Long time behaviour of a singular phase transition model

Pavel Krejčí

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany,

and

Mathematical Institute, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1, Czech Republic, E-mail: krejci@wias-berlin.de, krejci@math.cas.cz

We consider the system of equations

$$c_V \theta_t + \kappa \Delta \left(\frac{1}{\theta}\right) + (\lambda(\chi) + \beta \varphi(\chi))_t + b[\chi] \chi_t = 0,$$

$$\mu(\theta) \chi_t + \theta \sigma'(\chi) + \lambda'(\chi) + b[\chi] \in -(\beta + \theta) \partial \varphi(\chi)$$

in $\Omega \times (0, \infty)$, where $\Omega \subset \mathbb{R}^N$ is a bounded domain with Lipschitzian boundary. The unknown functions are θ (the absolute temperature) and χ (the order parameter). The system is coupled with the Neumann boundary condition for $1/\theta$ and initial conditions for θ and χ .

We assume that φ is an arbitrary proper, convex, and lower semicontinuous function with values in $\mathbb{R} \cup \{+\infty\}$, (in typical models for solid-liquid phase transition, φ can be chosen for instance as the indicator function of the interval [0,1]), $c_V > 0$ is the constant specific heat, β is a positive constant, σ and λ are smooth bounded functions on the domain of φ describing the local dependence on χ of the entropy and of the latent heat, respectively, μ is a locally Lipschitz continuous function with quadratic growth, and b is a non-local operator of the form

$$b[\chi](x,t) = 2 \int_{\Omega} k(x,y) G'(\chi(x,t) - \chi(y,t)) dy$$

with a given smooth even function G and a bounded symmetric kernel k. The system satisfies the Claudius-Duhem inequality almost everywhere under the choice of the free energy density in the form

$$F[\theta, \chi] = c_V \theta(1 - \log \theta) + \theta \sigma(\chi) + \lambda(\chi) + (\beta + \theta)\varphi(\chi) + B[\chi]$$

with

$$B[\chi](x,t) = \int_{\Omega} k(x,y) G(\chi(x,t) - \chi(y,t)) \, dy$$

Assuming that the initial temperature is bounded and strictly positive, we prove that the system admits a unique global solution with positive θ . If moreover $N \leq 3$ and φ is bounded from below, then the temperature remains bounded from above and from below by positive constants for all times, and both $\nabla \theta$ and χ_t converge in the norm of $L^2(\Omega)$ asymptotically to 0 as $t \to \infty$. (Joint work with J. Sprekels.)