problem obtained by taking ST = SD = 0

Hence we consider the system for Φ and u, decoupled from the rest, of the form

∂tΦ + divx(uΦ)− divx(∇xµ) = 0, µ = −ε2∆Φ + F ′(Φ)

u = −∇xΠ + µ∇xΦ, divxu = 0

with the boundary conditions

u · ν|∂Ω = 0, ∇xΦ · ν|∂Ω = 0, µ|∂Ω = 0

Notice that, in particular, we are considering here a no-flux condition for Π in place of the

Dirichlet condition

Main goal: pass to the limit as ε→ 0
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DFRSS: Main estimates

We derive the energy balance

d

dt

∫
Ω

[
ε2

2
|∇xΦ|2 + F(Φ)

]
dx+

∫
Ω

|∇xµ|2 + |u|2 dx = 0

Next, we have ∫
Ω

[
ε2|∆Φ|2 + F ′′(Φ)|∇xΦ|2

]
dx =

∫
Ω

∇xµ · ∇xΦ dx

Then, assuming strict convexity of F , namely

F ′′ ≥ λ > 0

the following estimates can be deduced∫ T

0

‖ε∆Φ‖2L2(Ω) dt ≤ c,
∫ T

0

‖∇xΦ‖2L2(Ω;R3) dt ≤ c
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DFRSS: Passage to the limit

Hence, we may assume there is a subsequence such that

uε → u weakly in L2((0, T )× Ω;R3)

Obviously, we have divxu = 0, u · ν|∂Ω = 0 We can now write

uε = −∇x (Πε −F(Φε))− ε2∆Φε∇xΦε

whence, seeing that

ε2∆Φε∇xΦε → 0 in L1((0, T )× Ω)

we conclude that curlxu = 0, which, combined with divxu = 0, u · ν|∂Ω = 0, yields

u = 0

Therefore, taking ε→ 0, our system converges to

∂tΦ−∆µ = 0, µ = F ′(Φ)

and satisfies the energy law

d

dt

∫
Ω

F(Φ) dx+

∫
Ω

|∇xµ|2 dx = 0
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DFRSS: Main result on the Singular limit as ε→ 0

Theorem

Let the assumptions listed before hold, let F satisfy the strict convexity assumption, and let

(Φε, µε,uε) denote a family of weak solutions to the system

∂tΦ + divx(uΦ)− divx(∇xµ) = 0, µ = −ε2∆Φ + F ′(Φ)

u = −∇xΠ + µ∇xΦ, divxu = 0

with the b.c. u · ν|∂Ω = 0,∇xΦ · ν|∂Ω = 0, µ|∂Ω = 0 and the Cauchy conditions. Then, as

ε→ 0, the functions (Φε, µε,uε) suitably tend to a triple (Φ, µ, 0) satisfying

∂tΦ−∆µ = 0, µ = F ′(Φ)

together with the energy law

d

dt

∫
Ω

F(Φ) dx+

∫
Ω

|∇xµ|2 dx = 0

and the initial and boundary conditions
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DFRSS: Comparison with some other models

� Numerical simulations of diffuse-interface models for tumor growth have been carried

out in several papers (cf., e.g., [V. Cristini, J. Lowengrub, Cambridge Univ. Press, 2010] and more

recently [H. Garcke, K.F. Lam, E. Sitka, V. Styles, arXiv:1508.00437, 2015]). However, a rigorous

mathematical analysis of the resulting PDEs is still in its beginning

� To the best of our knowledge, the first related papers are concerned with a simplified

model, the so-called Cahn-Hilliard-Hele-Shaw system ([J. Lowengrub, E. Titi, K. Zhao,

European J. Appl. Math., 2013], [X. Wang, H. Wu, Asymptot. Anal., 2012], [X. Wang, Z. Zhang, Ann.

Inst. H. Poincaré Anal. Nonlinéaire, 2013]) in which the nutrient n, the source of tumor ST and

the fraction SD of the dead cells are neglected or [J. Jang, H. Wu, S. Zheng, J. Differential

Equations, 2015] where ST is not 0 but it’s not depending on the other variables but just on

time and space

� Moreover, very recent contributions FGR and CGRS1, CGRS2 are devoted to the analysis

of a newly proposed simpler model in [A. Hawkins-Daarud, K.G. van der Zee, J.T. Oden, Int. J.

Numer. Methods Biomed. Eng., 2012] and [D. Hilhorst, J. Kampmann, T.N. Nguyen, K.G. van der

Zee, M3AS, 2015]. In this model, velocities are set to zero and the state variables are

reduced to the tumor cell fraction and the nutrient-rich extracellular water fraction
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Part 2: the HZO model - two-phase with 0 velocity
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FRG: A reduced model

Consider a simplified version of a model proposed by [A. Hawkins-Daarud, K.G. van der Zee & J.T.

Oden, 2011].

Take the velocity u = 0, the proliferation p = p(ϕ), and consider only one tumoros phase ϕ.

Then, the new variables are:

� ϕ: the tumor cell fraction obeyng a Cahn-Hilliard equation with reaction

� n: the nutrient fraction (e.g. the oxygen) obeyng a reaction-diffusion equation coupled to

the Cahn-Hilliard one

ϕt = ∆µ+ p(ϕ)(n− µ), µ = −∆ϕ+ F ′(ϕ)

nt = ∆n− p(ϕ)(n− µ)

in Ω× (0,∞), where Ω ⊂ R3 is a bounded smooth domain. The coupling is given by reaction

terms containing a proliferation function p (e.g. p(s) = p0(1− s2)χ[−1,1](s) for s ∈ R,

p0 > 0). Here, F is a double-well potential associated with the Ginzburg-Landau free-energy

functional. The system is endowed with no-flux boundary conditions and initial conditions
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FGR: Weak solutions

Assume ϕ0 ∈ H1(Ω), n0 ∈ L2(Ω) and

� F ∈ C2(R) s.t. F (s) = F0(s) + λ(s), λ ∈ C2(R) satisfies |λ′′(s)| ≤ α, for some

α ≥ 0, and for c1, c2, c3 > 0, c4 ∈ R:

c1(1 + |s|ρ−2) ≤ F ′′0 (s) ≤ c2(1 + |s|ρ−2), ρ ∈ [2,6), F (s) ≥ c3|s| − c4

� p ∈ C0,1
loc (R) s.t. 0 ≤ p(s) ≤ c5(1 + |s|q), c5 > 0, q ∈ [1,9)

Theorem

Then, ∀T > 0 ∃ a weak solution ϕ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)),

µ ∈ L2(0, T ;H1(Ω)), n ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) satisfying the Energy

Inequality (equality if q ≤ 4):

d

dt
E(ϕ, n) + ‖∇µ‖2 + ‖∇n‖2 +

∫
Ω

p(ϕ)(µ− n)2 = 0

where E(ϕ, n) := 1
2
‖∇ϕ‖2 + 1

2
‖n‖2 +

∫
Ω
F (ϕ)
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FGR: Strong solutions and global attractor

Under the additional assumption

� p ∈ C0,1
loc (R) s.t. p ≥ 0 and |p′(s)| ≤ c6(1 + |s|q−1), c6 > 0, 1 ≤ q ≤ 4

Theorem

Then, the weak solution is unique and a continuous dependence estimate holds in

H1(Ω)′ ×H1(Ω)′

Theorem

Let ϕ0 ∈ H3(Ω) and n0 ∈ H1(Ω). Then, ∀T > 0 ∃ a strong solution s.t.

ϕ ∈ L∞(0, T ;H3(Ω)), µ ∈ L∞(0, T ;H1(Ω)), n ∈ L∞(0, T ;H1(Ω)). Moreover, the

dynamical system (WM , {SM (t)}) generated in the phase-spaceWM of bdd. energy

E ≤M possesses the global attractor
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CGRS1-2: The viscous approximations

The PDE system of [FGR] can also be approximated by the relaxed system

αµt + ϕt = ∆µ+ p(ϕ)(n− µ), µ = βϕt −∆ϕ+ F ′(ϕ)

nt = ∆n− p(ϕ)(n− µ)

coupled with homogeneous Neumann BCs and ICs.

Here F is a double well potential and p a nonnegative smooth function of ϕ. We get:

CGRS1 asymptotics for (α, β)→ (0, 0) in case of regular (at most exponentially growing)

potential & error estimate with α1/2 + β1/2 in case of F ′′(r) = O(r4) as |r| → ∞
CGRS2 asymptotics & uniqueness & error estimates for

� α→ 0 and β > 0 fixed in case of regular (at most exponentially growing) potential.

Uniqueness for the limit problem is open in general. We know it is true in case

F ′′(r) = O(r2) as |r| → ∞ and p ∈ R+ & an error estimate of the order α1/2

� β → 0 and α > 0 fixed in case of general F (sum of a convex and a regular part)

but with α small & an error estimate of the order β1/2. The coefficient α has to be

small with respect to the Lipschitz constant L = Lip(π) of the smooth and non

convex part π of the potential F . We have troubles in the limit problem for Lα = 1!
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CGRS1: (α, β)→ (0, 0). Why not a general potential F?

From the Energy Estimate:

d

dt

[
α1/2‖µ‖2 + ‖∇ϕ‖2 + ‖n‖2 + 2

∫
Ω

F (ϕ)

]
+ 2β1/2‖ϕt‖2 + 2‖∇µ‖2 + 2‖∇n‖2 + 2

∫
Ω

p(ϕ)(µ− n)2 = 0

we cannot estimate the H1 norm of µ indep. of α.

We need to estimate the mean value of µ.

We use the µ-equation

µ = βϕt −∆ϕ+ F ′(ϕ)

and what we need to estimate is F ′(ϕ). That’s the point where we need to assume

F ′ to be controlled by F

which is already estimated in L∞(0, T ;L1(Ω)). This corresponds basically to assume that

the convex part of F has domain R and it grows at most exponentially
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Some work in progress and open problems

On the [DFRSS] system:

� It would be interesting to investigate whether similar estimates could be derived for the

singular flux

u = −∇xΠ +
1

ε
µ∇xΦ

However, the above argument does not seem to be easily adaptable to cover such a

situation. For instance, we cannot prove uniform integrability of the product

ε∆Φ∇xΦ

On the [FGR] system:

� The optimal control problem: almost completed the distributed control case together with

P. Colli, G. Gilardi, J. Sprekels

� The rigorous sharp interface limit as ε→ 0 in

ϕt = ∆µ+ p(ϕ)(n− µ), µ = −ε∆ϕ+
1

ε
F ′(ϕ), nt = ∆n− p(ϕ)(n− µ)

This is a very difficult issue. We have some partial results with R. Scala on a related

gradient flow system...
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