Second-Order Degenerate Differential Equations in Banach Spaces

Mohammed Al Horani (University of Jordan)
Angelo Favini (University of Bologna)

Abstract

In this talk we will extend our previous results and solve the problem not only for first-order differential equations but also for secondorder differential equations in time that reduced to weakly parabolic systems. Consider the following problem: $$
\begin{align*} & \frac{d}{d t}(M u)+L u=f(t) z, \quad 0 \leq t \leq \tau \tag{1}\\ & (M u)(0)=M u_{0}, \tag{2}\\ & \Phi[M u(t)]=g(t), \quad 0 \leq t \leq \tau \tag{3} \end{align*}
$$

where L, M are two closed linear operators with $D(L) \subseteq D(M), L$ being invertible, $\Phi \in X^{*}, g \in C^{1+\theta}([0, \tau] ; \mathbb{R})$ for $\theta \in(0,1)$ and M may have no bounded inverse.

The main assumption here is:

$$
\left\|M(\lambda M+L)^{-1}\right\|_{\mathcal{L}(X)} \leq c(1+|\lambda|)^{-\beta}, \quad \forall \lambda \in \Sigma_{\alpha}
$$

or, equivalently, (where $T=M L^{-1}$)
$\left\|L(\lambda M+L)^{-1}\right\|_{\mathcal{L}(X)}=\left\|(\lambda T+I)^{-1}\right\|_{\mathcal{L}(X)} \leq c(1+|\lambda|)^{1-\beta}, \quad \forall \lambda \in \Sigma_{\alpha}$,
where

$$
\Sigma_{\alpha}=\left\{\lambda \in \mathbb{R}: \operatorname{Re} \lambda \geq-c(1+|\operatorname{Im} \lambda|)^{\alpha}\right\}
$$

$c>0, \alpha, \beta \in(0,1), 0<\beta \leq \alpha \leq 1, \alpha+\beta>3 / 2,2-\alpha-\beta<\theta<$ $\alpha+\beta-1, z=T z^{*}$ and $L u_{0}=T v^{*}$. Then we show that problem (1)-(3) admits a unique global solution

$$
(u, f) \in C^{\theta}([0, \tau], D(L)) \times C^{\theta}([0, \tau] ; \mathbb{R})
$$

provided that $\Phi[z] \neq 0$ and $\Phi\left[M u_{0}\right]=g(0)$.
To find similar results for second order degenerate problem we consider the following system:

$$
\begin{align*}
& \frac{d}{d t}\left(M y^{\prime}\right)+L y^{\prime}+K y=f(t) z, \quad 0 \leq t \leq \tau \tag{4}\\
& y(0)=y_{0} \tag{5}\\
& M y^{\prime}(0)=M y_{1} \tag{6}\\
& \Phi[M y(t)]=g(t), \quad 0 \leq t \leq \tau \tag{7}
\end{align*}
$$

with the compatibility relations

$$
\begin{align*}
& \Phi\left[M y_{0}\right]=g(0) \tag{8}\\
& \Phi\left[M y_{1}\right]=g^{\prime}(0), \tag{9}\\
& \Phi[z] \neq 0 \tag{10}
\end{align*}
$$

where $D(L) \subseteq D(M) \cap D(K), 0 \in \rho(L),\|u\|_{D(L)}=\|L u\|$,
$\left\|M(\lambda M+L)^{-1}\right\| \leq \frac{C}{(1+|\lambda|)^{\beta}}, \quad \operatorname{Re}(\lambda) \geq c(1+|\operatorname{Im}(\lambda)|)^{\alpha}, \quad \alpha+\beta>1$.
Let $y^{\prime}=w$, then the system (4)-(7) is equivalent to:

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{cc}
1 & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{c}
y(t) \\
w(t)
\end{array}\right]+\left[\begin{array}{cc}
0 & -1 \\
K & L
\end{array}\right]\left[\begin{array}{l}
y(t) \\
w(t)
\end{array}\right]=f(t)\left[\begin{array}{l}
0 \\
z
\end{array}\right], \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{c}
y(0) \\
w(0)
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]} \\
& \Psi\left(\left[\begin{array}{cc}
1 & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{c}
y(t) \\
w(t)
\end{array}\right]\right)=\Phi[M w(t)]=g^{\prime}(t) .
\end{aligned}
$$

where the linear functional $\Psi: D(L) \times D(L) \rightarrow \mathbb{R}$ is defined by:

$$
\Psi\left(\left[\begin{array}{c}
y(t) \\
w(t)
\end{array}\right]\right)=\Phi[w(t)]
$$

Using the previous results we can show that problem (4)-(7) has a unique strict global solution (y, f) such that $y^{\prime} \in C^{\theta}([0, \tau] ; D(L))$, $\left(M y^{\prime}\right)^{\prime} \in C^{\theta}([0, \tau] ; X)$ and $f \in C^{\theta}([0, \tau] ; \mathbb{R})$.

