SITO NON PIU' AGGIORNATO - UNIVERSITÀ DI PAVIA

Dipartimento di Matematica ''F. Casorati''

HomeAppuntamenti › Fano CongruencesIT|EN

Fano Congruences

Pietro De Poi (Udine)

Aula Beltrami - Mercoledì 16 Maggio 2018 h.17:00


Abstract. We study congruences of lines of \mathbb P^n (i.e. subvarieties of the Grassmannian of (co)dimension n-1) X defined by 3-forms, a class of congruences that are irreducible components of some reducible linear congruences, and their residual Y.

We prove that X, and its fundamental locus F if n is odd, are Fano varieties of index 3 and that X is smooth; F is smooth as well if n<10.

We study the Hilbert scheme of these congruences X, proving that the choice of the 3-form bijectively corresponds to X, except when n=5.

Y is analysed in terms of the quadrics containing the linear span of X and we determine the singularities and the irreducible components of its fundamental locus. Joint work with Emilia Mezzetti, Daniele Faenzi and Kristian Ranestad.

Torna alla pagina degli appuntamenti


Dipartimento di Matematica ''F. Casorati''

Università degli Studi di Pavia - Via Ferrata, 5 - 27100 Pavia
Tel +39.0382.985600 - Fax +39.0382.985602