SITO NON PIU' AGGIORNATO - UNIVERSITÀ DI PAVIA

Dipartimento di Matematica ''F. Casorati''

HomeAppuntamenti › Torus equivariant K-stabilityIT|EN

Torus equivariant K-stability

Giulio Codogni (Roma 3)

Aula Beltrami - Mercoledì 13 Aprile 2016 h.16:00


Abstract. We prove (using algebro-geometric methods) two results that allow to test the positivity of the Donaldson-Futaki weights of arbitrary polarised varieties via test-configurations which are equivariant with respect to a maximal torus in the automorphism group. It follows in particular that there is a purely algebro-geometric proof of the K-stability of projective space (or more generally of smooth toric Fanos with vanishing Futaki character, as well as of the examples of non-toric Kahler-Einstein Fano threefolds due to Ilten and Suss) and that K-stability for toric polarised manifolds can be tested via toric test-configurations. A further application is a proof of the K-stability of constant scalar curvature polarised manifolds with continuous automorphisms. Our approach is based on the method of filtrations introduced by Wytt Nystrom and Szekelyhidi and indeed many of our results also extend to the class of non-finitely generated filtrations. This is a joint work with J. Stoppa.

Torna alla pagina degli appuntamenti


Dipartimento di Matematica ''F. Casorati''

Università degli Studi di Pavia - Via Ferrata, 5 - 27100 Pavia
Tel +39.0382.985600 - Fax +39.0382.985602