Long time behaviour of a singular phase transition model

Pavel Krejčí
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany, and Mathematical Institute, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1, Czech Republic, E-mail: krejci@wias-berlin.de, krejci@math.cas.cz

We consider the system of equations

$$
\begin{aligned}
& c_{V} \theta_{t}+\kappa \Delta\left(\frac{1}{\theta}\right)+(\lambda(\chi)+\beta \varphi(\chi))_{t}+b[\chi] \chi_{t}=0, \\
& \mu(\theta) \chi_{t}+\theta \sigma^{\prime}(\chi)+\lambda^{\prime}(\chi)+b[\chi] \in-(\beta+\theta) \partial \varphi(\chi)
\end{aligned}
$$

in $\Omega \times(0, \infty)$, where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with Lipschitzian boundary. The unknown functions are θ (the absolute temperature) and χ (the order parameter). The system is coupled with the Neumann boundary condition for $1 / \theta$ and initial conditions for θ and χ.

We assume that φ is an arbitrary proper, convex, and lower semicontinuous function with values in $\mathbb{R} \cup\{+\infty\}$, (in typical models for solid-liquid phase transition, φ can be chosen for instance as the indicator function of the interval $[0,1]), c_{V}>0$ is the constant specific heat, β is a positive constant, σ and λ are smooth bounded functions on the domain of φ describing the local dependence on χ of the entropy and of the latent heat, respectively, μ is a locally Lipschitz continuous function with quadratic growth, and b is a non-local operator of the form

$$
b[\chi](x, t)=2 \int_{\Omega} k(x, y) G^{\prime}(\chi(x, t)-\chi(y, t)) d y
$$

with a given smooth even function G and a bounded symmetric kernel k. The system satisfies the Claudius-Duhem inequality almost everywhere under the choice of the free energy density in the form

$$
F[\theta, \chi]=c_{V} \theta(1-\log \theta)+\theta \sigma(\chi)+\lambda(\chi)+(\beta+\theta) \varphi(\chi)+B[\chi]
$$

with

$$
B[\chi](x, t)=\int_{\Omega} k(x, y) G(\chi(x, t)-\chi(y, t)) d y
$$

Assuming that the initial temperature is bounded and strictly positive, we prove that the system admits a unique global solution with positive θ. If moreover $N \leq 3$ and φ is bounded from below, then the temperature remains bounded from above and from below by positive constants for all times, and both $\nabla \theta$ and χ_{t} converge in the norm of $L^{2}(\Omega)$ asymptotically to 0 as $t \rightarrow \infty$. (Joint work with J. Sprekels.)

