SITO NON PIU' AGGIORNATO - UNIVERSITÀ DI PAVIA

Dipartimento di Matematica ''F. Casorati''

HomeDidatticaCorsi › Analisi numericaIT|EN

Analisi numerica

Docenti:
Boffi Daniele, Gardini Francesca
Anno accademico:
2013/2014
Crediti formativi:
9
Ambito:
MAT/08
Decreto Ministeriale:
270/04

Programma

Obiettivi formativi



Il corso si propone di introdurre i concetti fondamentali dell'Analisi Numerica e del Calcolo Scientifico e si pone l'obiettivo di portare lo studente a un sufficiente grado di dimestichezza nella classificazione dei problemi e degli algoritmi numerici idonei alla loro risoluzione. Lo studio teorico e' affiancato da esercitazioni tenute nel laboratorio informatico del Dipartimento di Matematica che costituiscono parte integrante del corso stesso.



Prerequisiti



I corsi di Algebra lineare e di Analisi del primo anno.



Contenuti



Analisi degli errori. Metodi diretti per la risoluzione dei sistemi lineari.

Metodi iterativi per la risoluzione dei sistemi lineari. Calcolo di autovalori e autovettori.

Approssimazione di funzioni e di dati. Equazioni non lineari e ottimizzazione. Integrazione numerica.



Programma esteso



1) Analisi degli errori.

Classificazione dei problemi computazionali. Sistema dei numeri floating point. Aritmetica in virgola mobile. Propagazione degli errori. Condizionamento di un problema.



2) Metodi diretti per la risoluzione dei sistemi lineari.

Sistemi triangolari. Metodo di eliminazione di Gauss. Fattorizzazione LU. Strategie di pivoting. Altre fattorizzazioni, fattorizzazione di Choleski. Matrici a banda, a blocchi e sparse. Il numero di condizionamento. Analisi a priori in avanti e all'indietro. Stabilita' della fattorizzazione LU. Sistemi sovradeterminati; fattorizzazione QR; algoritmo di Gram-Schmidt modificato e matrici di Householder.



3) Metodi iterativi per la risoluzione dei sistemi lineari.

Metodi di splitting: metodo di Jacobi, metodo di Gauss-Seidel. Matrice di iterazione e raggio spettrale. Metodi JOR e SOR. Studio della convergenza e criteri di arresto. Metodi di tipo Richardson; analisi del metodo di Richardson stazionario. Metodo del gradiente (steepest descent). Metodo del gradiente coniugato; metodo del gradiente coniugato precondizionato. Precondizionatori.



4) Calcolo di autovalori e autovettori.

Condizionamento dei problemi agli autovalori e localizzazione degli autovalori. Metodo delle potenze. Metodo delle potenze inverse. Tecnica di shift. Deflazione. Metodi di similitudine; il metodo QR.



5) Approssimazione di funzioni e di dati.

Interpolazione di Lagrange. Analisi dell'errore nell'intepolazione polinomiale; costante di Lebesgue e stima dell'errore. Fenomeno di Runge e nodi di Chebychev. Metodo di Newton e differenze divise. Analisi di stabilita' dell'interpolazione. Interpolazione astratta: unisolvenza. Spline: lineari e del terz'ordine. Interpolazione polinomiale a tratti in piu' dimensioni. Il problema generale dell'approssimazione lineare. Minimi quadrati lineari. Polinomi ortogonali (Legendre, Chebyshev). Miglior approssimazione.



6) Equazioni non lineari e ottimizzazione.

Metodo di bisezione. Metodo Regula Falsi e Illinois. Metodo di Newton. Analisi del metodo di Newton. Metodo delle corde. Metodo delle secanti. Iterazioni di punto fisso. Convergenza del metodo di punto fisso e propagazione degli errori. Il metodo di Newton come iterazione di punto fisso: radici multiple. Metodo di deflazione per la ricerca delle radici di polinomi.



7) Integrazione numerica.

Formula del punto medio semplice e composita. Formule di Newton-Cotes (trapezi e Cavalieri-Simpson). Stima dell'errore nelle formule di Newton-Cotes. Formule composite. Formule di Gauss, teorema di Jacobi. Formule di Gauss-Legendre, Gauss-Chebyshev, Gauss-Lobatto. Formula di Cavalieri-Simpson adattiva.



Testi di riferimento



A. Quarteroni, R. Sacco, F. Saleri, Matematica numerica, ed. Springer (collana UNITEXT)



Metodi didattici



Lezioni, esercitazioni, laboratori informatici.



Modalita d'esame



Esame scritto e orale. Relazione di laboratorio.



Altre informazioni







http://www-dimat.unipv.it/boffi/teach.html

Moduli

Docente:
Boffi Daniele
Ore di lezione:
48
Crediti formativi:
6
Ambito:
MAT/08

Docente:
Gardini Francesca
Ore di lezione:
36
Crediti formativi:
3
Ambito:
MAT/08


Dipartimento di Matematica ''F. Casorati''

Università degli Studi di Pavia - Via Ferrata, 5 - 27100 Pavia
Tel +39.0382.985600 - Fax +39.0382.985602