## Identification of memory kernels in Maxwell integrodifferntial equations

FRANCESCA MESSINA

Universit à di Milano

messina@mat.unimi.it

Joint work with A. Lorenzi (Milano and V.G. Romanov (Novosibirsk)

The talk reports some results concerned an integro-differential Maxwell system related to a domain of the form  $\Omega \times \mathbf{R} \times \mathbf{R}_+ \times (-\infty, T]$ , where  $\Omega$  is an interval in **R**. The physical coefficients  $\epsilon_0, \sigma_0, \mu_0$  and the memory kernels are assumed to be independent of the  $x_2$ variable.

We recover, under suitable conditions and in a framework of Gevrey-type functions with respect to the variable  $x_1$ , the spatial parts  $p_1(x_1, x_3)$  and  $p_2(x_1, x_3)$  of two factorized kernels  $\varepsilon_1(x_1, x_3, t) = p(x_1, x_3)k(t)$  and  $\mu_1(x_1, x_3, t) = p_2(x_1, x_3)l(t)$ .

In our context determining  $p_1$  and  $p_2$  means to show locally in space existence, uniqueness and continuous dependence of p on the data.