Gradient estimates for solutions to Cauchy-Neumann problems in unbounded and non convex open sets

Luca Lorenzi

Dipartimento di Matematica, Università degli Studi di Parma (Italy) e-mail: "luca.lorenzi@unipr.it"

In this talk we deal with the Cauchy-Neumann problem

in smooth and non convex unbounded open sets $\Omega \subset \mathbb{R}^N$. Here, \mathcal{A} is an uniformly elliptic operator with coefficients which are smooth and possibly unbounded in $\overline{\Omega}$, and $f \in C_b(\overline{\Omega})$. Under suitable assumptions on the coefficients of the operator \mathcal{A} , we show that the problem (1) admits a unique classical solution u, which is bounded in $[0, T] \times \Omega$ for any T > 0.

We also show both uniform (with respect to the sup-norm in Ω) and pointwise gradient estimates for u. Such estimates can be used to prove some interesting consequences, such as a Liouville-type theorem.

The result discussed in this talk have been obtained in collaboration with M. Bertoldi and S. Fornaro.